
Lab Assignment: Compiler Design (ICOD632C)
1. Write a C/C++/Java/Python DFA code to recognize the reserved keywords.
2. Analyze the object code (assembler/compiler output code).
3. Download and analyze the Lex/Flex tool
4. Tokenize the hello world program using Lex/Flex tool.
5. Write a program to Convert regular expression to DFA directly using firstpos(), laspos()

and followpos(). Display the result of firstpos(), laspos() and followpos() before
printing the DFA state transition.

6. Write a C/C++/Java program to tokenize the simple “Hello World” program of C language. First
of all, define the token for this program. The original program should necessarily include few
comments. Display the tokens by removing all the comments, i.e., the comments should be
ignored for tokenization. No predefined function for tokenization is allowed. Assume the
s i t uat ions , w it h and w i th out space betw ee n t he t okens in th e program .

Sample I/P in Python Sample Lexical output
print (3 + x *2) # comment (keyword , "print") (delim, "(") (int, 3) (punct,"+") (id , "x") (punct,"*") (int, 2) (delim, ")")
 7. Write a Program in Flex which identifies C Integers and float numbers. Your program should respond to various inputs as follows:

Sample I/P Sample Lexical output
234 -765 8234.01

Integer Integer Float

8. Write a program to eliminate the Left Recursion using the given in Algorithm 4.19 (Page No. 213)
of Compilers Principles, Techniques and Tools book.

Sample Grammar Sample output
E -> E + T | T T -> T * F |F F -> (E) | id

E -> TE’ E’ -> +TE’ | Є T -> FT’ T’ -> *FT’ | Є F -> (E) | id

9. Write a program to find the FIRST for all grammar symbols and FOLLOW for all Non-Terminals in
a given grammar.

Sample Grammar Sample output
E -> TE’ E’ -> +TE’ | Є T -> FT’ T’ -> *FT’ | Є F -> (E) | id

FIRST (E) = {(,id} FIRST (T) = {(,id} FIRST (F) = {(,id} FIRST (E’) = {+, Є} FIRST (T’) = {*, Є} FIRST (+) = {+} FIRST (*) = {*} FIRST (id) = {id} //optional FIRST (() = {(} FIRST ()) = {)} FOLLOW (E) = {), $} FOLLOW (E’) = {), $} FOLLOW (T) = {+,), $} FOLLOW (T’) = {+,), $} FOLLOW (F) = {*,+,), $}
Note: Write your own algorithm which can produce FIRST and FOLLOW for any grammar.

10. Write a program to construct the LL(1) parsing table or predictive parsing table using the
algorithm given in Algorithm 4.31 (Page No. 224) of Compilers Principles, Techniques and Tools
book. Use the grammar and the FIRST & FOLLOW of the previous experiment and construct the
table.

Sample I/P Grammar Sample output
E -> TE’ E’ -> +TE’ | Є T -> FT’ T’ -> *FT’ | Є F -> (E) | id

M[E,id] = E->TE’ M[E,(] = E->TE’ M[E’, +] = E’->+TE’ M[E’,)] = E’->Є M[E’, $] = E’->Є M[T,id] = T->FT’ M[T,(] = T->FT’ M[T’,+] = T’->Є M[T’, *] = T’->*FT’ M[T’,)] = T’->Є M[T’, $] = T’->Є M[F,id] = F->id M[F,(] = F->(E)
 11. Consider following grammar S →EF|AF|EB|AB

X→AY|BY|a|b Y→AY|BY|a|b E→AX F→BX A→a B→b Write the C/C++/Java program using the CYK algorithm to recognize the strings produced by the above grammar.
Sample String Sample output

aaa No
ab Yes
ababb Yes

After completing the enough tasks for the above grammar, give your own grammar of the Chomsky Normal Form and check its applicability. [CYK is not discussed in the class. You study on your own and implement it]

 12. Write a C/C++/ Java program to implement the LR(0) and SLR(1) parser.
a. Create the LR(0) item sets
b. Make LR(0) and SLR(1) table.
c. Create the parser and call the table according to parser required.
d. Print the error also.

13. Work on YACC and do the simple parsing and translation.

