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Calculus of Multivariable Functions
We would try to look at the introductory part of how one does the
calculus of multiple variables sitting in a function.

I We denote the partial derivative of a function as ∂
∂x .

I Let us consider a function f (x , y , t),

f (x , y , t) = 2x3y + 4x2t + xy (1)

Write down the derivatives of f (x , y , t) with respect to x , y and t?

∂f

∂x
= fx =

∂(2x3y)

∂x
+
∂(4x2t)

∂x
+
∂(xy)

∂x
= 6x2y + 8xt + y (2)

∂f

∂y
= fy =

∂(2x3y)

∂y
+
∂(4x2t)

∂y
+
∂(xy)

∂y
= 2x3 + x (3)

∂f

∂t
= ft =

∂(2x3y)

∂t
+
∂(4x2t)

∂t
+
∂(xy)

∂t
= 4x2 (4)
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I Sometimes, we denote the partial derivative as a suffix to the
function. E.g. Fx means derivative of function F w.r.t. x .

I When the derivative of a function F is expressed as dF
dx , we

call it as total derivative. It is also known as the Leibniz’s
notation.

I In classical mechanics, we would see dot (e.g. ẋ) for the
(total) derivative w.r.t. to time parameter, and prime (e.g.
dg
dω = g ′(ω)) can be used for derivative w.r.t. spatial (x , y or
z) coordinates.

Now consider an example of total derivative. Let us consider a
function f (x(t), y(t), t) as

f (x(t), y(t), t) = x2yt + xy2t + yt2 (5)

Here, x and y are also function of t. Write down df
dt ?

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂t
= fx ẋ + fy ẏ + ft (6)



3/17

I Sometimes, we denote the partial derivative as a suffix to the
function. E.g. Fx means derivative of function F w.r.t. x .

I When the derivative of a function F is expressed as dF
dx , we

call it as total derivative. It is also known as the Leibniz’s
notation.

I In classical mechanics, we would see dot (e.g. ẋ) for the
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4/17

now you can calculate partial derivatives of f , i.e., fx , fy and fz .

fx =2xyt + y2t ; fy = x2t + 2xyt + t2 ; ft = x2y + xy2 + 2yt
(7)

I Now we can replace fx , fy and fz in Eq.(6) to find the
expression for df

dt .

I One can also compute ḟx = d
dt

(
∂f
∂x

)
= ∂

∂x

(
df
dt

)
as

ḟx = 2(ẋyt + xẏ t + xy) + 2y ẏ t + y2 (8)

I If we would like to find the differential element of the
multi-variable function, we implement the chain rule. For
function f (x(t), y(t), t).

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂t
dt = fxdx + fydy + ftdt (9)

I As dx = dx
dt dt. Similarly for dy . Hence

df =fx ẋdt + fy ẏdt + ftdt (10)

If you divide by dt, you can will recover the Eq.(6).
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I If we would like to find the differential element of the
multi-variable function, we implement the chain rule. For
function f (x(t), y(t), t).

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂t
dt = fxdx + fydy + ftdt (9)

I As dx = dx
dt dt. Similarly for dy . Hence
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I Now let us look at an example of double partial derivative.

Consider a function f (x , y) = x2y + xy2. Calculate ∂
∂x

(
∂f
∂x

)
,

∂
∂y

(
∂f
∂y

)
and ∂

∂x

(
∂f
∂y

)
?

fx =
∂f

∂x
= 2xy + y2 ; fy =

∂f

∂x
= x2 + 2xy (11)

Now another derivative is

fxx =
∂

∂x

(∂f
∂x

)
= 2y (12)

Similarly, find the expression for ∂
∂y

(
∂f
∂y

)
.

fyy =
∂

∂y

(∂f
∂y

)
= 2x (13)

Further,

fxy =
∂

∂x

(∂f
∂y

)
= 2(x + y) (14)

Calculate fyx = ∂
∂y

(
∂f
∂x

)
and check if they are equal?
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Constraints

Holonomic constraints – They can be expressed as an equation
connecting the cooridnates of the particles. Eg. f (t, x , y , z) = 0
Non-holonomic constraints – Constraints which are not expressible
in the above form of an equation.
Before moving on, recall that constraints can also be rheonomous
(explicit time dependence) or scleronomous (not explicitly
dependent of on time)
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Example of constraints
I In a rigid body, the distance between any two particles remain

constant and is a constraint, like, in a dumbbell consisting of two
masses, the distance between the masses is fixed
=⇒ r1 − r2 = const.

