Classical Mechanics Lec: 3

IIIT, Allahabad

Instructor: Srijit Bhattacharjee

Principle of Least Action

Principle of Least Action

- Most simple yet most profound principle of Physics. Almost all kinds of interactions can be described using this principle.

Principle of Least Action

- Most simple yet most profound principle of Physics. Almost all kinds of interactions can be described using this principle.
- Construct the action of a dynamical system and extremize it to get the equation of motion.

Principle of Least Action

- Most simple yet most profound principle of Physics. Almost all kinds of interactions can be described using this principle.
- Construct the action of a dynamical system and extremize it to get the equation of motion.
- What is the Action?

Principle of Least Action

- Most simple yet most profound principle of Physics. Almost all kinds of interactions can be described using this principle.
- Construct the action of a dynamical system and extremize it to get the equation of motion.
■ What is the Action?
- It is an integral over a time of the Lagrangian.

$$
\mathcal{A}=\int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t
$$

Principle of Least Action

- Most simple yet most profound principle of Physics. Almost all kinds of interactions can be described using this principle.
- Construct the action of a dynamical system and extremize it to get the equation of motion.
- What is the Action?
- It is an integral over a time of the Lagrangian.

$$
\mathcal{A}=\int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t
$$

- PLA states, if one supplies the Lagrangian of a system along with the initial conditions (in particle mechanics, one needs to tell the gen. coordinates at initial $\left(t_{i}\right)$ and final $\left(t_{f}\right)$ times), then the trajectory that makes the Action stationary is given by Euler-Lagrange EOM or Newton's EOM.

How does the principle work?

Let us examine how the PLA for a trajectory.
■ Solving Newton's (or Lagrange's) equation of motion needs $2 N$ number of initial conditions if the system has N dof. The N initial coordinates and N initial velocities.

■ Given the initial condition(s) at an initial instant say at t_{i}, and the masses and Forces (or potential) of the system, one can solve the system to obtain the entire trajectory $x(t)$.

- For PLA, one provides the initial, and another point through which the system travels under the Forces present. For instant, if one tries to throw a stone through a tiny hole of a wall. The initial position and an intermediate position of the stone crossing the wall are fixed.

Extremizing the Action

- One writes the Action as:

$$
\mathcal{A}=\int_{t_{i}}^{t_{f}}(\text { K.E. }- \text { P.E. }) d t .
$$

Remember that the PE and KE are both functions of time. There can be imaginary paths that connect two terminal points. For each such different possible path one gets a different number for this action. Our goal is to find out for what curve that number is the least.

- Mathematically:

$$
\delta \mathcal{A}=\delta \int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t=0
$$

- It is a remarkable fact that the path that minimizes the action is given by solving the Euler-Lagrange equation.

Calculus of Variation

- Action is not an ordinary function. It is actually a functional- a "function of a function"-here a function of all possible trajectories ($q_{i}(t)$).
- Extremizing a functional is a subject of a branch in mathematics called- the calculus of variations.
- Extremizing a function amounts to solve an equation (non-differential) \Longrightarrow stationary points. Extremizing a functional yields a differential equation \Longrightarrow trajectory.

Hamilton's principle

- Recall: $\delta \mathcal{A}=\delta \int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t=0$

■ We will make first order variations (change) in the $q_{i} s$ and $q_{i} s$ to induce only second order change in the Action.
■ The end point variations are zero $\Longrightarrow \delta q_{i}\left(t_{i}\right)=\delta q_{i}\left(t_{f}\right)=0$.

$$
\text { L.H.S. } \equiv \delta \int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t
$$

Hamilton's principle

- Recall: $\delta \mathcal{A}=\delta \int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t=0$

■ We will make first order variations (change) in the $q_{i} s$ and $q_{i} s$ to induce only second order change in the Action.
■ The end point variations are zero $\Longrightarrow \delta q_{i}\left(t_{i}\right)=\delta q_{i}\left(t_{f}\right)=0$.

$$
\begin{aligned}
\text { L.H.S. } & \equiv \delta \int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t \\
& =\int_{t_{i}}^{t_{f}}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta \dot{q}_{i}+\frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i}\right) d t\left[\mathcal{L}\left(q_{i}+\delta q_{i}, \cdots\right)-\mathcal{L}\right]
\end{aligned}
$$

Hamilton's principle

- Recall: $\delta \mathcal{A}=\delta \int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t=0$

■ We will make first order variations (change) in the $q_{i} s$ and $q_{i} s$ to induce only second order change in the Action.
■ The end point variations are zero $\Longrightarrow \delta q_{i}\left(t_{i}\right)=\delta q_{i}\left(t_{f}\right)=0$.

$$
\begin{aligned}
\text { L.H.S. } & \equiv \delta \int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t \\
& =\int_{t_{i}}^{t_{f}}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta \dot{q}_{i}+\frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i}\right) d t\left[\mathcal{L}\left(q_{i}+\delta q_{i}, \cdots\right)-\mathcal{L}\right] \\
& =\int_{t_{i}}^{t_{f}}\left(\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta q_{i}\right)-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right) \delta q_{i}+\frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i}\right) d t
\end{aligned}
$$

