
IOTA
 a cryptocurrency for the Internet-of-Things (IoT) industry.

The main focus of the IOTA developers is on the
Internet of Things (IOT) and M2M transactions.

● A smart cable that connects to a smart socket and
without any human interaction pays for electricity.

● Your device will get connected to the internet and it
will pay for the data in real-time as you browse the
internet

Real-life
Examples of
IOTA use

Problem with Bitcoin

1. Heavy fee: As the amount of payment reduces, the relative fee rate rises.

2. Separation of roles: Bitcoin requires two types of users: transaction verifier

(miners) and transaction issuers (normal users). Lacking the homogeneity

among roles, the chance of conflicts remains high, wasting everyone’s resources

to solve the conflicts.

Why IOTA

● Zero transaction costs

● Potential for indefinite scalability

Tangle
Tangle retain the
blockchain
features of the
distributed ledger
and secure
transactions, but
does not work
with blocks

Uses Directed
Acyclic Graph
(DAG)

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua

Tangle is made of sites and nodes:

● Sites: Transactions represented on the graph.

● Nodes: Issuers of transactions.

Key Rule: A newly issued transaction is obligated to approve TWO old transactions.

NO MORE MINERs!

Relationship
between
transactions

Direct Approval of Transaction

Indirect Approval of Transaction

Who started up Tangle?
Genesis transaction is the first transaction in Tangle:

● It is directly/indirectly approved by all other transactions.

● It sends tokens from “an address containing all tokens” to other

“founder addresses”

● To ensure equitable token distribution, a crowdsale was held from

November to December 2015 during which 100% of the token supply

was issued. Zero tokens were held for the developers/founders.

● The foundation currently holds just 5% of the total supply.

Propagation
incentive for
nodes

A node will be dropped by its neighbor, when it

shows laziness toward propagating transactions. The

incentive keeps all nodes working, though they don’t

issue transactions that frequent.

Terms That Matter

Weight (Own weight): The weight of
transaction A is proportional to the effort
put in by its issuer.

Cumulative weight: Transaction A’s
own weight + the sum of own weights of
all the followed transactions that
directly/indirectly approve transaction A.

Score: Transaction A’s own weight + the sum of own weights of all previous transactions
approved by transaction A

Height: The length of the longest oriented path to the genesis.

Depth: The length of the longest reverse-oriented path to certain tips.

Seeds, Private Keys and Accounts

➔ In order to create an account with private keys and addresses one
need to have a secure seed.

➔ It’s like a password and username in one.
➔ The length can vary from 60-81 characters consisting only A-Z

(uppercase) alphabets and the number 9.
➔ Generally a seed consists of 81-trytes and is a unique access key to

your account and thus your funds. The seed has to be securely
stored.

➔ The seed is only a local stored authentication and is never revealed
in a transaction.

➔ The private/public key pair is generated deterministically from your
seed + some index + a security level.

➔ From that private key you then generate an address. The key index
starting at 0, can be incremented to get a new private key, and thus
address.

➢ We have 3 different security levels which determines the number of rounds for
hashing or the length of the private key.

➢ The security level affects the following two things:
○ How hard it is to brute force a signature for a key.
○ How big the actual signatures are.

Bundles Each transaction consists of a bundle of
transactions.

currentIndex 0 = tail transaction
currentIndex N = head transaction

Transactions In
Bundle

➢ All transactions in the same bundle
should be treated as atomic unit. It
means that either all transactions
of a bundle are confirmed, or none
of them are confirmed.

➢ Every transaction in the bundle
requires it own PoW, hence there
are different nonces in the
transactions.

Transaction Object

 Key Name Type Tryte size Description

Hash String 81 Uniquely identify the transaction on the tangle.

signatureMessage
 Fragment

String 2187 Holds either a signature or a message, which may be
fragmented over multiple transactions in a bundle.

address String 81 The address associated with this transaction.

value int - The number of IOTAs being transferred in this
transaction.

obsoleteTag String 27 User-defined tag.

timestamp int - UNIX timestamp when the transaction was issued.

currentIndex int - The transaction’s position in the bundle.

Transaction Object

 Key Name Type Tryte size Description

lastIndex int - The last transaction position in the bundle.

bundle String 81 The bundle hash identifies which transactions
belongs to the same bundle.

trunkTransaction String 81 Tip 0 hash or next transaction hash.

branchTransaction String 81 Tip 0 hash or Tip 1 hash.

tag String 27 User defined tag to easily find a transaction.

Transaction Object

 Key Name Type Tryte size Description

attachmentTimestamp int - Timestamp after proof of work.

attachmentTimestamp
 LowerBound

int - Attachment time (lower bound)
It is a slot for future use.

attachmentTimestamp
 UpperBound

int - Attachment time (upper bound)
It is a slot for future use.

nonce String 27 The proof of work solution.

persistence bool - Indicates if the transaction is pending or confirmed.

Types of Transactions

➢ Output Transactions: Transaction value greater than 0 and address does
not belong to the sender.

