Memory Allocation and Program
Translation

%W L
\l
I @
Z1
e

= =
o= i
TN T
e e

-ﬁw-‘.—
\%% y

)] 4

S.Venkatesan
Network Security and Cryptography Lab
Department of Information Technology
Indian Institute of Information Technology, Allahabad

venkat@iiita.ac.in

Acknowledgement: The contents and figures are copied from various sources. Thanks to
all authors and sources made those contents public and usable for educational purpose

Memory Allocation

$sp— 7fff fffcpey Stack
Dynamic data
$gp— 1000 8000pey Static data
1000 00006y
Text
pc— 0040 0000pcy
Reserved

0

Program Counter

The register containing the address of the
instruction in the program being executed.

Note: ARM instructions are 32 bits long
Program Counter = Register + Branch Address

PC-relative addressing — PC + constant in the
Instruction.

Branch Instruction Encoding

4 bits 4 bits 24 bits

Bits [27:25] identify this as a B or BL instruction — they have values
101 only for these instructions

We can have only 2724 or 16 MB

To take this to 2”232, we go for PC-relative addressing

Procedures

. Put parameters in a place where the procedure can access them.

. Transfer control to the procedure.

. Acquire the storage resources needed for the procedure.

. Perform the desired task.

. Put the result value in a place where the calling program can access it.

. Return control to the point of origin, since a procedure can be called from several points in a program.
Registers

RO — R3 for four argument registers

Lr — link register for return address

BL ProcedureAddress

MOV pc, Ir

Caller: fill link register (PC+4 in register), parameters value in R0-R3 and jump to procedure with BL
Callee — Compute and place the results into RO and R1 then return the control to the caller using MOV PC,Ir.

BL instruction saves the PC+4 in register Ir

Using More Registers

If there is a need of more registers than four argument
and two return value registers then we need to go for
the spill registers (register to memory).

Data structure of spilling is Stack

Stack Pointer is a register (no.13) that holds the top of
the stack. --> uses Push and Pop

The growth of the stack is in reverse.

Example [with MIPS]

int leaf_example (int g, int h, int i, int j)
{
int f;

f=o((g+h) - (1 +]J);
return f;
|

Assume g, h, i and j are in register $a0, Sal, Sa2, Sa3 and f in $SSO

addi $sp, $sp, -12 # adjust stack to make room for 3 items
sw $t1, 8($sp) # save register $t1 for use afterwards
sw $t0, 4($sp) # save register $t0 for use afterwards
sw $s0, 0($sp) i save register $s0 for use afterwards

Procedure — Stack Utility

To return the value of f, we copy it into a return value register:

add $v0,$s0,$zero # returns f ($v0 = $s0 + 0)

Before returning, we restore the three old values of the registers we saved by
“popping” them from the stack:

1w $s0, 0($sp) ## restore register $s0O for caller
lw $t0, 4($sp) ## restore register $t0 for caller
1w $t1, 8($sp) 4 restore register $tl for caller
addi $sp.$sp.,12 # adjust stack to delete 3 items

The procedure ends with a jump register using the return address:

ir $ra ## jump back to calling routine
High address
$sp— $sp—

Contents of register $t1

Contents of register $t0

$sp— | Contents of register $s0

Low address

Nested Procedures

int fact (int n)

{
if (n < 1) return (1);
else return (n * fact(n —1));

ot prosoves

Saved registers: $s0-$s/ Temporary registers: $t0-$t9
Stack pointer register: $sp Argument registers: $a0-$a3
Return address register: $ra Return value registers: $v0-$v1
Stack above the stack pointer Stack below the stack pointer

Activation Record

e Stack has to store the local array or structures
of the procedure but do not fit in registers.

* The segment of stack containing a procedure's
saved registers and local variables is called a
procedure frame or activation record.

High address
$fp — $fp — |

$sp— $sp—
$fp —

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and
$sp—~ structures (if any)

Low address

ASCII Code

e American Standard Code for Information
Interchange.

* Not efficient for represent because of size. For
example, to represent 1 Billion we need 10
ASCII digits and each 8 bits long.

Immediate Operands

e 12 bitis reserved for operand 2.

* |n that case, number bigger than that size cannot be
accommodated.

 Hence, 12 bit is converted to 8-bit constant field and 4
bit rotate right field.

X * 272

e Xis between 0 and 255 and i is between 0 and 15.

