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Classical Mechanics

Principle of Least Action

Most simple yet most profound principle of Physics. Almost all kinds
of interactions can be described using this principle.

Construct the action of a dynamical system and extremize it to get
the equation of motion.

What is the Action?

It is an integral over a time of the Lagrangian.

A =

∫ tf

ti

L(qi , q̇i , t)dt

PLA states, if one supplies the Lagrangian of a system along with
the initial conditions (in particle mechanics, one needs to tell the
gen. coordinates at initial (ti ) and final (tf ) times), then the
trajectory that makes the Action stationary is given by
Euler-Lagrange EOM or Newton’s EOM.
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Classical Mechanics

How does the principle work?

Let us examine how the PLA works for a trajectory.

Solving Newton’s (or Lagrange’s) equation of motion needs 2N number of
initial conditions if the system has N dof. The N initial coordinates and N
initial velocities.

Given the initial condition(s) at an initial instant say at ti , and the masses
and Forces (or potential) of the system, one can solve the system to
obtain the entire trajectory x(t).

P

Q x(tf)

x(ti)

x(t)

x(t)+
δx(t)

For PLA, one provides the initial, and another point through which the
system travels under the Forces present. For instant, if one tries to throw
a stone through a tiny hole of a wall. The initial position and an
intermediate position of the stone crossing the wall are fixed.



Classical Mechanics

Extremizing the Action

One writes the Action as:

A =

∫ tf

ti

(K .E .− P.E .)dt.

Remember that the PE and KE are both (implicit) functions of time.
There can be imaginary paths that connect two terminal points. For
each such different possible path one gets a different number for this
action. Our goal is to find out for what curve that number is the
least.

Mathematically:

δA = δ

∫ tf

ti

L(qi , q̇i , t)dt = 0

It is a remarkable fact that the path that minimizes the action is
given by solving the Euler-Lagrange equation.



Classical Mechanics

Calculus of Variation

Action is not an ordinary function. It is actually a functional- a
”function of a function”-here a function of all possible trajectories
(qi (t)).

Extremizing a functional is a subject of a branch in mathematics
called- the calculus of variations.

Extremizing a function amounts to solve an equation
(non-differential) =⇒ stationary points. Extremizing a functional
yields a differential equation =⇒ trajectory.



Classical Mechanics

Hamilton’s principle

Recall: δA = δ
∫ tf
ti
L(qi , q̇i , t)dt = 0

We will make first order variations (change) in the qi s and ˙qi s to induce
only second order change in the Action.

The end point variations are zero =⇒ δqi (ti ) = δqi (tf ) = 0.

L.H.S . ≡ δ
∫ tf

ti

L(qi , q̇i , t)dt

=

∫ tf

ti

(
∂L
∂q̇i

δq̇i +
∂L
∂qi

δqi

)
dt [L(qi + δqi , · · · )− L]

=

∫ tf

ti

(
d

dt

(
∂L
∂q̇i

δqi

)
− d

dt

(
∂L
∂q̇i

)
δqi +

∂L
∂qi

δqi

)
dt

=

∫ tf

ti

(
− d

dt

(
∂L
∂q̇i

)
δqi +

∂L
∂qi

δqi

)
dt

Using:
∫ b

a
d(f δx)

dt
dt = f δx |ba = 0. for δx(a) = δx(b) = 0, and

δ( d
dt
qi ) = d

dt
(δqi ).
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Euler-Lagrange Equation

For arbitrary variations δqi s, setting the last expression = 0, we get the
E-L eqn. ∫ tf

ti

(
d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

)
δqidt = 0, i = 1, 2, · · · ,N.

=⇒
d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= 0

Can accommodate certain non-holonomic systems and non-conservative
forces also.
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Variational Principle

We find a particular condition for a given expression (usually maximising or
minimising it) by varying the functions on which the expression depends.

I =

∫ b

a

F (y , y ′, x)dx ;
δI

δy
= 0

Small change in y(x) makes only second order change in I .

y(x)→ y(x) + αη(x)

End point variations are zero: η(b) = η(a) = 0.

Taylor expand the function F up to first order. Throw away the boundary
term and get the Euler-Lagrange equation:

d

dx

(
∂F

∂y ′

)
− ∂F

∂y
= 0
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Two forms of Euler-Lagrange Equation

EL equation when F is independent of y :

∂F

∂y
= 0 =⇒ d

dx

(
∂F

∂y ′

)
= 0→ ∂F

∂y ′ = const.

EL equation when F is independent of x:
Multiply EL eqn. by y ′

y ′ d

dx

(
∂F

∂y ′

)
− y ′ ∂F

∂y
= 0

with,

y ′ ∂F

∂y
+ y ′′ ∂F

∂y ′ =
dF

dx
.

this yields

y ′ ∂F

∂y ′ − F = const.
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Shortest Distance between two points in a plane

element of length in a plane ds =
√
dx2 + dy2.

The distance between two points (x1, y1) and (x2, y2) can be
obtained by

I =

∫ x2

x1

√
1 + y ′2dx =

∫ x2

x1

F (y ′)dx .

EL eqn: ∂F
∂y ′ = y ′√

1+y ′2
= c .

On integration we get the eqn. straight line! y = ax + b.

In general shortest curve between two points in any space is called a
Geodesic.


