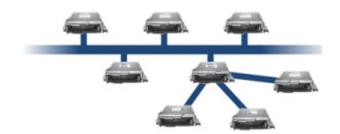
FlexRay Automotive Communication Bus

S. Venkatesan

Acknowledgement: The contents, example scripts and some figures are copied from various sources. Thanks to all authors and sources made those contents public and usable for educational purpose

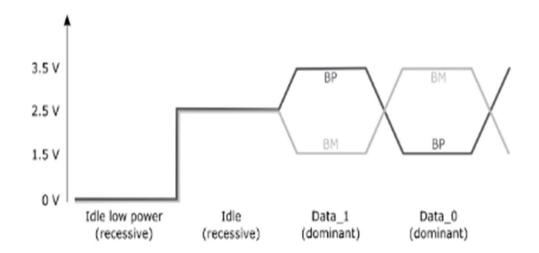
Introduction

- FlexRay communications bus
 - deterministic
 - fault-tolerant
 - high-speed bus system
- FlexRay delivers the error tolerance and timedeterminism performance requirements for x-bywire applications (i.e. drive-by-wire, steer-bywire, brake-by-wire, etc.).
- An alternate for CAN bus


Wiring

- Uses **unshielded twisted pair** cabling to connect nodes together.
- Supports single- and dual-channel configurations which consist of one or two pairs of wires respectively.
- Differential signaling on each pair of wires reduces the effects of external noise on the network without expensive shielding.
- Most FlexRay nodes typically also have power and ground wires available to power transceivers and microprocessors.
- In the beginning, it uses one twisted wire and later with two twisted wire to cater the demand.
- Typical FlexRay networks have a cabling impedance between 80 and 110 ohms, and the end nodes are terminated to match this impedance.

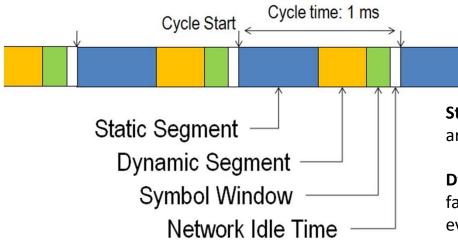
FlexRay Topology



https://www.ni.com/en/shop/seamlessly-connect-to-third-party-devices-and-supervisory-system/flexray-automotive-communication-bus-overview.html?srsltid=AfmBOoofFV-K37cbE5soxEUnqw-1Y3DT5yJjaecjfGaRV1QcCkLO8lZ6

Communication

- FlexRay manages multiple nodes with a **Time Division Multiple Access** or TDMA scheme.
- Every FlexRay node is synchronized to the same clock, and each nodes waits for its turn to write on the bus.
- Because the timing is consistent in a TDMA scheme, FlexRay is able to guarantee determinism or the consistency of data deliver to nodes on the network.

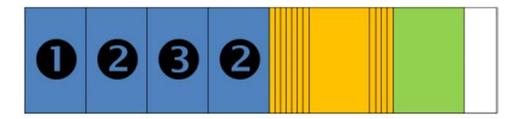

FlexRay Bus Levels

BP (bus plus) and BM (bus minus

Communication Cycle

- The duration of a cycle is fixed when the network is designed, but is typically around 1-5 ms.
- There are four main parts to a communication cycle

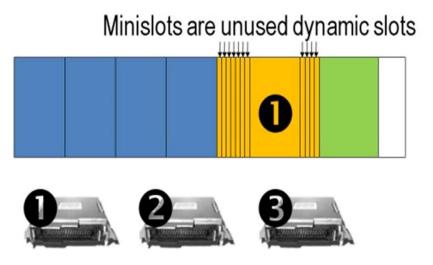
Static Segment: Reserved slots for deterministic data that arrives at a fixed period.


Dynamic Segment: The dynamic segment behaves in a fashion similar to CAN and is used for a wider variety of event-based data that does not require determinism.

Symbol Window: Typically used for network maintenance and signaling for starting the network.

Network Idle Time: A known "quiet" time used to maintain synchronization between node clocks.

https://www.ni.com/en/shop/seamlessly-connect-to-third-party-devices-and-supervisory-system/flexray-automotive-communication-bus-overview.html?srsltid=AfmBOoofFV-K37cbE5soxEUnqw-1Y3DT5yJjaecjfGaRV1QcCkLO8lZ6


Static Segment

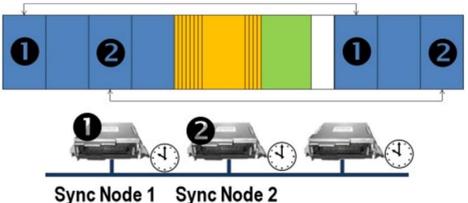
Dynamic Segment

- The segment is a fixed length, so there is a limit of the fixed amount of data that can be placed in the dynamic segment per cycle.
- To prioritize the data, **minislots** are pre-assigned to each frame of data that is eligible for transmission in the dynamic segment. A minislot is typically a **macrotick** (a microsecond) long.
- Higher priority data receives a minislot closer to the beginning of the dynamic frame.

