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1. Keywords and Definitions 
 
ancestor ​: ​An event x is defined to be an ancestor                     
of event y if x is y, or a parent of y, or a parent of a                                 
parent of y, and so on. It is also a self-ancestor of y                         
if x is y, or a self-parent of y, or a self-parent of a                           
self-parent of y and so on. 
 
round ​: ​The round created number or a round of                   
an event x is defined to be r + i, where r is the                           
maximum round number of the parents of x (or 1 if                     
it has no parents), and i is defined to be 1 if x can                           
strongly see more than 2n/3 witnesses in round r                 
(or 0 if it can’t). 
 
round received ​: ​the first round where all unique                 
famous witnesses are descendants of 
X. 
fork : ​The pair of events (x, y) is a fork if x and y                             
have the same creator, but neither is a               
self-ancestor of the other. 
 
honest member : ​An honest member tries to sync                 
infinitely often with every other member, creates             
a valid event after each sync (with hashes of the                   
latest self-parent and other-parent), and never           
creates two events that are forks with each other. 
 
to see an event : ​An event x can see event y if y is                             
an ancestor of x, and the ancestors of x do not                     
include a fork by the creator of y. 
 
to strongly see an event : ​An event x can strongly                     
see event y if x can see y and there is a set S of                             
events by more than 2/3 of the members such                 
that x can see every event 
in S, and every event in S can see y. 
 
witness : ​A witness is the first event created by a                     
member in a round. 
 
famous witness : A famous witness is a witness                 
that has been decided to be famous by the                 
community, using the algorithms described here.           
Informally, the community tends to decide that a               
witness is famous if many members see it by the                   
start of the next round. 
 
unique famous witness : It is a famous witness that                   
does not have the same creator as any other                 
famous witness created in the same round. In the                 
absence of forking, each famous witness is also a                 
unique famous witness. 

 
consistent hashgraph : Hashgraph A and B are               
consistent iff for any event x contained in both                 
hashgraphs, both contain the same set of             
ancestors for x, with the same parent and               
self-parent edges between those ancestors. 
 

2. Methodology 

 
The figure[1] shows a hashgraph which is growing               
upward over the time. Every participant in the               
hashgraph keeps the copy of it in memory. 
 
In the given example, the four members Alice ,Bob,                 
Carol and Dave are represented by the four lines                 
labeled as A,B,C and D respectively. 
 
Each member starts by creating an event(gray             
colored), which is small data structure in the               
memory that stores zero or more transactions.             
The hashgraph uses the gossip protocol ,which             
means each member repeatedly calls other at             
random to sync with them. 
 
In the given case , Bob calls Dave by connecting                   
over the internet and Bob sends Dave all events                 
that Dave does not yet know. Refer figure[1], Dave                 
creates new event , a new circle which has lines                   
going straight down to his last event and               
diagonally down to Bob's last event. This shows               
how the members are communicating with each             
other. 

 

 
Figure 1  Figure 2 

 

 
Figure 3 
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Refer figure[3], The event data structure contains             
on the top, timestamp i.e when he created the                 
event, in middle zero or more transactions and at                 
below two hashes first one of Bob's last event and                   
second one of his last event.   
At the time of gossiping of this event, it is sent                     
with the digital signature. After this Dave Send his                 
event to Bob and Bob creates same type of event                   
and Bob further sends his events randomly to any                 
one of the remaining members and this continues               
forever, growing a directed acyclic graph upwards. 

 

 
 

Refer figure[5] ,Here each event contains hashes             
and it is digitally signed by his creator so the                   
entire hash values are cryptographically secure. It             
can always grow, but the older part are               
immutable, as strong as the cryptographic hashes             
and signature system used. This graph is             
connected by cryptographic hashes to each other,             
so it is called hashgraph. 
 
