Indian Institute of Information Technology Allahabad

Data Structures and Algorithms
Linked List

.. and other linked structures

Dr. Shiv Ram Dubey

Associate Professor
Department of information Technology
Indian Institute of Information Technology, Allahabad

Email: Web:

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are
adopted from many sources for academic purposes. Broadly, the
sources have been given due credit appropriately. However,
there is a chance of missing out some original primary sources.
The authors of this material do not claim any copyright of such
material.

Lists

 List is a sequence of data items of same type.
» Array — one way to representa list.
» Constant time access given index of an element

Lists

 List is a sequence of data items of same type.
» Array — one way to representa list.
» Constant time access given index of an element

* Problems with arrays
* Size of an array should be specified beforehand (at least while

dynamically allocating memory).
* Deleting/Inserting an element requires shifting of elements.

* \Wasted space.

Lists

 List is a sequence of data items of same type.

* Array — one way to representa list.
» Constant time access given index of an element

* Problems with arrays
* Size of an array should be specified beforehand (at least while

dynamically allocating memory).
* Deleting/Inserting an element requires shifting of elements.

* \Wasted space.
Polynomial: xA25 + 3xA7 — 4 poly[0] = -4, poly[7] =3, poly[25] = 1

1] = | 1=
Store in an array poly[26] poly[i] = 0 forall i 1= 0,7,25

polyl[i] contains coefficient of x*i Can we avoid storing so many 0's?
Store (0,-4), (7,3), (25,1) instead.
How do we 'link' these pairs? @

Dynamic Memory Allocation: Review

typedef struct { int main () {
int hiTemp; int numdays;
int loTemp: WeatherData *days;
double precip; scanf (“%d”, &numdays) ;
} WeatherData; days=(WeatherData *)malloc

(sizeof(WeatherData)*numdays);
if (days == NULL)
printf (“Insufficient memory\n”);

free (days) ;

Self-Referential Structures

A structure referencing itself —how?

> >

Self-Referential Structures

A structure referencing itself —how?

S0, we need a pointer inside a structure that points to a structure of

the same type.

struct list {

%

Int data;

struct list *next;

>

0

Self-Referential Structures

struct list {
int data ;

struct list *next;

'

The pointer variable next is called a link.

Each structure is linked to a succeeding structure by next.

Pictorial Representation

A structure of type struct list

data next

The pointer variable next contains either
ean address of the location in memory of the successor list element

or the special value NULL defined as 0.

NULL is used to denote the end of the list.

©

Pictorial Representation

struct list a, b, c;
a.data = 1; b.data = 2; c.data = 3;
a.next = b.next = c.next = NULL;

a b C
1 NULL 2 NULL 3 NULL
data next data next data next

=)

Pictorial Representation

a.next = &b;
b.next = &c;
a b C
1 — 2 — 3 NULL
data next data next data next

What are the values of:
*a.data

*a.next->data
*a.next->next->data

)

Pictorial Representation

a.next = &b;
b.next = &c;
a b C
1 — 2 — 3 NULL
data next data next data next

What are the values of:

*a.data 1
*a.next->data 2
«a.next->next->data 3

)

Linked Lists

A singly linked list is a concrete data structure
consisting of a sequence ofnodes

Each node stores next
* element
* link to the next node

_ elem node |

Linear Linked Lists

* Ahead pointer addresses the first element of the list.
 Each element points at a successor element.
 The last element has a link value NULL.

head

L““w

Header File: list.h

#include <stdio.h>
#include <stdlib.h>
typedef char DATA;

struct list {

DATAq,

struct list *next;

5
typedef struct list ELEMENT;
typedef ELEMENT *LINK;

o

Storage Allocation

_INK head ;

nead = (LINK) malloc (sizeof(ELEMENT));
nead->d = n’;

head->next = NULL;

creates a single element list.

head - " n NULL

s

Storage Allocation

nead->next->d =‘e’;

nead->next->next = NULL;

nead->next = (LINK) malloc (sizeof(ELEMENT));

A second element is added.

head - " N

NULL

O

Storage Allocation

nead->next->next = (LINK) malloc (sizeof(ELEMENT));

nead->next->next->d = ‘w’;

nead->next->next->next = NULL;

We have a 3-element list pointed to by head.
The list ends when next has the sentinel value NULL.

head - * n — e —— W

NULL

List Operations

* How to initialize such a self referential structure (LIST),
* How to insert such a structure into the LIST,

* How to delete elements from it,

 How to search for an element inft,

 How to print it,

 How to free the space occupied by the LIST?

