Arithmetic Operations

S.Venkatesan

Network Security and Cryptography Lab
Department of Information Technology
Indian Institute of Information Technology, Allahabad
venkat@iiita.ac.in

Acknowledgement: The contents and figures are copied from various sources. Thanks to all authors and sources made those contents public and usable for educational purpose

Binary Addition \& Subtraction

Direct Addition

Number 1	1	0	0	0	0	0	0	1	1	1
Number 2	0	1	1	1	1	0	0	0	0	0
Result	1	1	1	1	1	0	0	1	1	1

Direct Subtraction

Number 1	1	0	0	0	0	0	0	1	1	1
Number 2	0	1	1	1	1	0	0	0	0	0
Result	0	0	0	0	1	0	0	1	1	1

Subtraction Via addition using Two's complement $[x-y]=x+(-y)$

Number 1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
Number 2	$\mathbf{0}$	1	1	1	1	0	0	0	0	0
Two's complement	1	0	0	0	1	0	0	0	0	0
Result	0	0	0	0	1	0	0	1	1	1

Carries

Overflow

Operation	Operand A	Operand :	Result Indicating overfiow
$A+B$	≥ 0	≥ 0	<0
$A+B$	<0	<0	≥ 0
$A-B$	≥ 0	<0	<0
$A-B$	<0	≥ 0	≥ 0

Try
$16+16$
$-1+-1$
$(-16)-10$
$16-(-10)$

- Add (add), add immediate (addi), and subtract (sub) cause exceptions on overflow.
- Add unsigned (addu), add immediate unsigned (addiu), and subtract unsigned (subu) do not cause exceptions on overflow.

Multiplication

Multiplication Process Flow

Refined version of the multiplication hardware

Example (2X3)

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	00000010	00000000
1	1a: $1 \Rightarrow$ Prod = Prod + Mcand	0011	00000010	00000010
	2: Shift left Multiplicand	0011	00000100	00000010
	3: Shift right Multiplier	0001	00000100	00000010
2	1a: $1 \Rightarrow$ Prod = Prod + Mcand	0001	00000100	00000110
	2: Shift left Multiplicand	0001	00001000	00000110
	3: Shift right Multiplier	0000	00001000	00000110
3	1: $0 \Rightarrow$ No operation	0000	00001000	00000110
	2: Shift left Multiplicand	0000	00010000	00000110
	3: Shift right Multiplier	0000	00010000	00000110
4	1: $0 \Rightarrow$ No operation	0000	00010000	00000110
	2: Shift left Multiplicand	0000	00100000	00000110
	3: Shift right Multiplier	0000	00100000	00000110

Faster Multiplication

Division

Division Flow

Example [Division]

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	00100000	00000111
1	1: Rem = Rem - Div	0000	00100000	(1)110 0111
	2b: Rem $<0 \Rightarrow+$ Div, sll $\mathrm{Q}, \mathrm{QO}=0$	0000	00100000	00000111
	3: Shift Div right	0000	00010000	00000111
2	1: Rem = Rem - Div	0000	00010000	(1)1110111
	2b: Rem $<0 \Rightarrow+$ Div, sll Q, Q0 $=0$	0000	00010000	00000111
	3: Shift Div right	0000	00001000	00000111
3	1: Rem = Rem - Div	0000	00001000	(1)111 1111
	2b: Rem $<0 \Rightarrow+$ Div, sll Q, Q0 $=0$	0000	00001000	00000111
	3: Shift Div right	0000	00000100	00000111
4	1: Rem = Rem - Div	0000	00000100	©000 0011
	2a: Rem $\geq 0 \Rightarrow$ sll Q, Q0 = 1	0001	00000100	00000011
	3: Shift Div right	0001	00000010	00000011
5	1: Rem = Rem - Div	0001	00000010	©000 0001
	2a: Rem $\geq 0 \Rightarrow$ sll $\mathrm{Q}, \mathrm{Q0}=1$	0011	00000010	00000001
	3: Shift Div right	0011	00000001	00000001

Improved Version

Reference

- Computer Organization and Design (ARM edition) - The Hardware and Software Interface by David A. Patterson and John L. Hennessy