➢ Input Transactions: In such transaction address belongs to the sender and
value can be either positive(non zero) or negative.

➢ Meta Transactions: Zero valued transactions are meta transactions. The
signatureMessageFragment of these transactions could either hold a
signature or a message fragment.

Types of Input Transactions

➢ Input Transactions where the value is negative: These are the
transactions where the complete balance from that address is spent.

➢ Input Transactions where the value is greater than zero: These are the
transactions where unspent/not used IOTA’s are send to a new change
address in the senders wallet.

Transactions

Transactions is a 3 step process:

1. Constructing the bundles and signing the inputs with private keys.
2. Tip Selection.
3. Proof of Work (PoW)

How IOTA making a transaction ?

Person A has a seed A_SECRET_SEED that
contain 100i in 4 different address relate to this
seed:

seed: A_SECRET_SEED
address[0]: AAAAAA……AAA, balance: 10
address[1]: BBBBBB……BBB, balance: 5
address[2]: CCCCCC……CCC, balance: 25
address[3]: DDDDD……DDD, balance: 60
address[3]: EEEEE……EEE, balance: 0

Person B has a seed B_SECRET_SEED that
contain 0i in its address:

seed: B_SECRET_SEED
address[0]: QQQQQQ……QQQ, balance: 0

Consider the scenario where person A has to send 80i to person B address[0].

1. Making transaction bundle

Output Transaction

For our scenario, first
we need to prepare
output transaction,
which mean, we want to
send to B’s address with
80i IOTA:

1. Making transaction bundle

Input Transaction

Next, we will need to
prepare input
transaction. In our
scenario, we will need
to use all four address
that contain IOTA (10 +
5 + 25 + 60 > 80) to
fulfill output value
80i.

1. Making transaction bundle

Input Transaction with meta transactions

But our input transaction
need to contain
transaction signature,
default address security
level is 2, that mean we
need an additional meta
transaction to carry the
transaction signature.

1. Making transaction bundle

Unspent Transaction

Now we have an unbalanced
bundle.
Take a little count, we have
10 + 5 + 25 + 60 = 100 IOTA
input, and 80 IOTA output,
which mean this bundle still
got 100 - 80 = 20 IOTA
unspent.
We will need to get an
additional transaction to
receive this unspent IOTA.

2. Finalize bundle

In this step, we will fill in
transaction index, last index
and generate bundle hash by
Kerl hash function.

3. Signing signature for input transactions

● In IOTA: the private/public key pair is generated
deterministically from your seed + some index (+ a security
level).

● we will need to sign the input transactions with correspond
address’ private key.

● Get address private key via key generate with address index and
security level.

● Using address private key and bundle hash to generate signature
fragment and filling into transaction’s signature fragment part.

● If the security level is 2, then we will need to sign up two
transaction (1 for input transaction and the following meta
transaction).

● At the end of this step, we will get a list of transaction trytes
that including bundle hash and transaction signature.

3. Signing signature for input transactions

4. Getting two tips — trunk and branch

Next, we’ll select TWO tips based on the algorithms that will be
discussed later in the presentation and the corresponding trunk
and branch values will be filled.

5. Proof of Work

● IOTA uses PoW for spam protection, similar in spirit to the
PoW used in Hashcash. This is a short computational
operation.

● Min Weight Magnitude:
This refers to the number of trailing zeros (in trits) in
transaction hash.
The device which does the PoW will bruteforce the transaction
hash to find a nonce that has the correct number of trailing
0's.

5. Proof of Work

➢ We will need to fill-up trunk, branch, and find nonce (Proof of Work)
into each transaction in the bundle.

➢ It will then walk through all transactions in the bundle from the last
index to 0 index, to fill-up everything that is stated above.

➢ Last index’s transaction trunk and branch hash will be previous tips
we get. Other transaction’s trunk will be previous transaction’s hash,
and branch hash is trunk transaction from tips.

Tip Selection

We call unapproved transactions tips.

Each incoming transaction needs to choose two tips to approve.

The strategy for choosing which two tips to approve is very important, and is
the key to IOTA’s unique technology.

Tip selection

Random Selection of Tip:

Each incoming transaction looks at all the currently unapproved
transactions, and simply chooses two at random.

Visual Simulation

https://public-rdsdavdrpd.now.sh/

Tip Selection

Unweighted Random Walk:

❏ Using this algorithm, we put a walker on the genesis
transaction, and have it start “walking” towards the tips.

❏ On each step it jumps to one of the transactions which
directly approves the one we are currently on.

❏ We choose which transaction to jump to with equal
probability.

Visual Simulation

https://public-xnmzdqumwy.now.sh/

Tip Selection

Lazy Tips:

● A lazy tip is one that approves old transactions rather than recent
ones.

● It only broadcasts its own transactions based on old data.
● This does not help the network, since no new transactions are

confirmed.

Tip Selection

Lazy Tip continued...

● If we use the uniform random tip selection algorithm,
transaction 14 is just as likely to get approved as any other,
so it is not being penalized at all.

