Programmable Logic Controller (PLC) Implementation

S. Venkatesan

Network Security and Cryptography Lab

Acknowledgement: The contents, example scripts and some figures are copied from various sources. Thanks to all authors and sources made those contents public and usable for educational purpose

Standard

- IEC 61131 is an IEC standard for programmable controllers.
- IEC 61131-3 is for the language

Types of Languages

- Ladder Logic
- Function Block Diagram
- Sequential Function Charts
- Structured Text
- Instruction List

Ladder Logic

 known as Ladder Diagram, is a graphical PLC programming language based on relay logic's circuit diagrams

https://ladderlogicworld.com/ladder-logic-basics/

Stop Switch: The location of stop switches with many applications has to be very carefully considered to ensure a safe system. A stop switch is not safe if it is normally closed and has to be opened to give the stop action.

Functional Block Diagram

https://www.plcacademy.com/function-blockdiagram-programming/

Sequential Function Charts

- Similar to a flow chart.
- Useful for sequential control operations.
- Shows the main states of a system.
- SFC shows all possible status changes

Structured Text

• Using Program

counter := 0; WHILE counter < 10 D0 counter := counter + 1; machine_status := counter * 10; END_WHILE;

Instruction List

• It is a low level language and resembles assembly.

	LD	Speed
	GT	2000
	JMPCN	VOLTS_OK
	LD	Volts
VOLTS_OK	LD	1
	ST	%Q75

Differences

Ladder Logic	Functional Block Diagram	Sequential Function Charts	Structured Text	Instruction List
Supports online changes well	Instructions take up more memory than in	Built-in timers for steps	User controls operations	Complex to Write
Some process control	Ladder	Syntax can be difficult Complex	Difficult syntax	Hard to debug
instructions are not available	Good for motion controls	Sequence to do simple tasks	Hard to debug Hard to edit	Mostly outdated and new PLCs do not use.
Instructions take			online	
up little memory		Online editing is a challenge		
Difficult for motion programming				

Source: https://www.dosupply.com/tech/2018/09/10/differences-between-plc-programming-languages/ [accessed on 05/08/2024]

PLC Memory

- RAM
 - Volatile (Non-Retentive) New Memory variables
 - Non-Volatile (Retentive) programs and data are stored. All the user programs and data variables
- ROM The operating system, firmware version, and system-defined variables are stored

Safety PLC

- Follows Safety Integrity Level (SIL)
- Redundancy to help prevent failure.
- Device failure and malfunctions are never 100% avoidable
 - safety PLCs have predictable failure modes that reduce the amount of disruption to the system in case of failure.
- Safety PLCs are also equipped with a safety circuit between the output and connected devices to ensure extra protection during a malfunction.
- isolated from the rest of the systems logic for safety reasons.

Vulnerabilities

- 2.1.1 Vulnerabilities in configuration:
 - Configuration files are stored as plain-text in PLCs.
 - An adversary can configure the PLC by introducing malicious logic in the Ladder logic.
- 2.1.2 Vulnerabilities in network.
 - PLCs may be integrated Raspberry Pi and these can be easily exposed to malicious communication channels.
 - In the network of PLCs, an infected PLC will scan the network and look for new targets
- 2.1.3 Vulnerabilities in operating system.
 - Raspberry Pi (RPI) is a Linux distribution, which contains many vulnerabilities that can be inherited by RPI.
 - Because Linux code is not type safe, it is vulnerable to various buffer overflow attacks.
- 2.1.4 Vulnerabilities in Pin I/O.
 - Because PLCs do not sanitize commands and control signals sent from Pin I/O, they are vulnerable to invalid inputs attacks

Source: Wenhui Zhang, Yizheng Jiao, Dazhong Wu, Srivatsa Srinivasa, Asmit De, Swaroop Ghosh, Peng Liu, Armor PLC: A Platform for Cyber Security Threats Assessments for PLCs,

Threat

- 2.2.1 Hacking PLC Configuration.
 - Each PLC application running on Raspberry Pi has its separate memory space.
 - It stores local strings and variables on default memory locations.
 - Malicious attacks could change those configuration files once they logged on to the RPI which by default gives users root access.
- 2.2.2 Hacking OS.
 - Raspberry Pi by default gives users root access, and Linux-based systems have their SSH port opened for debugging.
- 2.2.3 Modifying the User Space Programs.
 - Raspberry Pi by default can give users access to modify the program and install garbage programs.
- 2.2.4 Monitoring Pin/Data/Configuration.
 - Users who have access to Raspberry Pi could monitor data traffic patterns through output/input pins and easily predict the data processed on it.
 - This passive attack could hurt confidentiality of data of PLCs.
- 2.2.5 Return Oriented Programming Attack.
 - PLC logics might be compromised.
 - Compromised logic steers the operation of devices away from normal execution path.

Differences

PLC	Relay	Microcontroller	Industrial PC
Large amount of automation tasks	Automate a hand full of simple automation task, such as hopper level control	automate an application with a fixed set of parameters and has potential for mass production, like a washing machine.	would be best suited when high degrees of math computation is required, such as a flight simulator

Manage Risk

- Threat Analysis
- Inventory Management
- Vulnerability Analysis
- Backup and Recovery Plan
- Measures
 - Network segmentation
 - Access Control

Threats

- Unauthorized Access
- Malware Infection
- Network based attacks (DoS)
- Data Interception and manipulation
- Insider threats
- Exploitation of vulnerabilities

Ref: https://www.linkedin.com/pulse/securing-programmable-logic-controllers-plcs-key-threats-james-rabe-sdh0e [accessed on 05/08/2024]

Weakness Possibilities

Ladder Logic	Functional Block Diagram	Sequential Function Charts	Structured Text	Instruction List
Supply chain attack	Supply chain attack	Supply chain attack	Vulnerability in Code	Vulnerability in Code
Only pre-defined functions can be added or removed by attacker in case of having access	Only pre-defined functions can be added or removed by attacker in case of having access	Only pre-defined functions can be added or removed by attacker in case of having access	Anything can be modified by attacker in case of having access	Anything can be modified by attacker in case of having access

References

 https://www.tud.ttu.ee/im/Andres.Rahni/Aut omaatika%20alused/77511_05_LAD_and_FBD .pdf