 Macrotick: This unit of measurement is typically one millisecond long and is used for perfect synchronization. So, six macro ticks are 6 milliseconds!

Data Security and Error Handling

- Fault-tolerance by allowing single or dual-channel communication.
- For security-critical applications, the devices connected to the bus may use both channels for transferring data.
- However, it is also possible to connect only one channel when redundancy is not needed, or to increase the bandwidth by using both channels for transferring non-redundant data.


Header	leader Payload		Tra	iler				
					Header	Payload		Trailer
12345	Frame ID	Payload Length	Header CRC	Cycle Count	Data 0	Data 1	Data 2	Data n
ÎF	11 bits rame Type Bi	7 bits	< 11 bits	6 bits	.	0.	254 Bytes	

Clock synchronization and cold starting

- FlexRay has the unique ability to sync up nodes on a network without an external synchronization clock signal.
- It uses 2 special types of frames:
 - Startup Frames and Sync Frames.
- The action of starting up the FlexRay bus is known as a **cold-start** and the nodes sending the startup frames are usually known as cold-start nodes.
- The startup frames are analogous to a start trigger, which tells all the nodes on the network to start.
- Once the network is started, all nodes must synchronize their internal oscillators to the network's macrotick.

Clock synchronization and cold starting

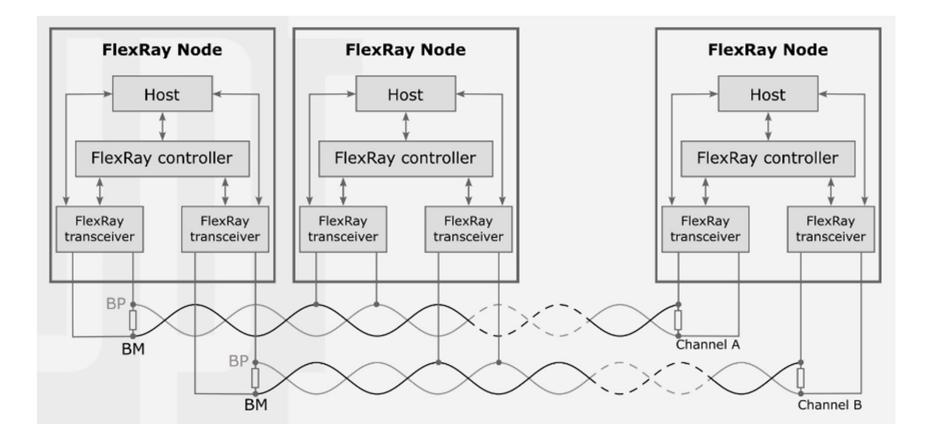
- This can be done using two synchronization nodes.
 - Can be any two separate nodes on the network that pre-designated to broadcast special sync frames when they are first turned on.
- Other nodes on the network wait for the sync frames to be broadcast, and measure the time between successive broadcasts in order to calibrate their internal clocks to the FlexRay time.
- The sync frames are designated in the FIBEX (FIeld Bus EXchange) configuration for the network.
- Once the network is synchronized and on-line, the network idle time (white space in the diagram) is measured and used to adjust the clocks from cycle-to-cycle to maintain tight synchronization.

Vehicles

- Audi
- Mercedes
- BMW
- Land Rover
- Rolls-Royce Ghost

Comparison

	LIN	CAN	Flexray	MOST
Speed	40 kbit/s	1 Mbit/s	10 Mbit/s	
Wires	1	2	2/4	
Cost	Low	Medium	High	
Medium access or Bus access	Polling method	CSMA-CR method	TDMA method	Timing Master
Тороlоду	Bus topology	Bus topology	Bus/Star topology	Daisy Chain or Ring
Message transmission	Synchronous	Asynchronous	Synchronous/Asynchronous	
Error checkinန mechanism	Checksum over the Protected Identifier and Data fields	CRC computation over the entire frame	Two CRC: Header and Trailer CRC for entire frame	
Cabling impedance	1k ohms	120 ohms	80-110 ohms	
Range	40 meters	40 meters	10 meters	
Data Length	2, 4 and 8 bytes	8 bytes	254 bytes	
Communication	Event Triggered however on request	Event Triggered	Time/Event triggered	
Year	2002	1979	2006	2008