This a scleronomous holonomic constraint.

I Constraints which are not expressible in the form of an equation.
Consider a particle moving on the surface of the sphere, the
constraint becomes r2 − a2 ≥ 0. This is a scleronomous
non-holonomic constraint

I Consider a simple pendulum. The length of string connect the point
of support and the bob is fixed. The constraint is scleronomous
(holonomic). But what happens if the the point of support begins
to move in the horizontal direction? The constraint is now
holonomic but rheonomous

I Consider a gas stored inside a (spherical) container. The gas
molecules are constrained to remain inside the container
=⇒ |ri | ≤ R. This is a non-holonomic constrain which is also
scleronomous. But let us now suppose that the container can
expand. Then the constraint becomes |ri (t)| ≤ R(t). So the
constraints are now non-holonomic but rheonomous.



7/17

Example of constraints
I In a rigid body, the distance between any two particles remain

constant and is a constraint, like, in a dumbbell consisting of two
masses, the distance between the masses is fixed
=⇒ r1 − r2 = const. This a scleronomous holonomic constraint.

I Constraints which are not expressible in the form of an equation.
Consider a particle moving on the surface of the sphere, the
constraint becomes r2 − a2 ≥ 0.

This is a scleronomous
non-holonomic constraint

I Consider a simple pendulum. The length of string connect the point
of support and the bob is fixed. The constraint is scleronomous
(holonomic). But what happens if the the point of support begins
to move in the horizontal direction? The constraint is now
holonomic but rheonomous

I Consider a gas stored inside a (spherical) container. The gas
molecules are constrained to remain inside the container
=⇒ |ri | ≤ R. This is a non-holonomic constrain which is also
scleronomous. But let us now suppose that the container can
expand. Then the constraint becomes |ri (t)| ≤ R(t). So the
constraints are now non-holonomic but rheonomous.



7/17

Example of constraints
I In a rigid body, the distance between any two particles remain

constant and is a constraint, like, in a dumbbell consisting of two
masses, the distance between the masses is fixed
=⇒ r1 − r2 = const. This a scleronomous holonomic constraint.

I Constraints which are not expressible in the form of an equation.
Consider a particle moving on the surface of the sphere, the
constraint becomes r2 − a2 ≥ 0. This is a scleronomous
non-holonomic constraint

I Consider a simple pendulum. The length of string connect the point
of support and the bob is fixed. The constraint is scleronomous
(holonomic). But what happens if the the point of support begins
to move in the horizontal direction? The constraint is now

holonomic but rheonomous

I Consider a gas stored inside a (spherical) container. The gas
molecules are constrained to remain inside the container
=⇒ |ri | ≤ R. This is a non-holonomic constrain which is also
scleronomous. But let us now suppose that the container can
expand. Then the constraint becomes |ri (t)| ≤ R(t). So the
constraints are now non-holonomic but rheonomous.



7/17

Example of constraints
I In a rigid body, the distance between any two particles remain

constant and is a constraint, like, in a dumbbell consisting of two
masses, the distance between the masses is fixed
=⇒ r1 − r2 = const. This a scleronomous holonomic constraint.

I Constraints which are not expressible in the form of an equation.
Consider a particle moving on the surface of the sphere, the
constraint becomes r2 − a2 ≥ 0. This is a scleronomous
non-holonomic constraint

I Consider a simple pendulum. The length of string connect the point
of support and the bob is fixed. The constraint is scleronomous
(holonomic). But what happens if the the point of support begins
to move in the horizontal direction? The constraint is now
holonomic but rheonomous

I Consider a gas stored inside a (spherical) container. The gas
molecules are constrained to remain inside the container
=⇒ |ri | ≤ R.

This is a non-holonomic constrain which is also
scleronomous. But let us now suppose that the container can
expand. Then the constraint becomes |ri (t)| ≤ R(t). So the
constraints are now non-holonomic but rheonomous.