Addressing

* Register offset

* Scaled register offset

* Immediate Pre-Indexed
* Immediate Post-Indexed

* Register Pre-Indexed
e Scaled Register Pre-Indexed
* Register Post-Indexed

Parallelism

Data Race — Two memory accesses form a data race if
they are from different threads to same location,
atleast one is a write, and they occur one after another.

Lock and Unlock.
Mutual Exclusion.
Atomicity

Synchronize (Swap)

Translation Hierarchy

C program

Compiler

Assembly language program

Assembler

Object: Machine language module

Object: Library routine (machine language)

N

Executable: Machine language program

Memory

Translators

Assembler — Pseudoinstructions, Symbol Table
Linker — Executable File

Place code and data modules symbolically in memory.
Determine the addresses of data and instruction labels.
Patch both the internal and external references.

Loader

Reads the executable fi le header to determine size of the text and data
segments.

Creates an address space large enough for the text and data.
Copies the instructions and data from the executable file into memory.
Copies the parameters (if any) to the main program onto the stack.

Initializes the machine registers and sets the stack pointer to the first free
location.

Jumps to a start-up routine that copies the parameters into the argument
registers and calls the main routine of the program. When the main routine
returns, the start-up routine terminates the program with an exit system
call.

Linker

Object file header
Name Procedure A
Text size 100,
Data size 20,
Text segment Address Instruction
0 Tw $a0, 0($gp) Executable flle header
1 jal 0 Text size 300,
Data segment 0 (X) el 50""
Text segment Address Instruction
Relocation information Address Instruction type Dependency 0040 0(’00,,,,t 1w $20, 8000, ($gp)
° i X 0040 0004, Jjal 40 0100,_,
4 jal B
Symbol table Label Address 0040 0100, swial, 8020 ($gp)
- —
- - 00400104, Jjal 40 0000,
Object file header
Name Procedure B Data segment Address
Text size 200, 1000 0000, (n
Data size 30,
0 sw $al, 0($gp)
4 jalo
Data segment 0 (&4
Relocation information Address Instruction type Dependency
0 SW Y
4 jal A
Symbol table Label Address

Java Translation Hierarchy

Java program

N

/ Compller

Class files (Java bytecodes)

Java library routines (machine language)

Just In Time Java Virtual Machine
compiler &/ﬁ///

Compiled Java methods (machine language)

Dynamic Linking

* Linked at the time of execution.
* Overcomes the issues of static linking.

Array

array RN O ; 15t argument address of array

n RN 1 ; 2"d argument size (of array) ?Ied_rl(i_”L ReREREe WK S
[RN 2 ; local variable i int 1; . .
for (i = 0; 1 < size; 1 += 1)
Zero RN 3 ; temporary to hold constant O ’ array[il = 0;
MOV i,0 ;i=0

MOV zero,0 ;zero=0
Loopl : STR zero, [array,i, LSL #2] ; array[i] =0

This instruction is the end of the body of the loop, so
the next step is to increment i:

ADD, i, i, #1

CMP i, size ;i< size
BLT Loops ; if (i < size) go to loop1l

Pointer

array RN O ; 15t argument address of array

. 9nd i
" RN 12 argument .Slze (of array) clear2(int *array, int size)
P RN 2 ; local variable i {
. int *p;
Zero RN 3 ; temporary to hold constant C for (- Sarray[0); p < Sarreylsizel; p=p + 1)

arraySize RN12 ; address of array[size] | p=0;
MOV p, array ; p = address of array[0]
MOV Zero, #0 ; zero=0

Loop2: STR zero, [p], #4 ; Memory[p] =0; p =
p+4

ADD arraySize, array, size, LSL # 2 ; arraySize
= address of array[size]

CMP p, arraySize ; p < & array|[size]
BLT Loop?2 ; if (p<&array[size]) go to loop2

Array Vs Pointer

MOV i,0 ;i=0 MOV p, array ; p = address of array[0]
MOV zero,0 ;zero=0 MOV Zero, #0 ; zero=0

Loop1l : STR zero, [array,i, LSL #2] ; Loop2: STR zero, [p], #4 ; Memory|[p] =
array[i] =0 O;p=p+4

ADD, i, i, #1 ADD arraySize, array, size, LSL# 2 ;

CMPi. size i< size arraySize = address of array[size]

BLT Loops ; if (i < size) go to loop1l CMP p, arraySize ; p < & array|[size]

BLT Loop2 ; if (p<&array[size]) go to
loop2

Reference

e Computer Organization and Design (ARM
edition) - The Hardware and Software

Interface by David A. Patterson and John L.
Hennessy

