
Hardware Instructions - I

S.Venkatesan
Network Security and Cryptography Lab
Department of Information Technology

Indian Institute of Information Technology, Allahabad
venkat@iiita.ac.in

1

Acknowledgement: The contents and figures are copied from various sources. Thanks to
all authors and sources made those contents public and usable for educational purpose

2

Hardware Communication
• Communication Language is Instructions (instruction set)

• Instruction Sets
– RISC vs CISC: This is the classic difference between ARM/MIPS and x86.

– RISC stands for Reduced Instruction Set Computer and CISC is Complex ISC.

– x86 is a CISC processor and both ARM/MIPS are RISC.

– ARM (stylised in lowercase as arm, formerly an acronym for Advanced RISC
Machines and originally Acorn RISC Machine)

– MIPS (Microprocessor without Interlocked Pipelined Stages) is a family of
reduced instruction set computer (RISC) instruction set architectures (ISA)

Operations and Operands

ADD A, B, C

ADD is the operation
A, B and C are operands

ARM
• 32 bit 16 registers; smaller is faster

• 13 registers for user operands and Stack Pointer, Link Register, Program Counter
are for system.

• ARM v6/v7 maintains a status register called the CPSR (current program status
register) that holds four status bits, negative (N), zero (Z), carry (C), and overflow
(O). These bits can be used for conditional execution of subsequent instructions.

• Groups of 32 bits called word

• In ARM, words must start at address that are multiples of 4. [Alignment restriction]

• Little endian and Big endian

• ARM is little-endian

Little endian and Big endian

• In little-endian format, the byte with the lowest
address in a word is the least-significant byte of the
word. The byte with the highest address in a word is
the most significant. The byte at address 0 of the
memory system connects to data lines 7-0.

• In big-endian format, the byte with the lowest address
in a word is the most significant byte of the word. The
byte with the highest address in a word is the least
significant. The byte at address 0 of the memory
system connects to data lines 31-24.

ARM Assembly Language Instructions

• Arithmetic – add (ADD), subtract (SUB)

• Data Transfer – load (LDR), store(STR), move (MOV), swap (SWP),
etc,

• Logical – and (AND), or (ORR), not (MVN) , logical shift left (LSL) and
right (LSR)

• Conditional Branch – compare (CMP), Branch or EQ, NE, .. (BEQ 25)

• Unconditional Branch – branch (always) (B 2500), branch and link
(BL 2500)

Operations/Instructions

ADD a, b, c

Rigid: One operation and three variables.

How can we add more values – by doing the
following

ADD a, b, c ; sum of b and c to a
ADD a, a, d ; sum of b,c,d to a
ADD a, a, e ; sum of b,c,d,e to a

Data Transfer Instructions

• Transfer data between memory and registers
• To access a word in memory, memory address to

be supplied in the instruction.
• Storage is an array that is in sequence.

g = h + A[8]
• Uses Load to transfer data from memory to

register
LDR

Syntax: LDR r5,[r3,#32]

ADD r1, r2, r5 ; where r2 have h and r5 have A[8]

Complement to Transfer

STR r5, [r3,#48] ; stores h+A[8] to A[12]

Constant or Immediate Operands

• LDR r5, [r1, #AddrConstant4] ; r5 = constant 4
• ADD r3, r3, r5 ; r3 = r3 + r5 (r5 == 4)

• ADD r4, r3, #4 ; r3 = r3 + 4

Spilling registers

• To put the less commonly used variables.

• Arithmetic instruction – read two registers and
operate.

• Data Transfer instruction – Reads or writes
one operand without operating on it.

Von-Neuman Architecture

• Historically there have been 2 types of
Computers:
– Fixed Program Computers – Their function is very

specific and they couldn’t be programmed, e.g.
Calculators.

– Stored Program Computers – These can be
programmed to carry out many different tasks,
applications are stored on them, hence the name.
[The modern computers are based on a stored-
program concept introduced by John Von Neumann.]

x64
.cfi_startproc

pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $10, -4(%rbp)
movl $12, -8(%rbp)
movl $113, -8(%rbp)
movl $0, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc

.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $10, -4(%rbp)
movl $12, -8(%rbp)
movl -4(%rbp), %eax
addl %eax, -8(%rbp)
movl $0, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc

#include<stdio.h>
int main() {

int b, c;
c = 10l;
b = 12;
b = 12 + 101;
return 0;

}

#include<stdio.h>
int main() {

int b, c;
c = 10l;
b = 12;
b = b + c;
return 0;

}

Instruction Set Architecture

Thanks to Dr. Nabil J. Sarhan, Wayne State University

Execution Cycle

Thanks to Dr. Nabil J. Sarhan, Wayne State University

Thank You

