

Hashgraph
IBCC630E
Presented by-
IIT2015044
IIT2015086
IIT2015088

Under Supervision of -

Dr. S Venkatesan

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, ALLAHABAD

.

1. Keywords and Definitions

ancestor ​: ​An event x is defined to be an ancestor
of event y if x is y, or a parent of y, or a parent of a
parent of y, and so on. It is also a self-ancestor of y
if x is y, or a self-parent of y, or a self-parent of a
self-parent of y and so on.

round ​: ​The round created number or a round of
an event x is defined to be r + i, where r is the
maximum round number of the parents of x (or 1 if
it has no parents), and i is defined to be 1 if x can
strongly see more than 2n/3 witnesses in round r
(or 0 if it can’t).

round received ​: ​the first round where all unique
famous witnesses are descendants of
X.
fork : ​The pair of events (x, y) is a fork if x and y
have the same creator, but neither is a
self-ancestor of the other.

honest member : ​An honest member tries to sync
infinitely often with every other member, creates
a valid event after each sync (with hashes of the
latest self-parent and other-parent), and never
creates two events that are forks with each other.

to see an event : ​An event x can see event y if y is
an ancestor of x, and the ancestors of x do not
include a fork by the creator of y.

to strongly see an event : ​An event x can strongly
see event y if x can see y and there is a set S of
events by more than 2/3 of the members such
that x can see every event
in S, and every event in S can see y.

witness : ​A witness is the first event created by a
member in a round.

famous witness : A famous witness is a witness
that has been decided to be famous by the
community, using the algorithms described here.
Informally, the community tends to decide that a
witness is famous if many members see it by the
start of the next round.

unique famous witness : It is a famous witness that
does not have the same creator as any other
famous witness created in the same round. In the
absence of forking, each famous witness is also a
unique famous witness.

consistent hashgraph : Hashgraph A and B are
consistent iff for any event x contained in both
hashgraphs, both contain the same set of
ancestors for x, with the same parent and
self-parent edges between those ancestors.

2. Methodology

The figure[1] shows a hashgraph which is growing
upward over the time. Every participant in the
hashgraph keeps the copy of it in memory.

In the given example, the four members Alice ,Bob,
Carol and Dave are represented by the four lines
labeled as A,B,C and D respectively.

Each member starts by creating an event(gray
colored), which is small data structure in the
memory that stores zero or more transactions.
The hashgraph uses the gossip protocol ,which
means each member repeatedly calls other at
random to sync with them.

In the given case , Bob calls Dave by connecting
over the internet and Bob sends Dave all events
that Dave does not yet know. Refer figure[1], Dave
creates new event , a new circle which has lines
going straight down to his last event and
diagonally down to Bob's last event. This shows
how the members are communicating with each
other.

Figure 1 Figure 2

Figure 3

1

Refer figure[3], The event data structure contains
on the top, timestamp i.e when he created the
event, in middle zero or more transactions and at
below two hashes first one of Bob's last event and
second one of his last event.
At the time of gossiping of this event, it is sent
with the digital signature. After this Dave Send his
event to Bob and Bob creates same type of event
and Bob further sends his events randomly to any
one of the remaining members and this continues
forever, growing a directed acyclic graph upwards.

Refer figure[5] ,Here each event contains hashes
and it is digitally signed by his creator so the
entire hash values are cryptographically secure. It
can always grow, but the older part are
immutable, as strong as the cryptographic hashes
and signature system used. This graph is
connected by cryptographic hashes to each other,
so it is called hashgraph.

Refer figure[4], Each event has rounds associated
with it and it is created as we go upward in the
graph. It is useful to define “round created’ for
each event. A child never has round created
before its parent. So as the graph flows upwards
round created can stay the same or increase.
Every first event of each round of each member is
witness (red colored) but it is possible that a
member has no witness in the given round. Here
the witnesses are labeled A2, B2, C2 and D2. For
each of these witnesses we need to determine the
famous witness and this is done by considering
the next round witnesses A3, B3, C3 and D3. Now
the election will hold for each witness to
determine their fame. This event will vote for the

witness event in the round below on the basis of
whether they have seen them or not. To be seen,
there should be downward path from the voting
witness event to the round below witness event
for which the election is held .

