
Numerical Methods

Numerical Methods

IIIT, Allahabad

Instructor: Srijit Bhattacharjee



Numerical Methods

Numerical Integration

Newton-Cotes method
equispaced nodes

Gauss-quadrature method
non-equispaced nodes

Monte Carlo method
nodes are randomly distributed
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NI methods
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Trapezoidal method
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I =
∫ b

a
f (x)dx

Let the interval [a, b] be divided into n equal spaced intervals.

x0 = a, x1 = a + h, · · · xn = a + nh = b. h = b−a
n .

xi = x0 + ih, i = 1, 2, 3, · · · . fi ≡ yi∫ b

a
f (x)dx =

∫ x1
x0

f (x)dx +
∫ x2
x1

f (x)dx · · ·+
∫ xn
xn−1

f (x)dx

∼ h

2
[(y0 + y1) + (y1 + y2) + · · ·+ (yn−1 + yn)]

I =
h

2
[y0 + 2(y1 + y2 + · · · yn−1) + yn]

Weights: Counts the number of times a nodal value of the function
appears. Here

wi = h(1/2, 1, 1, · · · , 1/2)
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Error in Trapezoidal method

Error (of a cell)=Difference between exact integration of one cell and the
area of the trapezium of the same cell.

Let
∫
f (x)dx = F (x); F ′(x) = f (x) in [x0, x1].

Then
∫ x1
x0

f (x)dx = F (x1) − F (x0)∫ x1

x0

f (x)dx = F (x0 + h) − F (x0)

= F (x0) + hF ′(x0) +
h2

2!
F
′′

(x0) +
h3

3!
F
′′′

(x0) + · · · − F (x0)

= hy0 +
h2

2!
y
′
0 +

h3

3!
y
′′
0 · · · = ∆Aexct

Estimated error

∆Aest =
h

2
(y0 + y1)

=
h

2

[
y0 + y0 + hy ′

0 +
h2

2!
y
′′
0 +

h3

3!
y
′′′
0 · · ·

]
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Total Error

Error for a cell

Ei = ∆Aexct −∆Aest = −h3

12
y
′′

0 (ξ) + O(h4)

Total error:∑
i

Ei = E = −h3

12
(y
′′

0 + y
′′

1 + · · ·+ y
′′

n−1) + O(h4)

E ' −n h
3

12
y
′′

(ξ) = − (b − a)

12
h2f

′′
(ξ)

where f
′′

(ξ) is the highest among the f
′′

k , k = 0, 1, 2, · · · n − 1.
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Simpson’s 1
3rd rule

Instead of linear function (in Trapezium rule), approximate the function
or curve in a cell by a quadratic polynomial.
In the neighborhood of xi for i odd, one can write

f (xi + y) = fi + ay + by2

Next take y = ±h and get

fi+1 = f (xi + h) = fi + ha + bh2

fi−1 = f (xi − h) = fi − ah + bh2

=⇒ bh2 =
h

2
(yi+1 − 2yi + yi−1)
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Simpson’s 1
3rd rule

Area (estimated)=
∫ h

−h(fi + ay + by2)dy = 2hfi + 2
3bh

3

Replacing bh2 yields: Ai = h
3 (fi+1 + fi−1 + 4fi )

A =
h

3
(f0 + 4

∑
i=odd

fi + 2
∑

i=even

fi + fn)

For the first cell the exact area is ∆Aexct =
∫

(f (x0 + 2h)− f (x0))dx

= 2hf (x0) + 2h2f
′
(x0) + 4

3h
3f
′′

(x0) + 2
3h

4f
′′′

(x0) + 4
15h

5f
′′′′

(x0) + · · ·

Area estimated: ∆Aest = h
3 (f (x0) + f (x0 + 2h) + 4f (x0 + h))

This yields:
∆Aest = 2hf (x0)+2h2f ′(x0)+ 4

3h
3f
′′

(x0)+ 2
3h

4f
′′′

(x0)+ 5
18h

5f
′′′′

(x0)+· · · .
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Errors

Ei = − 1
90h

5f
′′′′

(ξ) + O(h6).

The total error: E = − 1
90

n
2h

5f
′′′′

(ξ) = − b−a
180 h

4f
′′′′

(ξ).

