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Invariance of Lagrangian under adding a total time derivative

Lagrange’s EoM does not change by adding a total time derivative: dF (q1,q2,··· ,qn,t)
dt Let,

L′ = L + dF
dt .

Since

Ḟ =
dF

dt
=
∑
i

∂F

∂qi
q̇i +

∂F

∂t

=⇒
d

dt

(
∂Ḟ

∂q̇i

)
=

d

dt

(
∂F

∂qi

)

=⇒ d

dt

(
∂L′

∂q̇i

)
−
(
∂L′

∂qi

)
=

d

dt

(
∂L

∂q̇i

)
−
(
∂L

∂qi

)
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Writing Down a Lagrangian

Consider a hydrogen atom consisting of a proton orbited by an electron at a fixed
radius such that the electron is constrained to move on the surface of a sphere about
the nucleus. What is the Lagrangian of this system?

I We will be using spherical polar coordinates (r , θ, φ) to describe this system.

I The constraint is the fixed radius r = l , where l is an arbitrary constant indicating
the fixed length.
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Spherical Polar Coordinates
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Writing Down a Lagrangian
We shall first obtain the expression of the kinetic energy T in spherical polar
coordinates and then simply subtract the potential energy V from the kinetic energy to
write down the Lagrangian.
Since we are using (r , θ, φ) coordinates, we have the relations

x = l sin θ cosφ (1)

y = l sin θ sinφ (2)

z = l cos θ (3)

where r = l from the constraint equation. The expression for kinetic energy T is
simply given by

T =
1

2
m(ẋ2 + ẏ2 + ż2) (4)

We can now calculate the derivatives

ẋ = l(cos θ cosφθ̇ + sin θ(− sinφ)φ̇) (5)

ẏ = l(cos θ sinφθ̇ + sin θ(+ cosφ)φ̇) and ż = −l sin θθ̇ (6)
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So using these equations

ẋ = l(cos θ cosφθ̇ + sin θ(− sinφ)φ̇) (7)

ẏ = l(cos θ sinφθ̇ + sin θ(+ cosφ)φ̇) (8)

ż = −l sin θθ̇ (9)

in

T =
1

2
m(ẋ2 + ẏ + ż2) (10)

gives us

T =
1

2
ml2(θ̇2 + sin θ2φ̇2) (11)

We can now write the potential energy term as V = V (θ, φ) and obtain the final
Lagrangian L = T − V , that is,

L =
1

2
ml2(θ̇2 + sin θ2φ̇2)− V (θ, φ) (12)
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gives us

T =
1

2
ml2(θ̇2 + sin θ2φ̇2) (11)

We can now write the potential energy term as V = V (θ, φ) and obtain the final
Lagrangian L = T − V , that is,

L =
1

2
ml2(θ̇2 + sin θ2φ̇2)− V (θ, φ) (12)



6/18

So using these equations
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Finding out the Equations of Motion

Let us consider a different problem: A particle of mass m is constrained to move on
the inside surface of a smooth cone of half angle α. The particle is subject to a
gravitational force. First determine a set of generalized coordinates and the
constraints, and then find Lagrange’s equations of motion.
Let us look at the figure:
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Finding out the Equations of Motion
By looking at the figure,

I We can see that using cylindrical polar coordinates (r , θ, z) will make the problem
easier to solve.

I The constraint is the fixed radius z = r cotα, where we can see that r is the
”height” and z is the ”base” of the triangle formed by cutting the cone vertically.
So r/z = tanα
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Finding out the Equations of Motion

Now, coordinate transformation equations are

x =r cos θ (13)

y =r sin θ (14)

z =z (15)

with the constraint z = r cotα We can obtain the expression of kinetic energy T as
before and get T = 1/2m(ṙ2 + r2θ̇2 + ż2), and using the constraint we get,

T =
1

2
m(ṙ2 csc2 α + r2θ̇2) (16)

Finally for the potential energy V , if we choose V = 0 at z = 0 then

V = mgz = mgr cotα (17)
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T = 1/2m(ṙ2 + r2θ̇2 + ż2), and using the constraint we get,

T =
1

2
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Finding out the Equations of Motion

So we now have,

T =
1

2
m(ṙ2 csc2 α + r2θ̇2)

and,

V = mgz = mgr cotα

So the Lagrangian can be written as L = T − U

L =
1

2
m(ṙ2 csc2 α + r2θ̇2)−mgr cotα (18)
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Finding out the Equations of Motion

So we now have,

L =
1

2
m(ṙ2 csc2 α + r2θ̇2)−mgr cotα

and Lagrange’s equations of motion are given by

d

dt

(
∂L

∂q̇

)
−
(
∂L

∂q

)
= 0 (19)

where q = r , θ.