Refer figure[6]. Thus here for B2 , there is an
entirely downward path from A3 to B2 means B2
is ancestor of A3 and A3 is the descendent of B2.
Thus, A3 will vote “yes” for B2. Similarly B3, C3 and
D3 for all four of these events will vote “yes” for B2
. Now all four events voted “yes” for B2 to be
famous but the election is not ended until these
votes are counted by some event. For this, the
new event will be created in the next round of
voters and this event will count the votes from
the round below witness event . Thus, in next
round B4 or D4 will count the number of votes.
But for counting the votes B4 or D4 should
strongly see the level below witness nodes. For
strongly seeing there should be enough path
through supermajority of the population which is
the number more than the 2/3 rd of the replicated
state machines connected to the network. Refer
figure[8,9], In this case B4 strongly sees the all
four witness event i.e A3,B3,C3 and D3 so he
count the votes and declare node B2 as famous
and color green to B2 to show that it is famous. If
B4 had seen 3 “yes” and 1 “no” or 3 “yes” and no
other vote , it would be still decides yes because
that’s super majority .

Figure 6 Figure 7

We need for B4 to strongly see a supermajority of
witnesses, in order to even have a chance at

2

deciding. Therefore, we use this to define the
“round created” . If an event x has parents with a
maximum round created of R, then that event will
usually be round R, too. But if that event can
strongly see a supermajority of round R witnesses,
then that event is defined to be round R+1, and so
is a witness. In other words, an event is promoted
to the next round when it can strongly see a
supermajority of witnesses in the current round.

Refer figure[7], We can also run the election for
the C2 node , but there are no downward paths
from A3, B3, or D3 to C2, so they all vote “no” and
C3 will vote “yes”. as B4 strongly see A3,B3,C3
and D3 so it will collect the votes and these are
“no” ,”no”, ”yes” and “no” so super majority is “no” .
so C2 is not famous and color blue to C2 to show
that it is not famous.

There is a theorem[] that if any witness is able to
“decide” yes or no, then that is the result of the
election, and it is guaranteed that all other
witnesses that decide are going to decide the
same way. In this example, B4 was able to decide
the election. If it had collected votes that were
more evenly split between YES and NO, then it
would have failed to decide. In that case, we can
consider D4. If D4 also fails to decide, then
perhaps A4 or C4 might decide. If none of the
round-4 witnesses can decide, then each of them
will simply vote in accordance with the majority of

Figure 8 Figure 9

the votes they collected (voting YES in case of a
tie). In that case, it will be up to the round-5
witnesses to collect votes from the round-4
witnesses. Perhaps the round-5 witnesses will be
able to decide. The voting continues until it
eventually reaches a round where some witness
can decide the election. There is a theorem[]
saying that the election will eventually end (with
probability one) as long as we add in a coin round
every 10th round of voting. In a coin round,
collecting a supermajority causes a witness to
merely vote (not decide). And a non-supermajority
causes it to vote pseudo randomly, by using the
middle bit of its own signature as its vote.

Figure 10 Figure 11 Figure 12

In normal operation, most events are not
witnesses, so there is no election for most events.
And most witnesses are declared famous with an
almost-unanimous vote in the first round of
voting. So most elections do not last very long.
Refer figure[10] ,Notice that in this example, we
have now decided the fame of every witness in
round 2. Once a round has the fame decided for all
of its witnesses, it is possible to find the round
received and find the consensus timestamp for a
new set of events. Start by considering the gray
event immediately below A2 refer figure [11,12].
This event can be seen by every famous witness in
round 2. The red, green, and blue paths show how
A2, B2, and D2, respectively, can all see the black
event. This merely requires seeing, not strongly
seeing. This only requires seeing by the famous
witnesses. It doesn’t matter whether C2 can see
the black event, because C2 is not famous. Since
the black event is seen by all of the famous

3

witnesses in round 2 (but not in any earlier round),
it is said to have a round received of 2.

Thus, after deciding the node is famous or not
, consensus timestamp is calculated by taking
the median of the timestamp of his very next
event of each member but the events are
sorted by their round received , if it is same
for two events then consensus timestamp,
extended consensus timestamp and their
signature are considered for calculating the
consensus timestamp.

3. Implementation

In the implementation of a similar algorithm called
hashgraph, it is considered that there are ​n
members, more than 2n/3 of which are honest
which also implies that less than n/3 of them are
dishonest. It is further assumed that the digital
signatures and cryptographic hashes are secure,
so signatures cannot be forged, signed messages
cannot be changed without detection, and hash
collisions can never be found.The syncing gossip
protocol is assumed to ensure that when one node
sends to another node all the events it knows, the
other node accepts only those that have a valid
signature and contain valid hashes corresponding
to events that it has. The system is totally
asynchronous. It is assumed that for any two
honest members, each will eventually try to sync
with the other and if one node repeatedly tries to
send the other a message then it eventually
succeeds.

