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Constraints and Generalized coordinates

Constraints 
Simple pendulum  
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Use of cartesian coordinates is not suitable.  Polar coordinates are ideal.
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r = L so only ✓ changes. The degree of freedom is only one.

Force equation: mL✓̈ = �mg sin ✓

✓ is the generalized coordinate. No EOM for r!

T is force of constraints.

#

Using x = L sin ✓; y = L cos ✓
One can show

r̂ = cos ✓x̂ + sin ✓ŷ; ✓̂ = � sin ✓x̂ + cos ✓ŷ

And for SP

v = L✓̇✓̂

Find out v for general case i.e. for r varying.
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A new approach

Lagrangian for Simple Pendulum

Lagrangian L is a function of generalised coordinate and generalised velocity.

L = T � V

L(✓, ✓̇) =
1

2
mL2✓̇2 � mgL(1 � cos ✓)

Lagrange’s EOM:
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dt
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yields

mL2✓̈ = �mgL sin ✓

T = 1
2m(ẋ2 + ẏ2)
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Lagrange’s EOM is nothing but Newton’s EOM.

For a simple pendulum we have already seen that.

Lagrangian of a particle of mass m attached to a spring with spring
constant k and executing simple harmonic motion in x direction:

L(x , ẋ) = T − V =
1

2
mẋ2 − 1

2
kx2

We know the EOM from Newtonian mechanics: mẍ = −kx
Lagrangian method:

d

dt

(
∂L

∂ẋ

)
= mẍ ;

∂L

∂x
= −kx

=⇒ mẍ = −kx
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Double Pendulum

Difficult  to solve by Newtonian mechanics. Much easier in Lagrangian mechanics
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Takeaways from the examples discussed

Mechanical systems usually contain constraint forces.
Eg. i) Tension on the bob of the simple pendulum. ii) Normal force

exerted on a particle confined to move on a spherical surface.

Systems with many degrees of freedom are hard to analyze in the
Newtonian way. It is not easy to know the positions and velocities of
all particles at a given moment.
Eg. gas molecules in a box.

Constraints impose two types of difficulties in a physical system.
Not all the coordinates describing the system (Cartesian coordinates)
remain independent.
There are forces of constraints (Eg. force exerted on the gas
molecules by the wall), that are generally unknown. We only used to
know the effect of those.

The first difficulty is removed by introducing the generalized
coordinates.

Removing the second difficulty (disappearance of forces of
constraints) leads to the Lagrangian framework.
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Generalized Coordinates

Generalized Coordinates: For a system of N particles, moving under
constraints, the number of minimum independent
coordinates (q1, q2 · · · qn) required to describe the
configuration (motion) of the system is called as system’s
degrees of freedom (dof) and the coordinates are called
‘generalized coordinates’ (GC).
There will be n generalized coordinates for a system with
n dof. GC may not have the dimension of length.
For a system in D dimension, with k constraints,

n = D ∗ N − k

Transformation Equations is the relation between position/Cartesian
coordinates with GC , e.g. for ~rν = xν î + yν ĵ + zν k̂

xν = xν(q1, q2, · · · , qn, t)

yν = yν(q1, q2, · · · , qn, t)

zν = zν(q1, q2, · · · , qn, t)
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Classification of Mechanical systems

Scleronomic or Rheonomic: Rheonomic systems has explicit dependence
on time t, but Scleronomic systems are not.

Eg. A particle is constrained to move on a stationary spherical

surface of radius a (constraint eqn. r − a = 0) is an example of

scleronomous system. If a particle is on a moving surface (eg.

f (t, x , y , z) = 0) then we call that as a rheonomic system.

Holonomic or Non-holonomic: If constraints of a system can be
expressed as φ(q1, q2, · · · , qn, t) = 0 then the system is
holonomic, else non-holonomic (eg. a particle is sliding on
the surface of a sphere of radius a, r2 − a2 ≥ 0).

Conservative systems: If all forces acting on a system are derivable from a

potential
(
Fx = −∂V (x)

∂x

)
, then the system is conservative.
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Virtual Displacement

Let on a system of N particles, m holonomic constraints of the form
fk(t, ri ) = 0 are imposed, then

N∑
i=1

∂fk
∂ri

vi +
∂fk
∂t

= 0; k = 1, · · · ,m. (1)

Possible velocities and displacements: The velocities satisfied by Eq. 1
are the possible velocities of the system at an instant t and at any specific
position. The corresponding displacements dri = vidt, are the possible
displacements. They are consistent with the constraints, but the forces of
constraints may change over the interval dt.