Refer figure[4], Each event has rounds associated             
with it and it is created as we go upward in the                       
graph. It is useful to define “round created’ for                 
each event. A child never has round created               
before its parent. So as the graph flows upwards                 
round created can stay the same or increase.               
Every first event of each round of each member is                   
witness (red colored) but it is possible that a                 
member has no witness in the given round. Here                 
the witnesses are labeled A2, B2, C2 and D2. For                   
each of these witnesses we need to determine the                 
famous witness and this is done by considering               
the next round witnesses A3, B3, C3 and D3. Now                   
the election will hold for each witness to               
determine their fame. This event will vote for the                 

witness event in the round below on the basis of                   
whether they have seen them or not. To be seen,                   
there should be downward path from the voting               
witness event to the round below witness event               
for which the election is held . 
 
Refer figure[6]. Thus here for B2 , there is an                   
entirely downward path from A3 to B2 means B2                 
is ancestor of A3 and A3 is the descendent of B2.                     
Thus, A3 will vote “yes” for B2. Similarly B3, C3 and                     
D3 for all four of these events will vote “yes” for B2                       
. Now all four events voted “yes” for B2 to be                     
famous but the election is not ended until these                 
votes are counted by some event. For this, the                 
new event will be created in the next round of                   
voters and this event will count the votes from                 
the round below witness event . Thus, in next                 
round B4 or D4 will count the number of votes.                   
But for counting the votes B4 or D4 should                 
strongly see the level below witness nodes. For               
strongly seeing there should be enough path             
through supermajority of the population which is             
the number more than the 2/3 rd of the replicated                   
state machines connected to the network. Refer             
figure[8,9], In this case B4 strongly sees the all                 
four witness event i.e A3,B3,C3 and D3 so he                 
count the votes and declare node B2 as famous                 
and color green to B2 to show that it is famous. If                       
B4 had seen 3 “yes” and 1 “no” or 3 “yes” and no                         
other vote , it would be still decides yes because                   
that’s super majority  . 
 

 
Figure 6                    Figure 7 

 
We need for B4 to strongly see a supermajority of                   
witnesses, in order to even have a chance at                 
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deciding. Therefore, we use this to define the               
“round created” . If an event x has parents with a                     
maximum round created of R, then that event will                 
usually be round R, too. But if that event can                   
strongly see a supermajority of round R witnesses,               
then that event is defined to be round R+1, and so                     
is a witness. In other words, an event is promoted                   
to the next round when it can strongly see a                   
supermajority of witnesses in the current round. 
 
Refer figure[7], We can also run the election for                 
the C2 node , but there are no downward paths                   
from A3, B3, or D3 to C2, so they all vote “no” and                         
C3 will vote “yes”. as B4 strongly see A3,B3,C3                 
and D3 so it will collect the votes and these are                     
“no” ,”no”, ”yes” and “no” so super majority is “no” .                     
so C2 is not famous and color blue to C2 to show                       
that it is not famous. 
 
There is a theorem[] that if any witness is able to                     
“decide” yes or no, then that is the result of the                     
election, and it is guaranteed that all other               
witnesses that decide are going to decide the               
same way. In this example, B4 was able to decide                   
the election. If it had collected votes that were                 
more evenly split between YES and NO, then it                 
would have failed to decide. In that case, we can                   
consider D4. If D4 also fails to decide, then                 
perhaps A4 or C4 might decide. If none of the                   
round-4 witnesses can decide, then each of them               
will simply vote in accordance with the majority of  

 

 
Figure 8                       Figure 9 

 

the votes they collected (voting YES in case of a                   
tie). In that case, it will be up to the round-5                     
witnesses to collect votes from the round-4             
witnesses. Perhaps the round-5 witnesses will be             
able to decide. The voting continues until it               
eventually reaches a round where some witness             
can decide the election. There is a theorem[]               
saying that the election will eventually end (with               
probability one) as long as we add in a coin round                     
every 10th round of voting. In a coin round,                 
collecting a supermajority causes a witness to             
merely vote (not decide). And a non-supermajority             
causes it to vote pseudo randomly, by using the                 
middle bit of its own signature as its vote. 
 