The proposed algorithm’s properties can be
proven by the following lemmas and theorems.

Strongly Seeing Lemma : ​If the pair of events (x, y)
is a fork, and x is strongly seen by event z in
hashgraph A, then y will not be strongly seen by any
event in any hashgraph B that is consistent with A.
Proof : The proof is by contradiction. Suppose
event w in B can strongly see y. By the definition
of strongly seeing, there must exist a set S​A of
events in A that z can see, and that all can see x.
There must be a set S​B of events in B that w can
see, and which all see y. Then S​A must contain
events created by more than 2n/3 members, and
so must S​B​, therefore there must be an overlap of

more than n/3 members who created events in
both sets. It is assumed that less than n/3
members are not honest, so there must be at least
one honest member who created events in both S​A
and S​B​. Let m be such a member, and their events
q​A S​A ​and q​B S​B​. Because m is honest, q​A and q​B ε ε
cannot be forks with each other, so one must be
the self-ancestor of the other. Without loss of
generality, let q​A be the self-ancestor of q​B​. The
hashgraphs A and B are consistent, and qB is in B,
so its ancestor q​A must also be in B. Then in B, x is
an ancestor of q​A​, which is an ancestor of q​B​, so x
is an ancestor of q​B​. But y is also an ancestor of q​B​.
So both x and y are ancestors of q​B and are forks of
each other, so qB cannot see either of them. But
that contradicts the assumption that q​B can see y
in B.That is a contradiction, so the lemma is
proved.

Lemma : ​If hashgraphs A and B are consistent and
both contain event x, then both will assign the same
round created number to x.
Proof : If the consistent hashgraphs both contain
x, then they both contain the same set of all its
ancestors, including the first event in history.
Then the proof is by induction: they agree on the
round number of that first event, which is 1 by
definition. And if they both contain an arbitrary
state y, and agree on the round numbers of all its
ancestors, then they will agree on the maximum
round number r of the parents of y, and will agree
on whether y can strongly see more than 2n/3
witnesses created in round r by different
members, and therefore will agree on the round
number of y. Therefore they will agree on the
round number of all events they share, including x.

Lemma : ​If hashgraphs A and B are consistent, and
the algorithm running on A shows that a round r
event by member m​0 sends a vote v​A to member m​1
in round r+1, and the algorithm running on B shows
that a round r event by member m​0 sends a vote v​B
to an event by member m1 in round r + 1, then v​A =
v​B​.
Proof : The algorithm only sends a vote from event
x to event y if y can strongly see x. It is not
possible for consistent hashgraphs to have two
events that are forks of each other and that are
both strongly seen, by the Strongly Seeing lemma.
Therefore, the two votes must be coming from the
same event x in both hashgraphs. An event’s vote
is calculated purely as a function of its ancestors,
so the two hashgraphs must agree on the vote,
and v​A​ = v​B​.

4

Lemma ​: If hashgraphs A and B are consistent, and
A decides a Byzantine agreement election with
result v in round r and B has not decided prior to r,
then B will decide v in round r + 2 or before.
Proof : Decisions can’t happen in coin rounds, so r
must be a regular round. If A decides a vote v, that
means some witness in round r received votes of v
from a set of members S that contains more than
2n/3 members. Because voting is consistent (by
the previous lemma), all other round r events in A
and B will receive votes from more than 2n/3
members, a majority of whom will also be in S,
because two subsets of size greater than 2n/3
drawn from a set of size n must each have a
majority of their elements in common with the
other. Therefore, every round r witness in both A
and B will vote for v (and some may decide v). If
round r +1 is a regular round, then every event in A
and B in that round will receive unanimous votes
of v and will decide v. If round r + 1 is a coin round,
then all will receive unanimous votes of v, so none
will flip coins, and all will vote v, and then all will
decide v in round r + 2.

Theorem 1 : For any single YES/NO question,
consensus is achieved eventually with probability 1​.
Proof : ​If any member decides the question, then
all members will decide the same way within 2
rounds, by the last lemma. So the only way
consensus could fail is if no member ever decides,
because no witness ever receives more than 2n/3
matching votes. However, in a coin round, if such
a supermajority has not yet been achieved, then all
the honest members randomly choose their vote,
and will have a nonzero probability of all choosing
the same vote. Coin rounds occur periodically
forever, so eventually the honest members will
become unanimous, with probability one, and then
consensus will be reached within 2 rounds.

