Classical Mechanics

IIIT, Allahabad

Instructor: Srijit Bhattacharjee

Constraints and Generalized coordinates

Simple pendulum

Constraints

✓ mg **T (x,y) L O T mg y x** $\tau = I\alpha \implies \ddot{\theta} = -\frac{g}{L}\sin\theta$ $m\ddot{x} = -T\sin\theta$ $m\ddot{y} = mq - T\cos\theta$ $x^2 + y^2 = L^2$ $r = L$

Use of cartesian coordinates is not suitable. Polar coordinates are ideal.

T is force of constraints.

Using $x = L \sin \theta$; $y = L \cos \theta$ One can show

$$
\hat{r} = \cos\theta \hat{x} + \sin\theta \hat{y}; \quad \hat{\theta} = -\sin\theta \hat{x} + \cos\theta \hat{y}
$$

And for SP

 $v = L\dot{\theta}\hat{\theta}$

Find out v for general case i.e. for r varying.

A new approach

Lagrangian for Simple Pendulum

Lagrangian L is a function of generalised coordinate and generalised velocity.

 $L = T - V$

$$
L(\theta, \dot{\theta}) = \frac{1}{2}mL^2\dot{\theta}^2 - mgL(1 - \cos\theta)
$$

Lagrange's EOM:

$$
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) - \frac{\partial L}{\partial \theta} = 0 \qquad T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2)
$$

yields

$$
mL^2\ddot{\theta} = -mgL\sin\theta
$$

- **Lagrange's EOM is nothing but Newton's EOM.**
- For a simple pendulum we have already seen that.
- **E** Lagrangian of a particle of mass m attached to a spring with spring constant k and executing simple harmonic motion in x direction:

$$
L(x, \dot{x}) = T - V = \frac{1}{2}m\dot{x}^{2} - \frac{1}{2}kx^{2}
$$

We know the EOM from Newtonian mechanics: $m\ddot{x} = -kx$ Lagrangian method:

$$
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right) = m\ddot{x}; \frac{\partial L}{\partial x} = -kx
$$

KORKARYKERKER POLO

 $\implies m\ddot{x} = -kx$

Double Pendulum

Difficult to solve by Newtonian mechanics. Much easier in Lagrangian mechanics

Kロトメ部トメミトメミト ミニのQC

Takeaways from the examples discussed

- **Mechanical systems usually contain constraint forces.** Eg. i) Tension on the bob of the simple pendulum. ii) Normal force exerted on a particle confined to move on a spherical surface.
- Systems with many degrees of freedom are hard to analyze in the Newtonian way. It is not easy to know the positions and velocities of all particles at a given moment.
	- Eg. gas molecules in a box.
- Constraints impose two types of difficulties in a physical system.
	- Not all the coordinates describing the system (Cartesian coordinates) remain independent.
	- There are forces of constraints (Eg. force exerted on the gas molecules by the wall), that are generally unknown. We only used to know the effect of those.
- The first difficulty is removed by introducing the generalized coordinates.
- **Removing the second difficulty (disappearance of forces of** constraints) leads to the Lagrangian frame[wor](#page-5-0)k[.](#page-7-0)

Generalized Coordinates

Generalized Coordinates: For a system of N particles, moving under constraints, the number of minimum independent coordinates $(q_1, q_2 \cdots q_n)$ required to describe the configuration (motion) of the system is called as system's degrees of freedom (dof) and the coordinates are called 'generalized coordinates' (GC). There will be *n* generalized coordinates for a system with n dof. GC may not have the dimension of length. For a system in D dimension, with k constraints,

$$
n=D*N-k
$$

Transformation Equations is the relation between position/Cartesian coordinates with GC , e.g. for $\vec{r}_{\nu}=x_{\nu}\hat{i}+y_{\nu}\hat{j}+z_{\nu}\hat{k}$

$$
x_{\nu} = x_{\nu}(q_1, q_2, \cdots, q_n, t)
$$

\n
$$
y_{\nu} = y_{\nu}(q_1, q_2, \cdots, q_n, t)
$$

\n
$$
z_{\nu} = z_{\nu}(q_1, q_2, \cdots, q_n, t)
$$

Classification of Mechanical systems

Scleronomic or Rheonomic: Rheonomic systems has explicit dependence on time t, but Scleronomic systems are not.

