Introductory Lecture - COA

S.Venkatesan

Network Security and Cryptography Lab
Department of Information Technology
Indian Institute of Information Technology, Allahabad
venkat@iiita.ac.in

Acknowledgement: The contents and figures are copied from various sources. Thanks to all authors and sources made those contents public and usable for educational purpose

COA?

- Architecture: High Level, What a computer should do
- Instruction set,
- Number of bits used for data representation,
- I/O Mechanisms
- Addressing Techniques
- Organization: Low Level, How a computer do, Interconnection among units
- Control signals,
- Interfaces,
- Memory Technology

Functional Block of Computer

Performance

- In FLOPs
- Multi-Core
- RAM

Year	Technology	Performance
1951	Vacuum Tube	1
1965	Transistor	35
1975	IC	900
1995	VLSI Circuit	2400000
2005	ULSI Circuit	6200000000

CPU Execution Time - User CPU Time and System CPU Time

Generation

Generations of computers	Generations timeline	Evolving hardware
First generation	1940s-1950s	Vacuum tube based
Second generation	1950s-1960s	Transistor based
Third generation	1960s-1970s	Integrated circuit based
Fourth generation	1970s-present	Microprocessor based
Fifth generation	The present and the future	Artificial intelligence based

Motherboard

Computer processor's speed

- Named after Heinrich Hertz and abbreviated as Hz or illustrated as the f symbol, hertz equals one cycle per second, measuring the waves or frequencies of electric changes each second.
- Hertz is commonly used to measure a computer monitor's refresh rate and a computer processor's speed.

Wave Model

One oscillation
(one cycle or hertz)

Concepts of Performance and Speedup

Performance $=1 /$ Execution time
Performance $=1 /$ CPU execution time

(Performance of $\left.M_{1}\right) /\left(\right.$ Performance of $\left.M_{2}\right)=$ Speedup of M_{1} over M_{2} $=\left(\right.$ Execution time of $\left.\mathrm{M}_{2}\right) /\left(\right.$ Execution time $\left.\mathrm{M}_{1}\right)$

Terminology: $\quad M_{1}$ is x times as fast as M_{2} (e.g., 1.5 times as fast) M_{1} is $100(x-1) \%$ faster than M_{2} (e.g., 50% faster)

CPU time $=$ Instructions \times (Cycles per instruction $) \times($ Secs per cycle $)$ $=$ Instructions $\times \mathrm{CPI} /$ (Clock rate)

Instruction count, CPI, and clock rate are not completely independent, so improving one by a given factor may not lead to overall execution time improvement by the same factor.

Elaboration on the CPU Time Formula

CPU time $=$ Instructions $\times($ Cycles per instruction $) \times($ Secs per cycle $)$ $=$ Instructions \times Average CPI / (Clock rate)

Instructions: Number of instructions executed, not number of instructions in our program (dynamic count)

Average CPI: Is calculated based on the dynamic instruction mix and knowledge of how many clock cycles are needed to execute various instructions (or instruction classes)

Clock rate: $\quad 1 \mathrm{GHz}=10^{9} \mathrm{cycles} / \mathrm{s}$ (cycle time $10^{-9} \mathrm{~s}=1 \mathrm{~ns}$) $200 \mathrm{MHz}=200 \times 10^{6}$ cycles $/ \mathrm{s}$ (cycle time $=5 \mathrm{~ns}$)

Clock period

Slide from University of California, Santa Barbara

Dynamic Instruction Count

Processors

Ref: Pranav Tendulkar
Mapping and Scheduling on Multi-core Processors using SMT Solvers

Processing Units

Memory Hierarchy

What happens to your program

Binary machine $\quad 00000000101000100000000100011000$ language $\quad 0000000010000010000100000100001$ program 10001101111000100000000000000000 (for MIPS) $\quad 10001110000100100000000000000100$

1010111000010010000000000000000
1010110111100010000000000000010
00000011111000000000000000001000
FIGURE 1.4 C program compiled into assembly language and then assembled into binary machine language. Although the translation from high-level language to binary machine language is shown in two steps, some compilers cut out the middleman and produce binary machine language directly. These languages and this program are examined in more detail in Chapter 2.

Thank You

