
Memory Allocation and Program
Translation

S.Venkatesan
Network Security and Cryptography Lab
Department of Information Technology

Indian Institute of Information Technology, Allahabad
venkat@iiita.ac.in

1

Acknowledgement: The contents and figures are copied from various sources. Thanks to
all authors and sources made those contents public and usable for educational purpose

2

Memory Allocation

Program Counter

• The register containing the address of the
instruction in the program being executed.

• Note: ARM instructions are 32 bits long

• Program Counter = Register + Branch Address

• PC-relative addressing – PC + constant in the
instruction.

Branch Instruction Encoding

Cond 12 Address

4 bits 4 bits 24 bits

Bits [27:25] identify this as a B or BL instruction – they have values
101 only for these instructions

We can have only 2^24 or 16 MB

To take this to 2^32, we go for PC-relative addressing

Procedures
• Put parameters in a place where the procedure can access them.

• Transfer control to the procedure.

• Acquire the storage resources needed for the procedure.

• Perform the desired task.

• Put the result value in a place where the calling program can access it.

• Return control to the point of origin, since a procedure can be called from several points in a program.

Registers
R0 – R3 for four argument registers
Lr – link register for return address

BL ProcedureAddress

MOV pc, lr

Caller: fill link register (PC+4 in register), parameters value in R0-R3 and jump to procedure with BL
Callee – Compute and place the results into R0 and R1 then return the control to the caller using MOV PC,lr.

BL instruction saves the PC+4 in register lr

Using More Registers

• If there is a need of more registers than four argument
and two return value registers then we need to go for
the spill registers (register to memory).

• Data structure of spilling is Stack

• Stack Pointer is a register (no.13) that holds the top of
the stack. --> uses Push and Pop

• The growth of the stack is in reverse.

Example [with MIPS]

Assume g, h, i and j are in register $a0, $a1, $a2, $a3 and f in $S0

Procedure – Stack Utility

Nested Procedures

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n – 1));

}

Activation Record

• Stack has to store the local array or structures
of the procedure but do not fit in registers.

• The segment of stack containing a procedure's
saved registers and local variables is called a
procedure frame or activation record.

ASCII Code

• American Standard Code for Information
Interchange.

• Not efficient for represent because of size. For
example, to represent 1 Billion we need 10
ASCII digits and each 8 bits long.

Immediate Operands

• 12 bit is reserved for operand 2.

• In that case, number bigger than that size cannot be
accommodated.

• Hence, 12 bit is converted to 8-bit constant field and 4
bit rotate right field.

X * 2^2i

• X is between 0 and 255 and i is between 0 and 15.

Addressing

• Register offset
• Scaled register offset
• Immediate Pre-Indexed
• Immediate Post-Indexed
• Register Pre-Indexed
• Scaled Register Pre-Indexed
• Register Post-Indexed

Parallelism

• Data Race – Two memory accesses form a data race if
they are from different threads to same location,
atleast one is a write, and they occur one after another.

• Lock and Unlock.

• Mutual Exclusion.

• Atomicity

• Synchronize (Swap)

Translation Hierarchy

Translators
• Assembler – Pseudoinstructions, Symbol Table
• Linker – Executable File

– Place code and data modules symbolically in memory.
– Determine the addresses of data and instruction labels.
– Patch both the internal and external references.

• Loader
– Reads the executable fi le header to determine size of the text and data

segments.
– Creates an address space large enough for the text and data.
– Copies the instructions and data from the executable file into memory.
– Copies the parameters (if any) to the main program onto the stack.
– Initializes the machine registers and sets the stack pointer to the first free

location.
– Jumps to a start-up routine that copies the parameters into the argument

registers and calls the main routine of the program. When the main routine
returns, the start-up routine terminates the program with an exit system
call.

Linker

Java Translation Hierarchy

Dynamic Linking

• Linked at the time of execution.
• Overcomes the issues of static linking.

Array
array RN 0 ; 1st argument address of array
n RN 1 ; 2nd argument size (of array)
i RN 2 ; local variable i
Zero RN 3 ; temporary to hold constant 0

MOV i,0 ; i = 0
MOV zero, 0 ; zero = 0

Loop1 : STR zero, [array,i, LSL #2] ; array[i] = 0

This instruction is the end of the body of the loop, so
the next step is to increment i:

ADD, i, i, # 1

CMP i, size ; i < size
BLT Loops ; if (i < size) go to loop1

Pointer
array RN 0 ; 1st argument address of array
n RN 1 ; 2nd argument size (of array)
p RN 2 ; local variable i
Zero RN 3 ; temporary to hold constant 0
arraySize RN12 ; address of array[size]
--
MOV p, array ; p = address of array[0]
MOV Zero, #0 ; zero = 0
Loop2: STR zero, [p], #4 ; Memory[p] = 0; p =
p + 4
ADD arraySize, array, size, LSL # 2 ; arraySize
= address of array[size]
CMP p, arraySize ; p < & array[size]
BLT Loop2 ; if (p<&array[size]) go to loop2

Array Vs Pointer
MOV i,0 ; i = 0
MOV zero, 0 ; zero = 0
Loop1 : STR zero, [array,i, LSL #2] ;
array[i] = 0
ADD, i, i, # 1
CMP i, size ; i < size
BLT Loops ; if (i < size) go to loop1

MOV p, array ; p = address of array[0]
MOV Zero, #0 ; zero = 0
Loop2: STR zero, [p], #4 ; Memory[p] =
0; p = p + 4
ADD arraySize, array, size, LSL # 2 ;
arraySize = address of array[size]
CMP p, arraySize ; p < & array[size]
BLT Loop2 ; if (p<&array[size]) go to
loop2

Reference

• Computer Organization and Design (ARM
edition) - The Hardware and Software
Interface by David A. Patterson and John L.
Hennessy