Frame Format

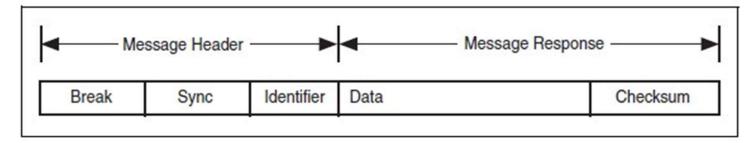
- Transmission Start Signal (TSS) bit 0
- Frame Start Signal (FSS) bit 1
- *m* times:
 - Byte Start Signal 0 (BSS0) bit 1
 - Byte Start Signal 1 (BSS1) bit 0
 - Oth bit of *i*-th byte
 - 1st bit of *i*-th byte
 - 2nd bit of *i*-th byte
 - ...
 - 7th bit of *i*-th byte
- Frame End Signal (FES) bit 0
- Transmission End Signal (TES) bit 1

Idle State and Frame

- If nothing is being communicated, the bus is held in state 1 (high voltage), so every receiver knows that the communication started when the voltage drops to 0.
- Note that 8-cycle per bit has nothing to do with bytes. Each byte takes 80 cycles to transfer. 16 for BSSO and BSS1 and 64 for its bits. Also note that BSSO has value 1, and BSS1 has value 0.

Layers

Clock synchronization


- Clocks are resynchronized when the voted signal changes from 1 to 0, if the receiver was in either idle state or expecting BSS1.
- As synchronization is done on the voted signal, small transmission errors during synchronization that affect the boundary bits may skew the synchronization no more than 1 cycle.

Synchronization

- Errors that happened in the example:
 - Because of a single-bit error during synchronization, the synchronization was delayed by 1 cycle
 - Receiver clock was slower than sender clock, so receiver missed one cycle (marked X). This will
 not happen again before the next synchronization due to limits on maximum allowable clock
 drift.
 - Because of a single-bit error during transmission, a bit was voted wrongly near the result.
 - Despite so many errors, the communication was received correctly.
 - The green cells are sampling points. All except the first are synchronized by the 1->0 edge in the transmission fragment shown.

Signal to be sent	1		0			1		1	
Signal sent	11111	111	0000	0000	1111	1111	000	00000	011
On the bus	11111	111	0 1 00	0000	1111	1111	000	0001	011
Received	11111	111	0 1 00	0000	1111	11 <mark>X</mark> 1	000	0001	011
5-maj voted	1111	111	0100	<mark>0</mark> 000	1111	<mark>1</mark> 1X1	000)00 <mark>0</mark> 1	011

Local Interconnect Network (LIN) Protocol

- The LIN bus provides a total of 64 IDs. IDs 0 to 59 are used for signal-carrying (data) frames, 60 and 61 are used to carry diagnostic data, 62 is reserved for user-defined extensions, and 63 is reserved for future protocol enhancements.
- The LIN bus uses a master/slave approach that comprises a LIN master and one or more LIN slaves.
- Comprising 16 nodes (one master and up to 15 slaves).
- All messages are initiated by the master with at most one slave replying to a given message identifier. The master node can also act as a slave by replying to its own messages.
- Break is to identify the Start of frame

Media Oriented Systems Transport

 The serial MOST bus uses a daisy-chain topology or ring topology and synchronous serial communication to transport audio, video, voice and data signals via plastic optical fiber (POF) (MOST25, MOST150) or electrical conductor (MOST50, MOST150) physical layers.

FlexRay Attacks

- Physical layer Full DoS Attack, Targeted DoS attack (Static or Dynamic)
- Data-link layer Full DoS attack (loss of synchronization), Targeted DoS attack (static or dynamic), Message spoofing.

	Static	Dynamic
Full DoS Attack	Yes	Yes
Targeted DoS Attack	Yes	Yes
Message Spoofing	No (if occupied)	Yes

Solutions

- Send null frames in their slot to avoid message spoofing.
 - However hard in the dynamic segment

References [Accessed on 2/9/2024]

- https://www.ni.com/en/shop/seamlessly-connect-to-third-party-devices-and-supervisorysystem/introduction-to-the-local-interconnect-network-lin-bus.html
- https://www.influxbigdata.in/flexray
- https://www.prodigytechno.com/difference-between-lin-can-and-flexray-protocols
- https://www.aut.upt.ro/~pal-stefan.murvay/teaching/nes/Lecture_08_FlexRay.pdf
- https://en.wikipedia.org/wiki/FlexRay
- https://www.aut.upt.ro/~pal-stefan.murvay/papers/practical-security-exploits-flexray-in-vehiclecommunication-protocol.pdf
- https://www.ni.com/en/shop/seamlessly-connect-to-third-party-devices-and-supervisorysystem/flexray-automotive-communication-bus-overview.html?srsltid=AfmBOopycFhRc1y6-M5WQt-6A07EcrZ29jaihIxobA46weJZm913EepD#section--1927873432