Introductory Lecture - COA

S.Venkatesan
Network Security and Cryptography Lab
Department of Information Technology
Indian Institute of Information Technology, Allahabad
venkat@iiita.ac.in

Acknowledgement: The contents and figures are copied from various sources. Thanks to
all authors and sources made those contents public and usable for educational purpose

COA?

Organization Architecture

Computer

Desktop Embedded

* Architecture: High Level, What a computer should do
— Instruction set,
— Number of bits used for data representation,
— 1/O Mechanisms
— Addressing Techniques
* Organization: Low Level, How a computer do, Interconnection among units
— Control signals,
— Interfaces,
— Memory Technology

Functional Block of Computer

CPU

Control .
Unit Instructions
O

YyyYvYy

Processor

Registers
] Y

Combinational
Logic

\J

Output |—»

—» Input

YY"; I Y

A

Main

Y

Performance

* |n FLOPs
e Multi-Core
 RAM
1951 Vacuum Tube 1
1965 Transistor 35
1975 IC 900
1995 VLSI Circuit 2400000
2005 ULSI Circuit 6200000000

CPU Execution Time — User CPU Time and System CPU Time

Generations of computers
First generation

Second generation

Third generation

Fourth generation

Fifth generation

Generation

Generations timeline
1940s-1950s
1950s-1960s
1960s-1970s
1970s-present

The present and the future

Evolving hardware
Vacuum tube based
Transistor based
Integrated circuit based
Microprocessor based

Artificial intelligence based

Motherboard

Northbridge (with heatsink) Southbridge
AGP Slot.

PCI Slot (x5)
IDE Connector (x2)

DRAM Memory Slot (x2)

20-pin ATX Power
Connector

“,
%

CMOS Backup
Battery

PU Fan &
Heatsink
Mounting

Connectors For

Points :
— Integrated Peripherals
PS5/2 Keyboard and Mouse, Serial Port,
CPU Socket Parallel Port, USB (x6), Ethernet, Audio (x3)

Source: https://turbofuture.com/computers/the-motherboard-components

Computer processor's speed

« Named after Heinrich Wave Model
Hertz and abbreviated as
Hz or illustrated as the f
symbol, hertz equals one
cycle per second,
measuring the waves or
frequencies of electric
changes each second.

 Hertz is commonly used to
measure a computer
monitor's refresh rate and
a computer processor's
speed.

One oscillation
(one cycle or hertz)

Concepts of Performance and Speedup

Performance = 1 / Execution time Is simplified to
Performance = 1 / CPU execution time

(Performance of M,) / (Performance of M,) = Speedup of M, over M,
= (Execution time of M,) / (Execution time M,)

Terminology: M, is x times as fast as M, (e.g., 1.5 times as fast)
M, is 100(x — 1)% faster than M, (e.g., 50% faster)

CPU time = Instructions x (Cycles per instruction) x (Secs per cycle)
= Instructions x CPI / (Clock rate)

Instruction count, CPI, and clock rate are not completely independent,
SO improving one by a given factor may not lead to overall execution
time improvement by the same factor.

Slide from University of California, Santa Barbara

Elaboration on the CPU Time Formula

CPU time = Instructions x (Cycles per instruction) x (Secs per cycle)
= Instructions x Average CPI / (Clock rate)

Instructions: Number of instructions executed, not number of
instructions in our program (dynamic count)

Average CPIl: Is calculated based on the dynamic instruction mix
and knowledge of how many clock cycles are needed
to execute various instructions (or instruction classes)

Clock rate: 1 GHz = 10° cycles / s (cycle time 10 s =1 ns)
200 MHz = 200 x 106 cycles / s (cycle time = 5 ns)

Clock perio
*-------- >

Slide from University of California, Santa Barbara

Dynamic Instruction Count

How many instructions
are executed in this
program fragment?

250 instructions

——

fori=1,100do’
- 20 instructions

forj=1, 100 do
40 instructions

fork=1,100do | |

510 instructions

Static count = 326

Each “for” consists of two instructions:
7 increment index, check exit condition

12,422,450 Instructions

oo 2 + 20 + 124,200 instructions
‘ 100 iterations

12,422,200 instructions in all

e 2 + 40 + 1200 instructions
100 iterations
124,200 instructions in all

| "2 + 10 instructions |
i1 100 iterations fori=1,n

1200 instructions in all while x > 0

Slide from University of California, Santa Barbara

Processors

AMD 4-Core [
Opteron

Intel 4
Pentium 4

DEC Alpha [
21264 |

Intel 48-Core [EFFFEEE
Prototype f 11

Transistors
(Thousands)

Parallel Proc
Performance

Sequential
Processor
Performance

Frequency
(MHz)

Typical Power
(Watts)

Number
of Cores

1975 1980 1985

1990 1995 2000 2005 2010 2015

Ref: Pranav Tendulkar
Mapping and Scheduling on Multi-core Processors using SMT Solvers

Processing Units

CPU

* Small models

* Small datasets

» Useful for design space exploration

\Y 4

/

[NNN]
oo || 3
oof || 3

il

GPU

* Medium-to-large models, datasets
* |Image, video processing

* Application on CUDA or OpenCL

A

TPU

* Matrix computations

* Dense vector processing

* No custom TensorFlow operations

Py <

Y

4
N

FPGA
« Large datasets, models
* Compute intensive applications

» High performance, high perf./cost ratio)

Memory Hierarchy

Register
Memory

Increasing order of Cache
access time ratio Memofy

Main Memory

Magnetic Disks

Magnetic Tapes

Primary Memory

Auxillary
Memory

Slower Retrieval
Higher capaci

Faster Access,

Secondary Storage (Hard disk,

SSR..)
Files

Tertiary storage (1Backup devices)

What happens to your program

High Level
Compiler

High-level
language
program
(inC)

Assembly
language
program

(for MIPS)

Binary machine
language
program

(for MIPS)

Assembly

Machine Code

Assembler

swap(int v[], int k)

lint temp;
temp = v[k];
vik] = v[k+1];
v[k+1] = temp;

swap:

multi $2, $5.4

add
Tw
Iw
SW
SW
Jr

§2, %4,82
$15, 0($2)
$16, 4(82)
$l6. 0($2)
§15, 4($2)
$31

00000000101000100000000100011000
0000000010000010000100000100001

10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

FIGURE 1.4 G program compiled into assembly language and then assembled into binary machine language.
Although the translation from high-level language to binary machine language is shown in two steps, some
compilers cut out the middleman and produce binary machine language directly. These languages and this
program are examined in more detail in Chapter 2.

Copyright © 2014 Elsevier Inc. Al rights reserved. 5

Thank You

