
Algorand

Team Members

IIT2015064 - Jayesh Patil

IIT2015074 - Shubham Padia

IIT2015075 - Tushar Jandial

IIT2015085 - Swapnil Sharma

Bitcoin’s Problems.
What Algorand tries to solve?

Honest Majority of Computational
Power

○ Assumes that no malicious entity controls the majority of the
computational power devoted to block generation.

○ Such an entity, in fact, would be able to modify the blockchain

○ Due to the ability of this entity to modify the blockchain, it can
rewrite the payment history, as it pleases.

Computational Waste

○ Bitcoin’s proof-of-work approach to block generation requires an
extraordinary amount of computation.

○ Bitcoin mining network uses more electricity in a year than the
whole of Ireland.

○ The estimated power use of the bitcoin network, which is
responsible for verifying transactions made with the cryptocurrency,
is 30.14TWh a year, which exceeds that of 19 other European
countries.

Concentration of Power

○Today, due to the exorbitant amount of computation required, a
user, trying to generate a new block using an ordinary desktop
expects to lose money.

○ Indeed, for computing a new block with an ordinary computer, the
expected cost of the necessary electricity to power the computation
exceeds the expected reward.

○ Only using pools of specially built computers (that do nothing other
than “mine new blocks”), one might expect to make a profit by
generating new blocks.

Concentration of Power

○ Accordingly, today there are, de facto, two disjoint classes of users:
ordinary users, who only make payments, and specialized mining
pools, that only search for new blocks.

○ It should therefore not be a surprise that, as of recently, the total
computing power for block generation lies within just five pools. In
such conditions, the assumption that a majority of the computational
power is honest becomes less credible.

Ambiguity

○ In Bitcoin, the blockchain is not necessarily unique. Indeed its latest
portion often forks: the blockchain may be —say— B1, . . . , Bk, B0 k+1,
B0 k+2, according to one user, and B1, . . . , Bk, B00 k+1, B00 k+2, B00
k+3 according another user. Only after several blocks have been
added to the chain, can one be reasonably sure that the first k + 3
blocks will be the same for all users.

○ Thus, one cannot rely right away on the payments contained in the
last block of the chain. It is more prudent to wait and see whether the
block becomes sufficiently deep in the blockchain and thus
sufficiently stable.

Algorand is a new cryptocurrency that has properties:

○ No Latency : confirms transactions with latency on the order of a
minute while scaling to many users.

○ No Forks : ensures that users never have divergent views of
confirmed transactions, even if some of the users are malicious and
the network is temporarily partitioned.

○ Uses Byzantine Agreement protocol (called BA*) to reach
consensus among users on the next set of transactions

○ Security: Algorand uses a novel mechanism based on Verifiable
Random Functions (VRFs) that allow users to privately check
whether they are selected to participate in the BA.

What does the Block
contain?

Block Format

● Algorand’s blocks consist of a list of transactions, along with metadata

needed by BA⋆.

● The metadata consists of the round number, the proposer’s seed, a hash of

the previous block in the ledger, and a timestamp.

● The list of transactions in a block logically translates to a set of weights for

each user’s public key (based on the balance of currency for that key), along

with the total weight of all outstanding currency.

How it works?

Phase : 1

● Users/Leaders (i.e., public keys) are randomly selected among all current

users using Cryptographic Sortition.

● Selected users propose their block together with their priority and proof that

they are selected for block generation.

● Phase 1 scales because this internal cryptographic lottery is super-fast and

independent of how many users there are in the network.

Phase : 2

● A set of verifiers is randomly selected among all users using Cryptographic

Sortition, proportionally to the amount of money that each of them owns in

the system.

● The role of these verifiers is to agree on the block proposed by leaders.

● The agreement protocol (BA*) that the verifiers execute is super fast and

independent of the total number of users in the network.

How blocks are validated?

● The user checks if all transactions are valid.

● The user checks if the seed is valid.

● The user checks if the previous block hash is correct.

● The user checks if the block round number is correct.

● The user checks if the timestamp is greater than that of the previous block.

Sortition and Proof of Sortition

.Hash(DigiSign(Qr)) <= p

Cryptographic Sortition

Cryptographic Sortition

Block Proposal

● Minimizes unnecessary block transmissions.

○ Users discard messages about blocks that do not have the highest priority seen by that

user so far.

● If some block proposers are malicious then they can trick different Algorand users into verifying

different blocks. (but this scenario is relatively unlikely)

○ If the adversary is not the highest priority proposer in a round, then the highest priority

proposer will gossip a consistent version of their block to all users.

○ If the adversary is the highest priority proposer in a round, they can propose the empty

block, and thus prevent any real transactions from being confirmed.

○ Probability of this is at most 1−h, by Algorand’s assumption where h > 2/3 of the weighted

user are honest.

Byzantine Agreement *

Sybil Attack

1. Every user in algorand has weights associated with it. These weights are
proportional to the amount of money a user holds in the network.

2. The probability that a user is selected as a leader or verifier depend on
its weights

3. If a malicious user create million of accounts , the probabilty of selection
of that user
will still depend on the total money.

Nothing at stake

1. This problem occurs in proof of stake where blocks can be build on each
fork and can cause both forks to grow. And consensus is never reached.

2. In algorand, consensus takes place in many steps and new verifiers
selected after each step vote previous block with highest votes, and
other blocks are rejected.. Thus reaching consensus for every block
without any forks.

3. Double spending is also prevented if there are no forks.

Latency:

Throughput

1. Constant agreement time.

2. Linear growth wrt block size.

3. If we use 10MB blocks, we
have 750 MB of transactions
per hour which is 125 times of
Bitcoin.

Costs of running Algorand

1. Significant use of CPU is only for calculating hashes and verifying
signatures which does not increase as network grows.

2. Communication cost is also independent of the number of users in
network.

3. More storage space is required in algorand as it uses certificates in
addition to block data for verification of block.

Thanks

