◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Lagrange's equation of motion is a second order differential equation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

A first order equation is always easier to solve.

- Lagrange's equation of motion is a second order differential equation.
- A first order equation is always easier to solve.
- In Hamiltonian framework we will transform the Lagrange's system of equations for n dof into 2n first order differential equations. 2 equations for each dof.

- Lagrange's equation of motion is a second order differential equation.
- A first order equation is always easier to solve.
- In Hamiltonian framework we will transform the Lagrange's system of equations for n dof into 2n first order differential equations. 2 equations for each dof.
- Out of each set of two equations, one turns out to be again the Newton's eom. The other one usually gives the velocity of the system.

Classical Mechanics

Legendre Transformation and Hamiltonian

• Let us consider a sufficiently smooth function f(x, y). The total differential of f is:

$$df = f_x dx + f_y dy, \ f_x = \frac{\partial f}{\partial x}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Let us consider a sufficiently smooth function f(x, y). The total differential of f is:

$$df = f_x dx + f_y dy, \ f_x = \frac{\partial f}{\partial x}.$$

Suppose $u = f_x$ and $z = f_y$. We want to change the description by the two variables (x, y) to a different set of variables (x, z).

Let us consider a sufficiently smooth function f(x, y). The total differential of f is:

$$df = f_x dx + f_y dy, \ f_x = \frac{\partial f}{\partial x}.$$

Suppose $u = f_x$ and $z = f_y$. We want to change the description by the two variables (x, y) to a different set of variables (x, z).

Define a new function

$$g(x,z) = yz - f(x,y) \rightarrow L.T.$$

dg = ydz + zdy - df

Let us consider a sufficiently smooth function f(x, y). The total differential of f is:

$$df = f_x dx + f_y dy, \ f_x = \frac{\partial f}{\partial x}.$$

Suppose $u = f_x$ and $z = f_y$. We want to change the description by the two variables (x, y) to a different set of variables (x, z).

Define a new function

$$g(x,z) = yz - f(x,y) \rightarrow L.T.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\begin{array}{l} dg = ydz + zdy - df \\ \Longrightarrow dg = ydz + zdy - udx - zdy \implies dg = ydz - udx. \end{array}$

Let us consider a sufficiently smooth function f(x, y). The total differential of f is:

$$df = f_x dx + f_y dy, \ f_x = \frac{\partial f}{\partial x}.$$

Suppose $u = f_x$ and $z = f_y$. We want to change the description by the two variables (x, y) to a different set of variables (x, z).

Define a new function

$$g(x,z) = yz - f(x,y) \rightarrow L.T.$$

dg = ydz + zdy - df $\implies dg = ydz + zdy - udx - zdy \implies dg = ydz - udx.$ • From above we get,

$$g_x = -u; g_z = y.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Hamiltonian

From $\mathcal{L}(q^{\alpha}, \dot{q^{\alpha}}, t)$ to $H(p_{\alpha}, q^{\alpha}, t)$ via Legendre Transformation:

$$H(p_{lpha},q^{lpha},t)=\sum_{lpha=1}^{n}p_{lpha}\dot{q}^{lpha}-\mathcal{L}$$

With

$$p_{lpha} = rac{\partial \mathcal{L}}{\partial \dot{q}_{lpha}}.$$

$$d\mathcal{L} = \sum_{\alpha=1}^{n} \left(\frac{\partial \mathcal{L}}{\partial q^{\alpha}} dq_{\alpha} + \frac{\partial \mathcal{L}}{\partial \dot{q^{\alpha}}} d\dot{q^{\alpha}} \right) + \frac{\partial \mathcal{L}}{\partial t} dt$$
$$dH = -d\mathcal{L} + \sum_{\alpha=1}^{n} (dp_{\alpha} \dot{q}^{\alpha} + p_{\alpha} d\dot{q}^{\alpha})$$

p,q are called canonically conjugate variables.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Hamilton's equation of motion