7/17

Example of constraints
I In a rigid body, the distance between any two particles remain

constant and is a constraint, like, in a dumbbell consisting of two
masses, the distance between the masses is fixed
=⇒ r1 − r2 = const. This a scleronomous holonomic constraint.

I Constraints which are not expressible in the form of an equation.
Consider a particle moving on the surface of the sphere, the
constraint becomes r2 − a2 ≥ 0. This is a scleronomous
non-holonomic constraint

I Consider a simple pendulum. The length of string connect the point
of support and the bob is fixed. The constraint is scleronomous
(holonomic). But what happens if the the point of support begins
to move in the horizontal direction? The constraint is now
holonomic but rheonomous

I Consider a gas stored inside a (spherical) container. The gas
molecules are constrained to remain inside the container
=⇒ |ri | ≤ R. This is a non-holonomic constrain which is also
scleronomous. But let us now suppose that the container can
expand. Then the constraint becomes |ri (t)| ≤ R(t). So the
constraints are now

non-holonomic but rheonomous.



7/17

Example of constraints
I In a rigid body, the distance between any two particles remain

constant and is a constraint, like, in a dumbbell consisting of two
masses, the distance between the masses is fixed
=⇒ r1 − r2 = const. This a scleronomous holonomic constraint.

I Constraints which are not expressible in the form of an equation.
Consider a particle moving on the surface of the sphere, the
constraint becomes r2 − a2 ≥ 0. This is a scleronomous
non-holonomic constraint

I Consider a simple pendulum. The length of string connect the point
of support and the bob is fixed. The constraint is scleronomous
(holonomic). But what happens if the the point of support begins
to move in the horizontal direction? The constraint is now
holonomic but rheonomous

I Consider a gas stored inside a (spherical) container. The gas
molecules are constrained to remain inside the container
=⇒ |ri | ≤ R. This is a non-holonomic constrain which is also
scleronomous. But let us now suppose that the container can
expand. Then the constraint becomes |ri (t)| ≤ R(t). So the
constraints are now non-holonomic but rheonomous.



8/17

Another example of a non-holonomic constraint

Consider a disc of radius R rolling (without slipping) on a
horizontal plane x − y plane constrained to move so that the plane
of the disc is always vertical. To describe the motion of the disc,
we use the following coordinates: x , y coordinates of the center of
the disc, the angle θ bewteen the axis of the disc and the x axis,
and the angle of rotation φ about the axis of the disc.
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Another example of a non-holonomic constraint

Since the disc remains vertical, the axis of rotation is perpendicular to
the z axis. This tells us that the velocity of the center of the disc has a
magnitude |v| = Rφ̇ and its direction is perpendicular to the axis of
rotation =⇒ ẋ = v sin θ and ẏ = −v cos θ which implies

dx − R sin θdφ = 0 and dy + R cos θdφ = 0 (15)

These constraints are not of the form f (x , y , θ, φ) = 0 and are hence

non-holonomic. Actually neither of the equations can be integrated

without solving the problem first, that is, we cannot first find the

integrating factor f (x , y , θ, φ) = 0 that will covert them into exact

differentials.
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Plane Polar Coordinates
We can opt any coordinate system to solve a problem, but suitable
and proper choice of coordinate system can vastly simplify the
problem.

I If a point on a plane is assigned (x , y) Cartesian coordinates
and (r , θ) polar coordinates, one can write down the
coordinate transformations.

In ∆ OPQ, cos θ = OP
OQ = x

r ⇒x=rcos θ
Similarly, from ∆ ORQ, we find y = r sin θ.
Hence, we have

x = r cos θ ; y = r sin θ (16)

I The Position vector is: ~r = x î + y ĵ = r(cos θî + sin θĵ)
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Plane Polar Coordinates
Velocity construction:

I From the figure, we can write down the unit vectors for r̂ and
θ̂ in the direction of increasing θ and r respectively.

r̂ =
~r

|r |
= cos θî + sin θĵ (17)

θ̂ = cos θĵ − sin θî (18)

I As the unit vectors are not constant, they are changing with
respect to time. Hence they can be finitely differentiated.

dr̂

dt
= ˙̂r =

dr̂

dθ

dθ

dt
= θ̂θ̇ (19)
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Plane Polar Coordinates

I Similarly one can also calculate

d θ̂

dt
= ˙̂θ =

d θ̂

dθ

dθ

dt
= −θ̇r̂ (20)

Now one can construct the velocity vector.

