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Constraints and Generalized coordinates

Constraints
Simple pendulum
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Use of cartesian coordinates is not suitable. Polar coordinates are ideal.
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Polar coordinates
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mg r = L so only 6 changes. The"degree of freedom is only one.
i 6(t) . .. .
y Yv Force equation: mL# = —mgsin @
T {. . #(t)
v 0 is the generalized coordinate. No EOM for r!
T is force of constraints.
Using x = Lsin6; y = Lcosf
One can show
7 = cos 0% + sin 0y; 6= —sinbi + cos 07
And for SP

v=L6#

Find out v for general case i.e. for r varying.
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A new approach

Lagrangian for Simple Pendulum

Lagrangian L is a function of generalised coordinate and generalised velocity.
L=T-V

L(8,6) = %mLQBIZ —mgL(1 — cosf)
Lagrange’s EOM:
_ 1 -2 "2
d oy o, T=ml )
dt \ 90 a0
yields

mL?6 = —mgLsin€
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Lagrange's EOM is nothing but Newton's EOM.

For a simple pendulum we have already seen that.

Lagrangian of a particle of mass m attached to a spring with spring
constant k and executing simple harmonic motion in x direction:

1 1
Lx,x)=T -V = me'2 - 5/<x2

We know the EOM from Newtonian mechanics: mx = —kx

Lagrangian method:
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Double Pendulum

Difficult to solve by Newtonian mechanics. Much easier in Lagrangian mechanics
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Takeaways from the examples discussed

m Mechanical systems usually contain constraint forces.
Eg. i) Tension on the bob of the simple pendulum. ii) Normal force
exerted on a particle confined to move on a spherical surface.

m Systems with many degrees of freedom are hard to analyze in the
Newtonian way. It is not easy to know the positions and velocities of
all particles at a given moment.

Eg. gas molecules in a box.

m Constraints impose two types of difficulties in a physical system.

m Not all the coordinates describing the system (Cartesian coordinates)
remain independent.

m There are forces of constraints (Eg. force exerted on the gas
molecules by the wall), that are generally unknown. We only used to
know the effect of those.

m The first difficulty is removed by introducing the generalized
coordinates.

m Removing the second difficulty (disappearance of forces of
constraints) leads to the Lagrangian framework.
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Generalized Coordinates

Generalized Coordinates: For a system of N particles, moving under
constraints, the number of minimum independent
coordinates (g1, g2 - - - gn) required to describe the
configuration (motion) of the system is called as system'’s
degrees of freedom (dof) and the coordinates are called

‘generalized coordinates’ (GC).

There will be n generalized coordinates for a system with
n dof. GC may not have the dimension of length.
For a system in D dimension, with k constraints,

n=DxN—k

Transformation Equations is the relation between p05|t|on/CarteS|an
coordinates with GC , e.g. forr, = x,1 + y,,j + z,k

Xy = Xl/(qla qz, -
Y = }/u(‘ha q, -
Zy, = Zu(Ql’ q, -
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Classification of Mechanical systems

Scleronomic or Rheonomic: Rheonomic systems has explicit dependence
on time t, but Scleronomic systems are not.

Eg. A particle is constrained to move on a stationary spherical
surface of radius a (constraint eqn. r —a = 0) is an example of
scleronomous system. If a particle is on a moving surface (eg.
f(t,x,y,z) = 0) then we call that as a rheonomic system.

Holonomic or Non-holonomic: If constraints of a system can be
expressed as ¢(q1, G2, - , gn, t) = 0 then the system is
holonomic, else non-holonomic (eg. a particle is sliding on
the surface of a sphere of radius a, r? — a2 > 0).

Conservative systems: If all forces acting on a system are derivable from a

potential (FX = _a\g)((x)), then the system is conservative.
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Virtual Displacement

m Let on a system of N particles, m holonomic constraints of the form
fi(t,r;) =0 are imposed then

Ofi 8fk o
Z e,V =0 k=1,---,m. (1)

m Possible velocities and displacements: The velocities satisfied by Eq. 1
are the possible velocities of the system at an instant t and at any specific
position. The corresponding displacements dr; = v;dt, are the possible
displacements. They are consistent with the constraints, but the forces of
constraints may change over the interval dt.