Simpson 3/8 rule:

I =
3h

8

y0 + 3
n−1∑
i 6=3j

f (xj) + 2

n/3−1∑
i=1

f (x3i ) + f (xn))

 , j ∈ N0

Error for Simpson’s 3/8 rule is E = − 3
80nh

5f
′′′′

(ξ)

Error for Boole’s method is O(h7).

Home work: Do this integral in different methods and compare

I =

∫ 1

0

1

1 + x2
dx
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What we have done?

Newton-Cotes integration formulae: integration points are equally
spaced. Weighting factors are same or similar.

We replaced the integrand f (x) by a polynomial

I =

∫ b

a

f (x)dx '
∫ b

a

fn(x)dx

with, fn(x) = a0 + a1x + a2x
2 + · · ·+ fn(x)xn.

Simpson’s 1/3rd rule is obtained by replacing a second order Lagrange’s
interpolating polynomial:

I =

∫ x2

x0

(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
f (x0) +

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
f (x1) +

(x − x1)(x − x0)

(x2 − x1)(x2 − x0)
f (x2)
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Gaussian quadrature method

Methods of numerical integration, in which the integration points are not
equally spaced and the weightings given to the values at each point do
not fall into a few simple groups are fall under the class of Gaussian
quadrature method.

The node points are unknown

We use Orthonormal Polynomials, whose zeroes are the nodal points of
an integration.

Eg: Legendre-Gauss method: Here one uses Legendre polynomials Pl(x).∫ b

a
f (x)dx ≡

∫ 1

−1
b−a
2 g(z)dz , with z = 2x−b−a

b−a .

xi s are solutions of Pl(xi ) = 0.
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Legendre-Gaussian quadrature method

Using the properties of Pl(x) and their derivatives one may write∫ 1

−1
g(z)dz '

∑
i

wig(zi )

with

wi =
2

(1− x2i )|P ′l (zi )|2
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Monte Carlo method

Handy for integrals with complicated boundaries. Overperforms the other
methods for multidimensional case.

Depends on random numbers. Discretize the interval in unequal lengths
generated randomly. Weights also can be unequal.

In the simplest of the cases, random numbers within the range [a, b] with
Uniform distribution is used.

Let us consider

I =

∫ b

a

g(x)dx
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MC method: diagram
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Recall the Uniform p.d.f.

f (x) =
1

b − a
; a < x < b

= 0 otherwise

Inserting f (x) into I: I = (b − a)
∫ b

a
f (x)g(x)dx

Of course I = (b − a)E [g(x)]

Generate random sample points xi with the pdf f (x). Evaluate g(xi ) for
each xi and estimate:

G/ḡ =
1

N

N∑
i=1

g(xi )

Obviously, for sufficiently large number of points Ḡ = ḡ = E [g(x)].

I ' (b − a)Ḡ ' b − a

N

N∑
i=1

g(xi )
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More on MC method

The bias in this method can be estimated by computing E [G ]− I

One needs to keep the variance of the estimate I to be small.

σ2
G =

1

N

N∑
i

(g(xi )− ḡ)2f (xi ) =
1

N
σ2
g

Variance of the sample mean is 1/N times of the variance of the
population mean. The error committed to estimate the integral I with N
sample points is getting reduced by a factor of 1√

N
. (CLT)
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Error in MC method

Newton-Cotes methods had an error ∼ O(hk), where h is step size. In
terms of number of step size n this is ∼ n−k , k ≥ 1

If our integration is multidimensional, lets say a hypercube of length L
and dimension d . Number of points ∼ (L/h)d . Then N-C methods give
an accuracy N−k/d , as N = nd iterations are involved.

MC integration is thus is useful for higher dimensions as Error in MC
method always scales as 1√

N

MC integration is more efficient than an order-k algorithm when d > 2k.



Numerical Methods

Random number generators

Generating pseudo random numbers: xn+1 = (axn)mod m, a < m

xn+1 takes values 0, 1, 2, · · ·m − 1.