~v =
d~r

dt
=

d

dt
(r r̂) =

dr

dt
r̂ + r

d r̂

dt
(21)

~v =ṙ r̂ + r θ̇θ̂ (22)
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Plane polar coordinate

Now further, one can construct accelaration.

~a =
d~v

dt
=

d

dt

(
ṙ r̂ + r θ̇θ̂

)
(23)

=
(
r̈ − r θ̇2

)
r̂ +

(
r θ̈ + 2ṙ θ̇

)
θ̂ (24)

The term r̈ is linear acceleration in radial direction, r θ̇2 is the
centripetal acceleration, θ̈ is the acceleration in the tangential
direction, and 2ṙ θ̇ is the Coriolis acceleration.
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)
θ̂ (24)

The term r̈ is linear acceleration in radial direction, r θ̇2 is the
centripetal acceleration, θ̈ is the acceleration in the tangential
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Example
Acceleration construction: Consider an object P moving on a
circular path with a uniform velocity and radius R. Prove that it’ll
always be attracted towards the center of the circle.

The total acceleration can be written as: ~a = ar r̂ + aθθ̂
where, ar = r̈ − r θ̇2 and aθ = r θ̈ + 2ṙ θ̇.
Since the object is exhibiting circular motion with r = R. Hence,
ṙ = r̈ = 0. This implicates, ar = −R θ̇2 ; aθ = R θ̈ For a
uniform circular motion, θ̇ = ω. Thus aθ = 0. Wherease, for
non-uniform cicular motion, aθ = R dω

dt = rα and ar = rω2.
I As the magnitude of velocity is constant, but due to change in

the direction of velocity, it changes the direction and
producing non-zero acceleration towards the center.
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Cylindrical Coordinates
Now we would try to see the coordinate transformation from
Cartesian to cylindrical coordinates, velocity and acceleration.

Let us consider a point P on a cylinder with Cartesian coordinates
(x , y , z) and cylindrical coordinates (ρ, φ, z).

I The position vector for the point P is

~r = x î + y ĵ + zk̂ (25)
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Cylindrical coordinates
I Now, we can write down the transformations as

x = ρ cosφ ; y = ρ sinφ ; z = z (26)

I Now, we can express the unit vectors for cylindrical
coordinates.

ρ̂ =
~ρ

ρ
=

x î + y ĵ

ρ
= cosφî + sinφĵ (27)

φ̂ =− sinφî + cosφĵ (28)

ẑ =ẑ (29)

I Construct the velocity and acceleration.

~v =~̇r = ρ̇ρ̂+ ρφ̇φ̂+ ż ẑ (30)

~a =~̇v =
(
ρ̈− ρφ̇2

)
ρ̂+

(
ρφ̈+ 2ρ̇φ̇

)
φ̂+ z̈ ẑ (31)
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ρ
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16/17

Cylindrical coordinates
I Now, we can write down the transformations as

x = ρ cosφ ; y = ρ sinφ ; z = z (26)

I Now, we can express the unit vectors for cylindrical
coordinates.

ρ̂ =
~ρ

ρ
=
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ρ
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Spherical Polar Coordinates

I Now we can have overview of Spherical polar coordinates.

In ∆ OPC, cos θ = OC
OP = z

r ⇒ z = r cos θ

From ∆ PDO, cos(90− θ) = sin θ = OD
OP = OD

r ⇒ OD = r sin θ

Now from ∆ OAD, cosφ = OA
OD = x

r sin θ ⇒ x = r sin θ cosφ
Similarly, from ∆OBD we can find, y = r sin θ sinφ.
Thus, x = r sin θ cosφ ; y = r sin θ sinφ ; z = r cos θ

I Find the expression for velocity & acceleration in spherical
polar coordinate.
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Thus, x = r sin θ cosφ ; y = r sin θ sinφ ; z = r cos θ

I Find the expression for velocity & acceleration in spherical
polar coordinate.
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