Lemma : ​For any round number r, for any
hashgraph that has at least one event in round r+3,
there will be at least one witness in round r that
will be decided to be famous by the consensus
algorithm, and this decision will be made by every
witness in round r + 3, or earlier.
Proof : Let S​r+3 be a set containing a single witness
in round r +3, in a hashgraph that has at least one
such witness. For each i < r + 3, let Si be the set of
all witnesses in round i that are each strongly seen
by at least one witness in S​i+1​. It must be the case
that 2n/3 < |S​i​| n for all i r + 2, because the ≤ ≤
existence of an event in round i + 1 guarantees
more than 2n/3 are strongly seen in round i, and

none of the n members can create more than one
witness in a given round that is strongly seen (by
the Strongly Seeing lemma). Strongly seeing
implies seeing, so each event in S​r+1 sees more than
two thirds of the events in S​r​. Therefore, on
average, each event in Sr is seen by more than two
thirds of the events in S​r+1​. They can’t all be below
average, so there must be at least one event in S​r
(call it x) that is seen by more than two thirds of
the events in S​r+1​.
So more than two thirds of S​r+1 will vote YES in the
election for x being famous. Therefore, every
event in S​r+2 will receive more YES votes than NO
votes for the fame of x, and will therefore vote for
x being famous (and may or may not decide that x
is famous). Therefore, the event in S​r+3 will receive
unanimous votes for x being famous, which will
cause it to decide that x is famous. Therefore,
every member with an event in round r + 3 will
first decide that x is famous in either round r + 2
or r + 3.

Byzantine Fault Tolerance Theorem : ​Each event x
created by an honest member will eventually be
assigned a consensus position in the total order of
events, with probability 1.
Proof : ​All honest members will eventually learn of
x, by the definition of honest and the assumptions
that the attackers who control the internet must
eventually allow any two honest members to
communicate. Therefore, there will eventually be
a round where all the unique famous witnesses are
descendants of x. Therefore in that round, or
possibly earlier, there will be a round r where all
the famous witnesses are descendants of x. Then x
is assigned a received round of r, and a consensus
timestamp of the median of when those members
first received it, and its consensus place in history
will be fixed. Furthermore, it is not possible to
later discover a new event y that will come before
x in the consensus order. Because, to come earlier
in the consensus history, y would have to have a
received round less than or equal to r. That would
mean that all the famous witnesses in round r
must have received y. But once the set of famous
witnesses is known for a round, all of their
ancestors are also known, so there is no way to
discover new ancestors for them in the future as
the hashgraph grows. Furthermore, it isn’t
possible for a round to gain new famous witnesses
in the future, once the famousness of all the
known witnesses in that round are known. Any
new round r witness that is discovered in the
future will not be an ancestor of the known round
r + 1 witnesses (of which there are more than

5

2n/3), and so the consensus will immediately be
reached that it is not famous. Therefore, once an
event is assigned a place in the total order, it will
never change its position, neither by swapping
with another known event, nor
by new events being discovered later and being
inserted before it.

Given the above mentioned theorems/lemmas the
following conclusions can be drawn:

The purpose of the concept of strongly seeing is
to make the following lemma true.
The strongly seeing lemma is the foundation of
the entire proof, because it allows for consistent
voting, and for guarantees that different members
will never calculate inconsistent results, even with
purely virtual voting.

Different members may have slightly different
hashgraphs, and so may have slightly different
elections. However, all the votes will be
consistent. Byzantine agreement on a particular
YES/NO question is achieved by multiple rounds
of virtual voting. A given member will end their
election calculations in round r if it is a normal
round (not a coin round) and some round r + 1
event strongly sees more than 2n/3 of the
members voting the same way in round r. If that
happens, then every active member will end their
election in round r or r + 1 (or r + 2 if r + 1 is a coin
round), and will decide the same way.

In the hashgraph consensus algorithm, Byzantine
agreement is used to decide whether each witness
in a given round is famous or not. Every round is
guaranteed to have at least one witness that is
famous.

Every round will eventually have all its witnesses
classified as famous or not famous by universal
consensus, with at least one of the witnesses
being famous. After that, the set of famous
witnesses for that round will never change, even if
more events are added to the hashgraph. This set
of famous witnesses can therefore act as a judge,
to define a total order on all the events that have
reached them, and a consensus timestamp on
every event.

6