> Eg. A particle is constrained to move on a stationary spherical surface of radius a (constraint eqn. $r - a = 0$) is an example of scleronomous system. If a particle is on a moving surface (eg. $f(t, x, y, z) = 0$) then we call that as a rheonomic system.

Holonomic or Non-holonomic: If constraints of a system can be expressed as $\phi(q_1, q_2, \dots, q_n, t) = 0$ then the system is holonomic, else non-holonomic (eg. a particle is sliding on the surface of a sphere of radius a, $r^2 - a^2 \ge 0$).

Conservative systems: If all forces acting on a system are derivable from a potential $\left(F_{\mathsf{x}} = -\frac{\partial V(\mathsf{x})}{\partial \mathsf{x}}\right)$ ∂x $\sum_{n=1}^{\infty}$, then the system is conservative.

Virtual Displacement

 \blacksquare Let on a system of N particles, m holonomic constraints of the form $f_k(t, r_i) = 0$ are imposed, then

$$
\sum_{i=1}^N \frac{\partial f_k}{\partial r_i} \mathsf{v}_i + \frac{\partial f_k}{\partial t} = 0; \ k = 1, \cdots, m.
$$
 (1)

- **Possible velocities and displacements:** The velocities satisfied by Eq. 1 are the possible velocities of the system at an instant t and at any specific position. The corresponding displacements $dr_i = v_i dt$, are the possible displacements. They are consistent with the constraints, but the forces of constraints may change over the interval dt.
- **Virtual displacements:** Let us consider two possible displacements at the same instant and the same position of the system at that instant.

$$
dr_i = v_i dt ; d'r_i = v'_i dt
$$

plugging these into Eq. 1 and subtracting we get-

$$
\sum_{i=1}^{N} \frac{\partial f_k}{\partial r_i} \delta r_i = 0; \ k = 1, \cdots, m.
$$
 (2)

Virtual Displacement & Principle of virtual work

- $\delta r_i = d'r_i dr_i$ is called the *virtual displacement*.
- Virtual displacements are also consistent with the constraints imposed on the system but they only coincide with the possible displacements in the case of stationary (time-independent) constraints.
- If the system is at equilibrium then the total force on each particle of the system must vanish.

$$
F_i=F_i^a+F_i^c=0
$$

T Total work done by the virtual displacement δr_i also vanishes.

$$
\sum_{i=1}^{N} F_{i} \cdot \delta r_{i} = 0 \implies \sum_{i=1}^{N} F_{i}^{a} \cdot \delta r_{i} + F_{i}^{c} \cdot \delta r_{i} = 0
$$

■ The net virtual work done by the forces of constraints usually vanishes (eg. internal forces on rigid bodies). Therefore

$$
\sum_{i=1}^{N} \mathsf{F}_{i}^{a}.\delta \mathsf{r}_{i} = 0 \tag{3}
$$

Eq. (3) is known as the Principle of Virtual W[ork.](#page-9-0)

D'Alembert's Principle

- The Principle of virtual work is only applicable to the study of statics. For general motion, D' Alembert's principle states- a particle maintains an equilibrium upon the joint action of the net force acting upon it F_i and a 'reverse effective force' $-\dot{p}_i$. This follows from the Newton's law: $F_i = \dot{p}_i$.
- General Equation of dynamics: For the systems where the virtual work done by the constraint forces vanishes, we have:-

$$
\sum_{i=1}^{N}(\mathsf{F}^a_i-\dot{\mathsf{p}}_i).\delta\mathsf{r}_i=0
$$
 (4)

 $\dot{p}_i = ma_i$ is called *inertial force*.

- Eq. (4) is known as D'Alembert's Principle. It is still in terms of the Cartesian coordinates, which are not independent. One needs to transform to the generalized coordinates.
- Relation between the Cartesian and $n(= 3N m)$ GC: $r_i = r_i(q_1, q_2, \dots, q_n, t)$ N such relations.