 
Figure 10         Figure 11               Figure 12 

 
In normal operation, most events are not             
witnesses, so there is no election for most events.                 
And most witnesses are declared famous with an               
almost-unanimous vote in the first round of             
voting. So most elections do not last very long.                 
Refer figure[10] ,Notice that in this example, we               
have now decided the fame of every witness in                 
round 2. Once a round has the fame decided for all                     
of its witnesses, it is possible to find the round                   
received and find the consensus timestamp for a               
new set of events. Start by considering the gray                 
event immediately below A2 refer figure [11,12].             
This event can be seen by every famous witness in                   
round 2. The red, green, and blue paths show how                   
A2, B2, and D2, respectively, can all see the black                   
event. This merely requires seeing, not strongly             
seeing. This only requires seeing by the famous               
witnesses. It doesn’t matter whether C2 can see               
the black event, because C2 is not famous. Since                 
the black event is seen by all of the famous                   
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witnesses in round 2 (but not in any earlier round),                   
it is said to have a round received of 2. 
 

Thus, after deciding the node is famous or not                 
, consensus timestamp is calculated by taking             
the median of the timestamp of his very next                 
event of each member but the events are               
sorted by their round received , if it is same                   
for two events then consensus timestamp,           
extended consensus timestamp and their         
signature are considered for calculating the           
consensus timestamp. 
 
 
 
 
 

3. Implementation 

 
In the implementation of a similar algorithm called               
hashgraph, it is considered that there are ​n               
members, more than 2n/3 of which are honest               
which also implies that less than n/3 of them are                   
dishonest. It is further assumed that the digital               
signatures and cryptographic hashes are secure,           
so signatures cannot be forged, signed messages             
cannot be changed without detection, and hash             
collisions can never be found.The syncing gossip             
protocol is assumed to ensure that when one node                 
sends to another node all the events it knows, the                   
other node accepts only those that have a valid                 
signature and contain valid hashes corresponding           
to events that it has. The system is totally                 
asynchronous. It is assumed that for any two               
honest members, each will eventually try to sync               
with the other and if one node repeatedly tries to                   
send the other a message then it eventually               
succeeds. 
 
The proposed algorithm’s properties can be           
proven by the following lemmas and theorems. 
 
Strongly Seeing Lemma : ​If the pair of events (x, y)                     
is a fork, and x is strongly seen by event z in                       
hashgraph A, then y will not be strongly seen by any                     
event in any hashgraph B that is consistent with A. 
Proof : The proof is by contradiction. Suppose               
event w in B can strongly see y. By the definition                     
of strongly seeing, there must exist a set S​A of                   
events in A that z can see, and that all can see x.                         
There must be a set S​B of events in B that w can                         
see, and which all see y. Then S​A must contain                   
events created by more than 2n/3 members, and               
so must S​B​, therefore there must be an overlap of                   

more than n/3 members who created events in               
both sets. It is assumed that less than n/3                 
members are not honest, so there must be at least                   
one honest member who created events in both S​A                 
and S​B​. Let m be such a member, and their events                     
q​A S​A ​and q​B S​B​. Because m is honest, q​A and q​B  ε         ε                  
cannot be forks with each other, so one must be                   
the self-ancestor of the other. Without loss of               
generality, let q​A be the self-ancestor of q​B​. The                 
hashgraphs A and B are consistent, and qB is in B,                     
so its ancestor q​A must also be in B. Then in B, x is                           
an ancestor of q​A​, which is an ancestor of q​B​, so x                       
is an ancestor of q​B​. But y is also an ancestor of q​B​.                         
So both x and y are ancestors of q​B and are forks of                         
each other, so qB cannot see either of them. But                   
that contradicts the assumption that q​B can see y                 
in B.That is a contradiction, so the lemma is                 
proved. 
 