Hamilton's principle

- Recall: $\delta \mathcal{A}=\delta \int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t=0$

■ We will make first order variations (change) in the $q_{i} s$ and $q_{i} s$ to induce only second order change in the Action.
■ The end point variations are zero $\Longrightarrow \delta q_{i}\left(t_{i}\right)=\delta q_{i}\left(t_{f}\right)=0$.

$$
\begin{aligned}
\text { L.H.S. } & \equiv \delta \int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t \\
& =\int_{t_{i}}^{t_{f}}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta \dot{q}_{i}+\frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i}\right) d t\left[\mathcal{L}\left(q_{i}+\delta q_{i}, \cdots\right)-\mathcal{L}\right] \\
& =\int_{t_{i}}^{t_{f}}\left(\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta q_{i}\right)-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right) \delta q_{i}+\frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i}\right) d t \\
& =\int_{t_{i}}^{t_{f}}\left(-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right) \delta q_{i}+\frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i}\right) d t
\end{aligned}
$$

Hamilton's principle

- Recall: $\delta \mathcal{A}=\delta \int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t=0$

■ We will make first order variations (change) in the $q_{i} s$ and $q_{i} s$ to induce only second order change in the Action.
■ The end point variations are zero $\Longrightarrow \delta q_{i}\left(t_{i}\right)=\delta q_{i}\left(t_{f}\right)=0$.

$$
\begin{aligned}
\text { L.H.S. } & \equiv \delta \int_{t_{i}}^{t_{f}} \mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) d t \\
& =\int_{t_{i}}^{t_{f}}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta \dot{q}_{i}+\frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i}\right) d t\left[\mathcal{L}\left(q_{i}+\delta q_{i}, \cdots\right)-\mathcal{L}\right] \\
& =\int_{t_{i}}^{t_{f}}\left(\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta q_{i}\right)-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right) \delta q_{i}+\frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i}\right) d t \\
& =\int_{t_{i}}^{t_{f}}\left(-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right) \delta q_{i}+\frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i}\right) d t
\end{aligned}
$$

- Using: $\int_{a}^{b} \frac{d(f \delta x)}{d t} d t=\left.f \delta x\right|_{a} ^{b}=0$. for $\delta x(a)=\delta x(b)=0$, and $\delta\left(\frac{d}{d t} q_{i}\right)=\frac{d}{d t}\left(\delta q_{i}\right)$.

Euler-Lagrange Equation

- For arbitrary variations $\delta q_{i} s$, setting the last expression $=0$, we get the E-L eqn.

$$
\begin{gathered}
\int_{t_{i}}^{t_{f}}\left(\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right)-\frac{\partial \mathcal{L}}{\partial q_{i}}\right) \delta q_{i} d t=0, \quad i=1,2, \cdots, N . \\
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right)-\frac{\partial \mathcal{L}}{\partial q_{i}}=0
\end{gathered}
$$

- Can accommodate certain non-holonomic systems and non-conservative forces also.

Variational Principle

- We find a particular condition for a given expression (usually maximising or minimising it) by varying the functions on which the expression depends.

$$
I=\int_{a}^{b} F\left(y, y^{\prime}, x\right) d x ; \frac{\delta I}{\delta y}=0
$$

Small change in $y(x)$ makes only second order change in I.

$$
y(x) \rightarrow y(x)+\alpha \eta(x)
$$

End point variations are zero: $\eta(b)=\eta(a)=0$.

- Taylor expand the function F up to first order. Throw away the boundary term and get the Euler-Lagrange equation:

$$
\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)-\frac{\partial F}{\partial y}=0
$$

Two forms of Euler-Lagrange Equation

■ EL equation when F is independent of y :

$$
\frac{\partial F}{\partial y}=0 \Longrightarrow \frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0 \rightarrow \frac{\partial F}{\partial y^{\prime}}=\text { const. }
$$

- EL equation when F is independent of x :

Multiply EL eqn. by y^{\prime}

$$
y^{\prime} \frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)-y^{\prime} \frac{\partial F}{\partial y}=0
$$

with,

$$
y^{\prime} \frac{\partial F}{\partial y}+y^{\prime \prime} \frac{\partial F}{\partial y^{\prime}}=\frac{d F}{d x}
$$

this yields

$$
y^{\prime} \frac{\partial F}{\partial y^{\prime}}-F=\text { const } .
$$

Shortest Distance between two points in a plane

- element of length in a plane $d s=\sqrt{d x^{2}+d y^{2}}$.

- The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ can be obtained by

$$
I=\int_{x_{1}}^{x_{2}} \sqrt{1+y^{\prime 2}} d x=\int_{x_{1}}^{x_{2}} F\left(y^{\prime}\right) d x .
$$

- EL eqn: $\frac{\partial F}{\partial y^{\prime}}=\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=c$.
- On integration we get the eqn. straight line! $y=a x+b$.
- In general shortest curve between two points in any space is called a Geodesic.