I

Lagrange's Equation

$$
\blacksquare \delta \mathsf{r}_i = \sum_{\alpha=1}^n \frac{\partial \mathsf{r}_i}{\partial \mathsf{q}_\alpha} \delta \mathsf{q}_\alpha
$$

$$
\blacksquare \sum_{i=1}^N F_i^a \delta r_i = \sum_{k=1}^n \Phi_k \delta q_k.
$$

 $\Phi_k = \sum_{i=1}^N F_i \cdot \frac{\partial r_i}{\partial q_k}$ is called generalized force associated with generalized coordinate q_k .

$\sum_{i=1}^N \dot{p}_i.\delta\mathsf{r}_i = \sum_{i=1}^N m_i \ddot{\mathsf{r}}_i.\delta\mathsf{r}_i = \sum_{k=1}^n \sum_{i=1}^N \left[\frac{d}{dt} \left(m_i \mathsf{v}_i.\frac{\partial \mathsf{v}_i}{\partial \dot{q}_k} \right) - m_i \mathsf{v}_i.\frac{\partial \mathsf{v}_i}{\partial q_k} \right] \delta q_k$ $\implies \sum_{k=1}^n\sum_{i=1}^N\left[\frac{d}{dt}\left(\frac{\partial}{\partial\dot{q}_k}(\frac{1}{2}m_i v_i^2)\right)-\frac{\partial}{\partial q_k}(\frac{1}{2}m_i v_i^2)\right]\delta q_k$

Eq. (4) becomes:

$$
\sum_{k=1}^n \left[\Phi_k - \left(\sum_{i=1}^N \frac{d}{dt} \frac{\partial}{\partial \dot{q}_k} \left(\frac{1}{2} m_i v_i^2 \right) - \frac{\partial}{\partial q_k} \left(\frac{1}{2} m_i v_i^2 \right) \right) \right] \delta q_k = 0
$$

KORKARYKERKER POLO

Lagrange's Equation

For holonomic constraints, we can apply a virtual displacement in kth generalized coordinate q_k keeping other coordinates fixed. This gives:

$$
\left[\Phi_k = \frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_k}\right) - \frac{\partial T}{\partial q_k}\right],\tag{5}
$$

KORKAR KERKER ST VOOR

where $\mathcal{T} = \sum_{i=1}^N \frac{1}{2} m_i v_i^2$ is the total Kinetic energy. If the force is derivable from a potential V-

$$
\Phi_k = -\sum_{i}^{N} \nabla_i V \cdot \frac{\partial r_i}{\partial q_k} = -\frac{\partial V}{\partial q_k}
$$

Plugging this in Eq. (5) we get

$$
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_k}\right)-\frac{\partial L}{\partial q_k}=0;\ \ L=T-V;\ k=1,\cdots,n
$$

Algorithm to obtain the Lagrangian and EOMs

1 Identify a suitable coordinate system that can serve as the GC.

2 Construct the kinetic and potential energy in terms of generalized coordinates and their derivatives. Then construct the Lagrangian $L = L(q_k, \dot{q}_k, t) = T - V$. Lagrangian is a function of generalized coordinates, generalized velocities and time.

3 Evaluate Lagrange's equations of motion by taking derivatives of the Lagrangian w.r.t. the GCs and GVs. There will be n number of equations for n number of GCs.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Force of constraints (extra reading)

■ Consider the Lagrangian of simple pendulum without imposing the constraint $r = l$:

$$
\mathcal{L} = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\theta}^2\right) + mgr\cos\theta - V(r).
$$

■ $V(r)$ can also be introduced as $\lambda(r - L)$, where λ is called the Lagrange's undetermined multiplier.

 \blacksquare r-equation:

$$
m\ddot{r} - mr\dot{\theta}^2 - mg\cos\theta = -V'(r) = -\lambda
$$

putting $r = L$:

$$
\lambda - mg\cos\theta = mL\dot{\theta}^2
$$

 \blacksquare λ is nothing but the constraint force T or tension!

Advantages of Lagrangian formulation

E Lagrangian is a scalar quantity. It is always advantageous to deal with scalars rather than vectors.

Forces of constraints are dealt with elegantly. One can bypass the constraints and find the EOMs satisfying the constraints of a system.

KORKARYKERKER POLO

E Lagrange's EOM can be obtained from a strong and elegant principle- The variational principle.