
Classical Mechanics

Hamiltonian formulation of CM

Lagrange’s equation of motion is a second order differential equation.

A first order equation is always easier to solve.

In Hamiltonian framework we will transform the Lagrange’s system
of equations for n dof into 2n first order differential equations. 2
equations for each dof.

Out of each set of two equations, one turns out to be again the
Newton’s eom. The other one usually gives the velocity of the
system.
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Legendre Transformation and Hamiltonian

Let us consider a sufficiently smooth function f (x , y). The total
differential of f is:

df = fxdx + fydy , fx =
∂f

∂x
.

Suppose u = fx and z = fy . We want to change the description by
the two variables (x , y) to a different set of variables (x , z).

Define a new function

g(x , z) = yz − f (x , y)→ L.T .

dg = ydz + zdy − df
=⇒ dg = ydz + ��zdy − udx −��zdy =⇒ dg = ydz − udx .

From above we get,
gx = −u; gz = y .
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Hamiltonian

From L(qα, q̇α, t) to H(pα, q
α, t) via Legendre Transformation:

H(pα, q
α, t) =

n∑

α=1

pαq̇
α − L

With

pα =
∂L
∂q̇α

.

dL =
n∑

α=1

(
∂L
∂qα

dqα +
∂L
∂q̇α

dq̇α
)

+
∂L
∂t

dt

dH = −dL+
n∑

α=1

(dpαq̇
α + pαdq̇

α)

p,q are called canonically conjugate variables.
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Hamilton’s equation of motion

Using dH =
∑n
α=1

(
∂H
∂qα dq

α + ∂H
∂pα

dpα
)

+ ∂H
∂t dt we get,

ṗα = − ∂H
∂qα

q̇α =
∂H

∂pα
∂H

∂t
= −∂L

∂t
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Example

Let us consider the Lagrangian of a central force motion (planetary
motion).

L =
1

2
m(ṙ2 + r2θ̇2)− V (r)

generalized momenta: pθ = mr2θ̇; pr = mṙ .

H = pr ṙ + pθ θ̇ − L

=
p2r
m

+
p2θ
mr2

− p2r
2m
− p2θ

2mr2
+ V (r)

H =
p2r
2m

+
p2θ

2mr2
+ V (r)

.
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H = pr ṙ + pθ θ̇ − L

=
p2r
m

+
p2θ
mr2

− p2r
2m
− p2θ

2mr2
+ V (r)

H =
p2r
2m

+
p2θ

2mr2
+ V (r)

.



Classical Mechanics

Example

Let us consider the Lagrangian of a central force motion (planetary
motion).

L =
1

2
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EOMs

r−EOM: ∂H
∂r = −ṗr = − p2

θ

mr3 + V ′(r); ∂H
∂pr

= ṙ = pr/m.

θ−EOM: r2θ̇ = pθ/m, ṗθ = 0, =⇒ pθ = mr2θ̇ = const.

θ is absent in the Hamiltonian. The momentum conjugate to θ is
conserved.

.

For holonomic, conservative systems, Hamiltonian is a measure of
total energy of the system.

H = T + V
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Cyclic Coordinates

cyclic coordinate: If qα does not appear explicitly in the Lagrangian. In
this case,

ṗα =
∂L

∂qα
= 0

and pα is called constant of motion. pα is conserved.

We also have ∂H
∂qα = 0

For conservative systems, time derivative of H becomes
zero so total energy is conserved.
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Summary

Systems with many dof and constraints can be studied in Lagrangian
as well as Hamiltonian framework.

Lagrange’s and Hamilton’s equation of motions can be derived from
variational principle.

Hamiltonian of a system can be obtained from Lagrangian via
Legendre mapping.

Hamiltonian is dependent on canonical pairs -the gen. coordinates
and gen. momenta. They constitute the phase space of the system.

Hamiltonian is a measure of total energy of a system. In quantum
mechanics it plays crucial role to figure out the dynamics of a
system. Its eigenvalues provide the various energy states of a
quantum system.