Lemma : ​If hashgraphs A and B are consistent and                   
both contain event x, then both will assign the same                   
round created number to x. 
Proof : If the consistent hashgraphs both contain               
x, then they both contain the same set of all its                     
ancestors, including the first event in history.             
Then the proof is by induction: they agree on the                   
round number of that first event, which is 1 by                   
definition. And if they both contain an arbitrary               
state y, and agree on the round numbers of all its                     
ancestors, then they will agree on the maximum               
round number r of the parents of y, and will agree                     
on whether y can strongly see more than 2n/3                 
witnesses created in round r by different             
members, and therefore will agree on the round               
number of y. Therefore they will agree on the                 
round number of all events they share, including x. 
 
 
Lemma : ​If hashgraphs A and B are consistent, and                   
the algorithm running on A shows that a round r                   
event by member m​0 sends a vote v​A to member m​1                     
in round r+1, and the algorithm running on B shows                   
that a round r event by member m​0 sends a vote v​B                       
to an event by member m1 in round r + 1, then v​A =                           
v​B​. 
Proof : The algorithm only sends a vote from event                   
x to event y if y can strongly see x. It is not                         
possible for consistent hashgraphs to have two             
events that are forks of each other and that are                   
both strongly seen, by the Strongly Seeing lemma.               
Therefore, the two votes must be coming from the                 
same event x in both hashgraphs. An event’s vote                 
is calculated purely as a function of its ancestors,                 
so the two hashgraphs must agree on the vote,                 
and v​A​ = v​B​. 
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Lemma ​: If hashgraphs A and B are consistent, and                   
A decides a Byzantine agreement election with             
result v in round r and B has not decided prior to r,                         
then B will decide v in round r + 2 or before. 
Proof : Decisions can’t happen in coin rounds, so r                   
must be a regular round. If A decides a vote v, that                       
means some witness in round r received votes of v                   
from a set of members S that contains more than                   
2n/3 members. Because voting is consistent (by             
the previous lemma), all other round r events in A                   
and B will receive votes from more than 2n/3                 
members, a majority of whom will also be in S,                   
because two subsets of size greater than 2n/3               
drawn from a set of size n must each have a                     
majority of their elements in common with the               
other. Therefore, every round r witness in both A                 
and B will vote for v (and some may decide v). If                       
round r +1 is a regular round, then every event in A                       
and B in that round will receive unanimous votes                 
of v and will decide v. If round r + 1 is a coin round,                             
then all will receive unanimous votes of v, so none                   
will flip coins, and all will vote v, and then all will 
decide v in round r + 2. 
 
Theorem 1 : For any single YES/NO question,               
consensus is achieved eventually with probability 1​. 
Proof : ​If any member decides the question, then                 
all members will decide the same way within 2                 
rounds, by the last lemma. So the only way                 
consensus could fail is if no member ever decides,                 
because no witness ever receives more than 2n/3               
matching votes. However, in a coin round, if such                 
a supermajority has not yet been achieved, then all                 
the honest members randomly choose their vote,             
and will have a nonzero probability of all choosing                 
the same vote. Coin rounds occur periodically             
forever, so eventually the honest members will             
become unanimous, with probability one, and then             
consensus will be reached within 2 rounds. 
 
Lemma : ​For any round number r, for any                 
hashgraph that has at least one event in round r+3,                   
there will be at least one witness in round r that                     
will be decided to be famous by the consensus                 
algorithm, and this decision will be made by every                 
witness in round r + 3, or earlier. 
Proof : Let S​r+3 be a set containing a single witness                     
in round r +3, in a hashgraph that has at least one                       
such witness. For each i < r + 3, let Si be the set of                             
all witnesses in round i that are each strongly seen                   
by at least one witness in S​i+1​. It must be the case                       
that 2n/3 < |S​i​| n for all i r + 2, because the        ≤           ≤            
existence of an event in round i + 1 guarantees                   
more than 2n/3 are strongly seen in round i, and                   

