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Calculus of Variations
Let us first solve a classic problem from the history of physics, the
brachistochrome, using the calculus of variations. Consider a
particle moving in a constant force field starting from rest from
some point (x1, y1) to some lower point (x2, y2). We have to find
the path that allows the particle to accomplish this transit in the
least possible time
We chose the coordinate system such that the point (x1, y1) is at
the origin
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Calculus of Variations

The force F is along the positive x direction. Because the force on
the particle is constant, and if we ignore the possibility of friction,
the field is conservative and total energy is constant. We also
consider the particle to be initially at rest, and V = 0 at x = 0:

The kinetic energy is T = 1/2mv2 and potential energy is
V = −mgx , so at the originT + V = 0 =⇒ v =

√
(2gx)
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Calculus of Variations

So the time required for the particle to make a transit from origin
to (x2, y2) is

t =

∫ (x2,y2)

(x1,y1)

ds

v
=

∫
(dx2 + dy2)1/2

(2gx)1/2
(1)

t =

∫ x2

x1=0

(
1 + y ′2

2gx

)1/2

dx (2)

The time of transit is to be minimized , and since the constant
(2g)−1/2 does not effect the final equation, we identify L as

L =

(
1 + y ′2

x

)(1/2)

(3)
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Calculus of Variations

Since L =
(
1+y ′2

x

)(1/2)
is independent of y , we have ∂L/∂y = 0,

and from Lagrange’s equation of motion, we get

d

dx

∂L

∂y ′
= 0 (4)

which implies
∂L

∂y ′
= const ≡ (2a)−1/2 (5)

This gives us
y ′2

x(1 + y ′2)
=

1

2a
(6)

which may be written as

y =

∫
xdx

(2ax − x2)1/2
(7)
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Calculus of Variations

We can solve this integration

y =

∫
xdx

(2ax − x2)1/2

by introducing the following change of variable

x = a(1− cos θ) (8)

dx = a sin θdθ (9)

The integral becomes

y =

∫
a(1− cos θ)dθ (10)
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Calculus of Variations
We can solve this integration

y =

∫
xdx

(2ax − x2)1/2

by introducing the following change of variable

x = a(1− cos θ) (8)

dx = a sin θdθ (9)

The integral becomes

y =

∫
a(1− cos θ)dθ (10)

which evaluates to

y = a(θ − sinθ) + constant (11)
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Calculus of Variations
We then the get the parametric equations of the cycloid

x = a(1− cos θ) (12)

y = a(θ − sin θ) (13)

The constant of integration has been set to zero to ensure that the
motion starts from the origin.

The trajectory then looks like
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Calculus of Variation
Let us consider an example to understand the calculus of variation.

I Consider a curve between two points (x1, y1) and (x2, y2) in
the xy plane whose equ is y = y(x). We form a surface by
revolving the curve about y -axis. We are interested in finding
the nature of the curve for which the surface area is minimum.

ds

x

Consider a small strip at a point A formed by revolving the arc
length ds about y–axis.
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Calculus of Variation
If the distance of the point A on the curve from y-axis is x , then
the surface area of the strip is

dA = 2πxds. (14)

We know the element of arc ds is given by

ds =

√
dx2 + dy2 =

√
1 + y ′2dx ; y ′ =

dy

dx
(15)

Thus the surface area of the strip ds is equal to

dA = 2πx

√
1 + y ′2dx (16)

The total area of the surface of revolution of the curve y = y(x)
about y- axis is given by

A =

∫ x2

x1

2πx

√
1 + y ′2dx (17)
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Calculus of Variation
This surface area will be minimum iff the integrand
f = 2πx

√
1 + y ′2 satisfies Euler-Lagrange’s equation, i.e.

d

dx

(
∂f

∂y ′

)
− ∂f

∂y
= 0. (18)

d

dx

(
2πxy ′√
1 + y ′2

)
= 0⇒ xy ′ = a

√
1 + y ′2 (19)

Solving for y ′ gives

dy

dx
=

a√
x2 − a2

. (20)

Integration of this will result into

y = a cosh−1
(x
a

)
+ b ; or ; x = a cosh

(
y − b

a

)
(21)

The above equation is known as the Catenary Curve.
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