● Using the unweighted walk, this bad behavior is even
encouraged.

Tip Selection:

Can we force participants to only approve recent transactions ?

No.

This would clash with the whole idea of decentralisation.
Transactions can approve whomever they please.

One solution is to construct a system with built-in incentives
against such behavior, so that lazy tips will be unlikely to get
approved by anyone.

Tip Selection

The weighted random walk:

Our strategy will be to bias our random walk, so we are less likely
to choose lazy tips.

Cumulative weight: we count how many approvers a transaction has,
and add one. We count both direct and indirect approvers.

Tip Selection

This is an effective way of discouraging lazy behavior.

Tip Selection

Do we need randomness at all ?

Super Weighted Random Walk: each junction we choose the heaviest
transaction, with no probabilities involved.

Tip Selection

We need a parameter to control how strong our walk is.
This introduces our new parameter α, which sets how important a
transaction’s cumulative weight is.

This method of setting a rule for deciding the probability of
each step in a random walk is called a Markov Chain Monte Carlo
technique, or MCMC.

Confirmation Confidence

This confidence is a measure of a transaction’s level of
acceptance by the rest of the tangle.

The confirmation confidence of a transaction is computed as
follows:

1. Run the tip selection algorithm 100 times.
2. Count how many of those 100 tips approve our transaction,

and call it A.
3. The confirmation confidence of our transaction is “A

percent”.

Visual Simulation

https://public-krwdbaytsx.now.sh/

The Coordinator

● To make it possible for the network to grow and protect it against certain
attacks, IOTA currently relies on a coordinator.

● The coordinator checkpoints valid transactions, which are then validated by
the entire network.

● The coordinator issues periodic milestones, which reference valid
transactions.

● When the network is mature enough to get rid of the Coordinator the
network will also instantly become orders of magnitude more efficient.

Assumptions :

● All devices have same computing power.

● At any point when a node issue a transaction, what it
sees is not the actual state of tangle but the one exactly
h minutes ago.

● Number of tips should remain roughly stationary in time

● Number of tips (L(t)) at any time t should be finite.

● P({L(t) - L(t - h)} = n) = e-ƛh(ƛh)n/n!

● The mean number of chosen tips is 2r/(r + ƛh)

● L = 2ƛh

r - initial revealed tips,
ƛ - rate of transaction,
h - average time a device need to perform calculation to issue a
transaction.

Low Load

● Number of tips are small.
● Flow of Transaction is so small that it is not probable that several

transaction approve the same tip.
● Happened when : low network latency and great computational

power.

High Load

● Number of tips are large.
● A strong inflow of transaction.

● Happened when : high network latency and low computational
power

● Disadvantage : Some transactions might need to wait for a
long while before being approved.

● If a transaction uses the strategy of approving two random tips, the
typical number of tips is given by L = 2λh.

● There are only a few tips in the low load regime. A tip gets approved for
the first time in Θ(λ-1) time units, where λ is the rate of the incoming
flow of transactions.

● The typical time for a tip to be approved is Θ(h) in the high load regime,
where h is the average computation/propagation time for a node

Conclusions

● After a transaction gets approved multiple times in the low load
regime, its cumulative weight will grow with speed λw, where w
is the mean weight of a generic transaction.

● In the high load regime, there are two distinct growth phases.
First, a transaction’s cumulative weight H(t) grows with
increasing speed during the adaptation period according to :
H(t) ≅ exp(0.352t/h);

● After the adaptation period is over, the cumulative weight grows
with speed λw.

Possible Attack Scenarios

Double Spending-

Double Spending

● This last situation is called a double spending, because Alice spent her money twice.
Notice that she did not break the protocol, because she had enough money for each
individual transaction.

● She did however create two branches in the tangle that cannot be reconciled. This
creates a problem for honest users of IOTA: which branch should they approve?

● The solution to this problem is once again the weighted walk. Eventually one of the
branches will grow heavier than the other, and the lighter one will be abandoned

● This also implies that a transaction cannot be considered to be confirmed immediately
after it is issued, even if it has some approvers, since it might be part of a branch that will
be abandoned eventually.

Large Double Spending Attack

Possible Solutions

● Limiting the own weight of each node, or even setting it to a constant
value.(Not Possible because of spaming)

● The inequality λ > µ should be true for the system to be secure. In other
words, the input flow of “honest” transactions should be large compared to
the attacker’s computation

Parasite Chain Attack

Parasite Chain Attack Solutions

● Using N particles while using random walk algorithm (MCMC).
● It is easy to see why the MCMC selection algorithm will not select one of

the attacker’s tips with high probability in the following.

Parasite Chain Attack Solutions

As an additional protecting measure, we can first ran a random walk with a large α
(so that it is in fact “almost deterministic”) to choose a “model tip”; then, use random
walks with small α for actual tip selection.

Thanks!

Nitesh Gupta (22)

Anurag Bhardwaj (28)

Ayan Sheikh (29)

Arpit Bahety (34)

Kautish Jaiswal (51)