Virtual displacements: Let us consider two possible displacements at the
same instant and the same position of the system at that instant.

dri = vidt ; d ′ri = v′
idt

plugging these into Eq. 1 and subtracting we get-

N∑
i=1

∂fk
∂ri

δri = 0; k = 1, · · · ,m. (2)
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Virtual Displacement & Principle of virtual work

δri = d ′ri − dri is called the virtual displacement.

Virtual displacements are also consistent with the constraints imposed on
the system but they only coincide with the possible displacements in the
case of stationary (time-independent) constraints.

If the system is at equilibrium then the total force on each particle of the
system must vanish.

Fi = Fa
i + Fc

i = 0

Total work done by the virtual displacement δri also vanishes.

N∑
i=1

Fi.δri = 0 =⇒
N∑
i=1

Fa
i .δri + Fc

i .δri = 0

The net virtual work done by the forces of constraints usually vanishes
(eg. internal forces on rigid bodies). Therefore

N∑
i=1

Fa
i .δri = 0 (3)

Eq. (3) is known as the Principle of Virtual Work.
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D’Alembert’s Principle

The Principle of virtual work is only applicable to the study of statics. For
general motion, D’ Alembert’s principle states- a particle maintains an
equilibrium upon the joint action of the net force acting upon it Fi and a
’reverse effective force’ −ṗi . This follows from the Newton’s law: Fi = ṗi .

General Equation of dynamics: For the systems where the virtual work
done by the constraint forces vanishes, we have:-

N∑
i=1

(Fa
i − ṗi ).δri = 0 (4)

ṗi = mai is called inertial force.

Eq. (4) is known as D’Alembert’s Principle. It is still in terms of the
Cartesian coordinates, which are not independent. One needs to transform
to the generalized coordinates.

Relation between the Cartesian and n(= 3N −m) GC:
ri = ri (q1, q2, · · · , qn, t) N such relations.
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Lagrange’s Equation

δri =
∑n
α=1

∂ri
∂qα

δqα∑N
i=1 F

a
i .δri =

∑n
k=1 Φkδqk .

Φk =
∑N

i=1 Fi · ∂ri∂qk
is called generalized force associated with generalized

coordinate qk .

∑N
i=1 ṗi .δri =

∑N
i=1 mi r̈i .δri =

∑n
k=1

∑N
i=1

[
d
dt

(
mivi .

∂vi
∂q̇k

)
−mivi .

∂vi
∂qk

]
δqk

=⇒
∑n

k=1

∑N
i=1

[
d
dt

(
∂
∂q̇k

( 1
2
miv

2
i )
)
− ∂

∂qk
( 1
2
miv

2
i )
]
δqk

Eq. (4) becomes:

n∑
k=1

[
Φk −

(
N∑
i=1

d

dt

∂

∂q̇k

(
1

2
miv

2
i

)
− ∂

∂qk

(
1

2
miv

2
i

))]
δqk = 0
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Lagrange’s Equation

For holonomic constraints, we can apply a virtual displacement in kth
generalized coordinate qk keeping other coordinates fixed. This gives:

[
Φk =

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk

]
, (5)

where T =
∑N

i=1
1
2miv

2
i is the total Kinetic energy.

If the force is derivable from a potential V-

Φk = −
N∑

i

∇iV ·
∂ri
∂qk

= − ∂V
∂qk

Plugging this in Eq. (5) we get

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0; L = T − V ; k = 1, · · · , n
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Algorithm to obtain the Lagrangian and EOMs

1 Identify a suitable coordinate system that can serve as the GC.

2 Construct the kinetic and potential energy in terms of generalized
coordinates and their derivatives. Then construct the Lagrangian
L = L(qk , q̇k , t) = T − V . Lagrangian is a function of generalized
coordinates, generalized velocities and time.

3 Evaluate Lagrange’s equations of motion by taking derivatives of the
Lagrangian w.r.t. the GCs and GVs. There will be n number of
equations for n number of GCs.
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Force of constraints (extra reading)

Consider the Lagrangian of simple pendulum without imposing the
constraint r = L:

L =
1

2
m
(
ṙ2 + r2θ̇2

)
+ mgr cos θ − V (r).

V (r) can also be introduced as λ(r − L), where λ is called the
Lagrange’s undetermined multiplier.

r -equation:

mr̈ −mr θ̇2 −mg cos θ = −V ′
(r) = −λ

putting r = L:
λ−mg cos θ = mLθ̇2

λ is nothing but the constraint force T or tension!
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Advantages of Lagrangian formulation

Lagrangian is a scalar quantity. It is always advantageous to deal
with scalars rather than vectors.

Forces of constraints are dealt with elegantly. One can bypass the
constraints and find the EOMs satisfying the constraints of a system.

Lagrange’s EOM can be obtained from a strong and elegant
principle- The variational principle.