none of the n members can create more than one                   
witness in a given round that is strongly seen (by                   
the Strongly Seeing lemma). Strongly seeing           
implies seeing, so each event in S​r+1 sees more than                   
two thirds of the events in S​r​. Therefore, on                 
average, each event in Sr is seen by more than two                     
thirds of the events in S​r+1​. They can’t all be below                     
average, so there must be at least one event in S​r                     
(call it x) that is seen by more than two thirds of                       
the events in S​r+1​. 
So more than two thirds of S​r+1 will vote YES in the                       
election for x being famous. Therefore, every             
event in S​r+2 will receive more YES votes than NO                   
votes for the fame of x, and will therefore vote for                     
x being famous (and may or may not decide that x                     
is famous). Therefore, the event in S​r+3 will receive                 
unanimous votes for x being famous, which will               
cause it to decide that x is famous. Therefore,                 
every member with an event in round r + 3 will                     
first decide that x is famous in either round r + 2                       
or r + 3. 
  
Byzantine Fault Tolerance Theorem : ​Each event x               
created by an honest member will eventually be               
assigned a consensus position in the total order of                 
events, with probability 1. 
Proof : ​All honest members will eventually learn of                 
x, by the definition of honest and the assumptions                 
that the attackers who control the internet must               
eventually allow any two honest members to             
communicate. Therefore, there will eventually be           
a round where all the unique famous witnesses are                 
descendants of x. Therefore in that round, or               
possibly earlier, there will be a round r where all                   
the famous witnesses are descendants of x. Then x                 
is assigned a received round of r, and a consensus                   
timestamp of the median of when those members               
first received it, and its consensus place in history                 
will be fixed. Furthermore, it is not possible to                 
later discover a new event y that will come before                   
x in the consensus order. Because, to come earlier                 
in the consensus history, y would have to have a                   
received round less than or equal to r. That would                   
mean that all the famous witnesses in round r                 
must have received y. But once the set of famous                   
witnesses is known for a round, all of their                 
ancestors are also known, so there is no way to                   
discover new ancestors for them in the future as                 
the hashgraph grows. Furthermore, it isn’t           
possible for a round to gain new famous witnesses                 
in the future, once the famousness of all the                 
known witnesses in that round are known. Any               
new round r witness that is discovered in the                 
future will not be an ancestor of the known round                   
r + 1 witnesses (of which there are more than                   
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2n/3), and so the consensus will immediately be               
reached that it is not famous. Therefore, once an                 
event is assigned a place in the total order, it will                     
never change its position, neither by swapping             
with another known event, nor 
by new events being discovered later and being               
inserted before it. 
 
 
Given the above mentioned theorems/lemmas the           
following conclusions can be drawn: 
 
The purpose of the concept of strongly seeing is                 
to make the following lemma true. 
The strongly seeing lemma is the foundation of               
the entire proof, because it allows for consistent               
voting, and for guarantees that different members             
will never calculate inconsistent results, even with             
purely virtual voting. 
 
Different members may have slightly different           
hashgraphs, and so may have slightly different             
elections. However, all the votes will be             
consistent. Byzantine agreement on a particular           
YES/NO question is achieved by multiple rounds             
of virtual voting. A given member will end their                 
election calculations in round r if it is a normal                   
round (not a coin round) and some round r + 1                     
event strongly sees more than 2n/3 of the               
members voting the same way in round r. If that                   
happens, then every active member will end their               
election in round r or r + 1 (or r + 2 if r + 1 is a coin                                     
round), and will decide the same way. 
 
In the hashgraph consensus algorithm, Byzantine           
agreement is used to decide whether each witness               
in a given round is famous or not. Every round is                     
guaranteed to have at least one witness that is                 
famous. 
 
Every round will eventually have all its witnesses               
classified as famous or not famous by universal               
consensus, with at least one of the witnesses               
being famous. After that, the set of famous               
witnesses for that round will never change, even if                 
more events are added to the hashgraph. This set                 
of famous witnesses can therefore act as a judge,                 
to define a total order on all the events that have                     
reached them, and a consensus timestamp on             
every event. 
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