Using
$$dH = \sum_{\alpha=1}^{n} \left(\frac{\partial H}{\partial q^{\alpha}} dq^{\alpha} + \frac{\partial H}{\partial p_{\alpha}} dp_{\alpha} \right) + \frac{\partial H}{\partial t} dt$$
 we get
 $\dot{p}_{\alpha} = -\frac{\partial H}{\partial q_{\alpha}}$
 $\dot{q}^{\alpha} = \frac{\partial H}{\partial p_{\alpha}}$
 $\frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• Let us consider the Lagrangian of a central force motion (planetary motion).

$$\mathcal{L}=\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)-V(r)$$

٠

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

• Let us consider the Lagrangian of a central force motion (planetary motion).

$$\mathcal{L}=\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)-V(r)$$

٠

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

• generalized momenta:
$$p_{\theta} = mr^2 \dot{\theta}$$
; $p_r = m\dot{r}$.

Let us consider the Lagrangian of a central force motion (planetary motion).

$$\mathcal{L}=\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)-V(r)$$

٠

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

• generalized momenta: $p_{\theta} = mr^2 \dot{\theta}$; $p_r = m\dot{r}$.

$$H = p_r \dot{r} + p_\theta \dot{\theta} - \mathcal{L}$$

Let us consider the Lagrangian of a central force motion (planetary motion).

$$\mathcal{L}=\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)-V(r)$$

• generalized momenta: $p_{\theta} = mr^2\dot{\theta}$; $p_r = m\dot{r}$.

$$\begin{aligned} \mathcal{H} &= p_r \dot{r} + p_\theta \dot{\theta} - \mathcal{L} \\ &= \frac{p_r^2}{m} + \frac{p_\theta^2}{mr^2} - \frac{p_r^2}{2m} - \frac{p_\theta^2}{2mr^2} + V(r) \end{aligned}$$

٠

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Let us consider the Lagrangian of a central force motion (planetary motion).

$$\mathcal{L} = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) - V(r)$$

• generalized momenta: $p_{\theta} = mr^2\dot{\theta}$; $p_r = m\dot{r}$.

$$\begin{split} H &= p_r \dot{r} + p_\theta \dot{\theta} - \mathcal{L} \\ &= \frac{p_r^2}{m} + \frac{p_\theta^2}{mr^2} - \frac{p_r^2}{2m} - \frac{p_\theta^2}{2mr^2} + V(r) \\ H &= \frac{p_r^2}{2m} + \frac{p_\theta^2}{2mr^2} + V(r). \end{split}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

EOMs

•
$$r$$
-EOM: $\frac{\partial H}{\partial r} = -\dot{p}_r = -\frac{p_{\theta}^2}{mr^3} + V'(r); \ \frac{\partial H}{\partial p_r} = \dot{r} = p_r/m.$

$$\bullet \theta - \mathsf{EOM}: r^2 \dot{\theta} = p_{\theta}/m, \ \dot{p}_{\theta} = 0, \implies p_{\theta} = mr^2 \dot{\theta} = const.$$

• θ is absent in the Hamiltonian. The momentum conjugate to θ is conserved.

For holonomic, conservative systems, Hamiltonian is a measure of total energy of the system.

$$H = T + V$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Cyclic Coordinates

cyclic coordinate: If q^{α} does not appear explicitly in the Lagrangian. In this case,

$$\dot{p}_{\alpha} = rac{\partial L}{\partial q^{lpha}} = 0$$

and p_{α} is called *constant of motion*. p_{α} is conserved.

We also have
$$\frac{\partial H}{\partial q^{\alpha}} = 0$$

For conservative systems, time derivative of H becomes zero so total energy is conserved.

Summary

- Systems with many dof and constraints can be studied in Lagrangian as well as Hamiltonian framework.
- Lagrange's and Hamilton's equation of motions can be derived from variational principle.
- Hamiltonian of a system can be obtained from Lagrangian via Legendre mapping.
- Hamiltonian is dependent on canonical pairs -the gen. coordinates and gen. momenta. They constitute the phase space of the system.
- Hamiltonian is a measure of total energy of a system. In quantum mechanics it plays crucial role to figure out the dynamics of a system. Its *eigenvalues* provide the various energy states of a quantum system.