We note first that since L does not explicitly contain θ. So
∂L/∂θ = 0 and the Lagrange’s equation for q = θ

d

dt

(
∂L

∂θ̇

)
= 0 =⇒ ∂L

∂θ̇
= mr2θ̇ = const (20)

θ is a cyclic coordinate in this Lagrangian.
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Finding out the Equations of Motion

So we now have,

L =
1

2
m(ṙ2 csc2 α + r2θ̇2)−mgr cotα

d

dt

(
∂L

∂θ̇

)
= 0 =⇒ ∂L

∂θ̇
= mr2θ̇ = const (21)

But mr2θ̇ = mr2ω is just the angular momentum about z − axis. This equation simply
gives us the conservation of angular momentum. Similarly, we can calculate Lagrange’s
equation for the r coordinate

d

dt

(
∂L

∂ ṙ

)
−
(
∂L

∂r

)
= 0 (22)

Computing the derivatives, we get

r̈ − r θ̇2 sin2 α + g sinα cosα = 0 (23)
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Lagrange’s equation of motion for dissipative systems

The Lagrange equation for a system with dissipation is given by

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
+
∂F
∂q̇j

= 0. (24)

Here F is a scalar function known as Rayleigh’s dissipation function and must be
specified along with L to obtain the equations of motion.

One of the advantages of the Lagrangian formulation is that it can be easily extended
to systems that are not studied in classical mechanics such as electrical circuits!
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An example of a dissipative system: LCR circuits
We consider a physical system which has a ”key” in series with an inductance L, A
capacitance C and a resistance R. We first charge the capacitor and then close the key
The capacitor will now begin to discharge. What is an equation that captures this
situation?

+

−

v
C

L

R

C

i

t=0
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An example of a dissipative system: LCR circuits

We choose the electric charge q as our dynamical variable (generalised coordinate).

The inductor will give rise to a kinetic energy term since the energy stored in an
inductor contains current I , the time derivative of q. The inductance L is the electrical

analogue of mass. So =
1

2
Lq̇2.

The capacitor gives us the potential energy. The capacitance term 1/C is analogous to

the spring constant k . So U =
1

2

q2

C
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An example of a dissipative system: LCR circuits

If we now introduce a dissipation function

F =
1

2
Rq̇2j (25)

We can use
d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
+
∂F
∂q̇j

= 0. (26)

with

L =
1

2
Lq̇2 − 1

2

q2

C
(27)

to get

L
d2q

dt2
+ R

dq

dt
+

q

C
= 0 (28)

This is exactly what we would get from Kirchhoff’s law!



16/18

An example of a dissipative system: LCR circuits

If we now introduce a dissipation function

F =
1

2
Rq̇2j (25)

We can use
d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
+
∂F
∂q̇j

= 0. (26)

with

L =
1

2
Lq̇2 − 1

2

q2

C
(27)

to get

L
d2q

dt2
+ R

dq

dt
+

q

C
= 0 (28)

This is exactly what we would get from Kirchhoff’s law!



17/18

Taylor Series

Taylor’s theorem provides a way of expressing a function as a power series in x , known
as a Taylor series.
It can be applied only to those functions that are continuous and differentiable within
the x-range of interest.
To express f (x) as a power series in x − a about the point x = a. We shall assume
that, in a given x-range, f (x) is a continuous, single-valued function of x having
continuous derivatives. Then

f (x) = f (a) + (x − a)f
′
(a) +

(x − a)2

2!
f
′′

(a) + · · ·+ (x − a)n

n!
f (n)(a) + · · ·

alternatively setting x = a + h,

f (a + h) = f (a) + hf
′
(a) +

h2

2!
f
′′

(a) + · · ·+ hn

n!
f (n)(a) + · · ·
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Example: sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∑∞
n=0 (−1)n

x (2n+1)

(2n + 1)!
.

Taylor Series: More than one variable: The Taylor series work the same way for functions of
two variables. (There are just more of each derivative!) For an analytic function f (x , y , z) ,

f (x , y , z) ≈f (a, b) + fx(a, b, z)(x − a) + fy (a, b, z)(y − b)

+
fxx(a, b, z)

2
(x − a)2 + fxy (a, b, z)(x − a)(y − b) +

fyy (a, b, z)

2
(y − b)2 + · · · (29)

Or, with x = a + δx and y = b + δy

f (a + δx , b + δy , z) ≈f (a, b, z) + fx(a, b, z)δx + fy (a, b, z)δy

+
fxx(a, b, z)

2
(δx)2 + fxy (a, b, z)δxδy +

fyy (a, b, z)

2
(δy)2 + · · · (30)