= Virtual displacements: Let us consider two possible displacements at the
same instant and the same position of the system at that instant.

dri = vidt ; d'r; =V'idt
plugging these into Eq. 1 and subtracting we get-

ot
8r,-

i=1

ori=0; k=1,--- ,m. (2)



Classical Mechanics

Virtual Displacement & Principle of virtual work

m Or; = d'r; — dr; is called the virtual displacement.

m Virtual displacements are also consistent with the constraints imposed on
the system but they only coincide with the possible displacements in the
case of stationary (time-independent) constraints.

m |If the system is at equilibrium then the total force on each particle of the

system must vanish.
Fi=F +F =0

m Total work done by the virtual displacement dr; also vanishes.

A N
> Fidri=0 = > F.or+Ff.or =0

i=1 i=1

m The net virtual work done by the forces of constraints usually vanishes
(eg. internal forces on rigid bodies). Therefore

N
> Fon =0 3)
i=1

Eq. (3) is known as the Principle of Virtual Work.
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D’Alembert’s Principle

m The Principle of virtual work is only applicable to the study of statics. For
general motion, D’ Alembert’s principle states- a particle maintains an
equilibrium upon the joint action of the net force acting upon it F; and a
'reverse effective force’ —p;. This follows from the Newton's law: F; = p;.

m General Equation of dynamics: For the systems where the virtual work
done by the constraint forces vanishes, we have:-

N
Z(Fa,' — p,—)‘ér,- =0 (4)
i=1
m p; = ma; is called inertial force.

m Eq. (4) is known as D’Alembert’s Principle. It is still in terms of the
Cartesian coordinates, which are not independent. One needs to transform
to the generalized coordinates.

m Relation between the Cartesian and n(= 3N — m) GC:
ri =ri(q1, g2, , Gn, t) N such relations.
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Lagrange's Equation

mor=>"_, %&h

L] Z,N LFor =370 rdqr.

[ Z, 1 Fi- ag’k is called generalized force associated with generalized
coordlnate gk

[

Z,I'V:l pi.orj = Z —y mitior =320 Z, 1 [% (m,-v,-.g;.”'

k) mjv;. aq ]5qk

— 3 Zf"zl [% (a‘zk(lm, 2)) - a%k(%m;v?)] dq«

m Eq. (4) becomes:




Classical Mechanics

Lagrange's Equation

For holonomic constraints, we can apply a virtual displacement in kth
generalized coordinate gx keeping other coordinates fixed. This gives:

ST R

where T =3"N | 1m;v? is the total Kinetic energy.

If the force is derivable from a potential V-

or; ov
VvV =
Z gk Oqk

Plugging this in Eq. (5) we get

d oL oL
— | =) —-—=—=0, L=T-V; k=1,
(0%) Oqxk
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Algorithm to obtain the Lagrangian and EOMs

Identify a suitable coordinate system that can serve as the GC.

Construct the kinetic and potential energy in terms of generalized
coordinates and their derivatives. Then construct the Lagrangian
L= L(qk,qk,t) = T — V. Lagrangian is a function of generalized
coordinates, generalized velocities and time.

Evaluate Lagrange's equations of motion by taking derivatives of the
Lagrangian w.r.t. the GCs and GVs. There will be n number of
equations for n number of GCs.
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Force of constraints (extra reading)

Consider the Lagrangian of simple pendulum without imposing the
constraint r = L:

1 .
L= 5m (r’2 + r202> + mgrcosf — V(r).

V/(r) can also be introduced as A\(r — L), where X is called the
Lagrange's undetermined multiplier.

m r-equation:

mF — mr6? — mg cosf = —V/(r) ==X

putting r = L: _
\ — mg cosf = mLb?

A is nothing but the constraint force T or tension!
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Advantages of Lagrangian formulation

m Lagrangian is a scalar quantity. It is always advantageous to deal
with scalars rather than vectors.

m Forces of constraints are dealt with elegantly. One can bypass the
constraints and find the EOMs satisfying the constraints of a system.

m Lagrange's EOM can be obtained from a strong and elegant
principle- The variational principle.



