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m PLA states, if one supplies the Lagrangian of a system along with
the initial conditions (in particle mechanics, one needs to tell the
gen. coordinates at initial (¢;) and final (¢f) times), then the
trajectory that makes the Action stationary is given by
Euler-Lagrange EOM or Newton's EOM.
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How does the principle work?

Let us examine how the PLA works for a trajectory.

m Solving Newton's (or Lagrange’s) equation of motion needs 2N number of
initial conditions if the system has N dof. The N initial coordinates and N
initial velocities.

m Given the initial condition(s) at an initial instant say at t;, and the masses
and Forces (or potential) of the system, one can solve the system to
obtain the entire trajectory x(t).

Q X6

P
x(t)

m For PLA, one provides the initial, and another point through which the
system travels under the Forces present. For instant, if one tries to throw
a stone through a tiny hole of a wall. The initial position and an
intermediate position of the stone crossing the wall are fixed.
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Extremizing the Action

m One writes the Action as:
tf
A= / (K.E.— P.E.)dt.
ti

Remember that the PE and KE are both (implicit) functions of time.
There can be imaginary paths that connect two terminal points. For
each such different possible path one gets a different number for this
action. Our goal is to find out for what curve that number is the
least.

m Mathematically:
tr
(5./4:5/ ﬁ(q;,d;,t)dtzo
tj

m It is a remarkable fact that the path that minimizes the action is
given by solving the Euler-Lagrange equation.
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Calculus of Variation

m Action is not an ordinary function. It is actually a functional- a
"function of a function”-here a function of all possible trajectories
(ai(t))-

m Extremizing a functional is a subject of a branch in mathematics
called- the calculus of variations.

m Extremizing a function amounts to solve an equation
(non-differential) = stationary points. Extremizing a functional
yields a differential equation = trajectory.
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Hamilton's principle

® Recall: A =16 [ L(gi,di,t)dt =0
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n Using: 7 9 gt — £5x|5 = 0. for dx(a) = dx(b) = 0, and
8(5a) = dt(éq:)
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Euler-Lagrange Equation

m For arbitrary variations dg;s, setting the last expression = 0, we get the

E-L eqn.
rd (0L oL
o - i =Y -:1127"'7N-
/t,- <dt <adi> aq{)éth o

d (oL oL _
dt \ 94 aqi

m Can accommodate certain non-holonomic systems and non-conservative
forces also.
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Variational Principle

m We find a particular condition for a given expression (usually maximising or
minimising it) by varying the functions on which the expression depends.

b , sl
I:/a F(y,y',x)dx ;E:O
Small change in y(x) makes only second order change in /.
y(x) = y(x) + an(x)

End point variations are zero: n(b) = n(a) = 0.

m Taylor expand the function F up to first order. Throw away the boundary
term and get the Euler-Lagrange equation:

d (oF 7%70
dx \ 9y’ oy
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Two forms of Euler-Lagrange Equation

m EL equation when F is independent of y:

oF - d (9oF =0— 8—F = const
Ay dx \ 9y’ r ’

m EL equation when F is independent of x:
Multiply EL egn. by y’

,d (OF 8F
Y dx ay’ 6y

JOF | nOF _ dF
dy y dy’  dx’

with,

this yields

, OF
ay’

— F = const.




Classical Mechanics

Shortest Distance between two points in a plane

m element of length in a plane ds = /dx? + dy?2.

m The distance between two points (x1, y1) and (x2, y2) can be

obtained by
X2 X2
I:/ \/l—l—y’de:/ F(y")dx.
X1 X1
m EL eqgn: gyF, = 1y4,—y’2 =c

m On integration we get the eqn. straight line! y = ax + b.

m In general shortest curve between two points in any space is called a
Geodesic.