The period or length of random numbers depends on values of a, x0
and m.
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Inverse transform sampling

One can also sample the nodes using other pdfs.∫ b

a

p(x)f (x)dx

This can be acheived by a variable transformation du = p(x)dx .∫ b

a

p(x)f (x)dx =

∫ b−a

0

f (x(u))du

The unweighted version is restored. Now do the similar procedure
introducing Uniform distribution∫ b

a

p(x)f (x)dx ' b − a

N

N∑
i=1

f (xi )
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Importance sampling

Consider p(x) is a pdf whose feature resembles that of a function G
in [a, b]. Therefore ∫ b

a

p(x)dx = 1

Also
∫ b

a
G (x)dx =

∫ b

a
p(x)G(x)

p(x) dx .

Ex: if p(x) is Uniform in x ∈ [a, b] then p(x)dx = dx
b−a = p(y)dy and

y(x) =

∫ x

a

p(x ′)dx ′ =⇒ y =
x − a

b − a

Therefore if y is invertible,∫ b

a

p(x)
G (x)

p(x)
dx =

∫ b−a

0

G (x(y))

p(x(y))
dy =

b − a

N

N∑
i=1

G (x(yi ))

p(y(xi ))
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Solving Ordinary Differential Equations

An ODE is in general has the following form

f ((y(x), y ′(x), y”(x), · · · , x) = 0

For first order ODE Euler method provides a numerical or
approximate solution.

Solve
dy

dx
= f (x , y) with initial condition: y(x0) = y0.

Taylor expanding y wrt x0 and keeping only first order terms in step
size h:

y(x0 + h) = y(x1) = y1 = y0 + hf (x0, y0)

Next

y2 = y1 + hf (x1y1)

y3 = y2 + hf (x2, y2) · · ·
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Euler Method

General: yn+1 = yn + hf (xn, yn), n = 0, 1, 2, · · ·
Problems: Too slow to converge. Error is O(h2).
No scope to improve the value of y .

In modified Euler’s method one uses

y1 = y0 +

∫ xi+1

xi

f (x , y)dx

and the integration is done using Trapezoidal method.

y1 = y0 +
h

2
[f (x0, y0) + f (x1, y(x1))]

y(x1) is obtained using Euler’s method. y1 = y0 + hf (x0, y0), and
the first approximation of y1 becomes

y
(1)
1 = y0 +

h

2
[f (x0, y0) + f (x1, y

(0)
1 ))]
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Euler Method

In a generic step

y
(k+1)
i+1 = yi +

h

2
[f (xi , yi ) + f (xi , y

(k)
i ))], k = 0, 1, 2, · · · i = 0, 1, 2, · · ·

The integration
∫ xi+1

xi
f (x , y) can also be done by Monte Carlo

method when f is independent of y .

One can obtain the iteration formula using MC estimator

y(xi ) = y(xi−1) +
xi − xi−1

N

N∑
j=1

f (xj)
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EM and Modified EM
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Examples

Find the solution of the equation for x = 0.5,

y ′ = x2 − y , y(0) = 1

ODEs are very common in Engineering and Science. Example
bacterial growth equation:

dN

dt
= rN

(
1− N

K

)
, N(0) = N0
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System of ODEs

Evaluation of values of dependent variables y , for more than one
ODEs can also be obtained by the methods discussed.

Enzyme reactions:

S + E
k1


k−1

SE
k2−→ P + E

One can write the system of equations symbolically as

y ′i = fi (t, y1, y2, · · · )

The Euler’s method can be written as

yi,j+1 = yi,j + hfi (t, y1j , y2j , · · · ymj);m = 1, 2, · · · 4; j = 0, 1, 2, · · ·N
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Predictor-Corrector Method

Equation: y ′ = f (x , y), y(0) = y0

Value of y for forward difference

yi+1 = yi + hf (xi , yi ), Prediction

.

If one considers a parabolic curve that describes y(x) between xi−1
and xi+1, we have

y ′ = f (x , y) ' a + b(x − xi )

a = fi , b = fi−fi−1

h

This yields: yi − yi−1 ∼
∫ xi+h

xi

[
fi + fi−fi−1

h (x − xi )dx
]

=⇒ yi=1 = yi + hfi + h
2 (fi − fi−1) correction
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Predictor-Corrector Method

Steps for P-C method

First predict the value of y byyi+1 = yi + hfi

Calculate fi + 1 using the above relation

Next, correct the value using yi+1 = yi + h(fi + fi+1)/2.