Produce a list from a string (Recursive Version)

#include <stdio.h>
#include <stdlib.h>
typedef char DATA,;

struct list {

DATA d;

struct list *next;
};
typedef struct list
ELEMENT;
typedef ELEMENT
*LINK;

LINK StrToList (char s[]) {
LINK head ;

If (s[0] =="\0") return NULL ;
else{

nead->d = s[0];
nead->next = StrToList (s+1);
return head;

nead = (LINK) malloc (sizeof(ELEMENT));

Produce a list from a string (Iterative Version)

LINK SToL (char s[]) { s| Hl E|L| L| O] \0
LINK head = NULL, tail: int i:

if (s[0] I="\0") | head —>| H | 4—
head = (LINK) malloc (sizeof(ELEMENT));
head->d = s[0]; T
tail = head: tail
for (i=1; s[i] 1= \0’; i++){ head —s| H | 94—
tail->next=(LINK)malloc(sizeof(ELEMENT)); T
tail = tail->next; tail->d = s[i]; tail
}
tail->next = NULL;
} head —| H | 1 E | T
return head; T

\ tail

Inserting at the Head

head —

X

>

Y

>

Inserting at the Head

head —

new —>

X

Y

1.

Allocate a new node

new = malloc(sizeof(ELEMENT));

(%)

Inserting at the Head

head —

new —>

X

Y

1.
2.

Allocate a new node

Insert new element

new = malloc(sizeof(ELEMENT));
New->d = ‘W’;

O

Inserting at the Head

1.
2.
3.

Allocate a new node

Insert new element

Make new node point to old head

head —| X > Y >
new —| W >
new —| W —_l

head — X | — Y

new = malloc(sizeof(ELEMENT));
New->d = ‘W’;
new-> next = head,;

3

Inserting at the Head

head —| X > Y >

new —| W >

new —>| W | —

s o nh =

Allocate a new node

Insert new element

Make new node point to old head

Update head to point to new node

><<_|

new = malloc(sizeof(ELEMENT));
New->d = ‘W’;
new-> next = head;
head = new;

head — -1 Y
new —| W ——l
head X —— Y

O

Removing the Head

Update head to point to next
node in the list

Allow garbage collector to
reclaim the former first node

head —| X - Y >

O

Removmg' the Head 1. Update head to point to next

node in the list

2. Allow garbage collector to
reclaim the former first node

head — X |] Y > —

new = head;

O

Removmg' the Head 1. Update head to point to next

node in the list

2. Allow garbage collector to
reclaim the former first node

head—| X | 3 Y > —
T new = head;
new
X Y > head = new->next;
new head

Removing the Head

head —| X - Y >

new
X > Y >
T T
new head
Y >

Update head to point to next
node in the list

2. Allow garbage collector to
reclaim the former first node
new = head;

head = new->next;

free(new);

o

Inserting at the Tail

head —

X

>

9

tail

->NULL

Inserting at the Tail 1. Allocate a new node

head —| X > — -

Y NULL
T ->

tail

new = malloc(sizeof(ELEMENT));

new —> T

&)

Inserting at the Tail

head —

X

new —>

T

tail

->NULL

1. Allocate a new node
2. Insert new element

new = malloc(sizeof(ELEMENT));
new->d = ‘Z’;

(&)

Inserting at the Tail

head —

X

new —>

1. Allocate a new node
2. Insert new element
3. Have new node point to null

Y

T ->NULL
tail
new—> 7

new = malloc(sizeof(ELEMENT));

_|—>NULL new->d =z
new->next = NULL;

O

Insertj_ng at the Tail 1. Allocate a new node

2. Insert new element
3. Have new node point to null
4. Have old last node point to new node

head —| X > — -

Y NULL
T ->

tail
new = malloc(sizeof(ELEMENT));
new—| Z | new—> 7 . new->d = ‘Z’;
NULL
new->next = NULL,;

i, — Z —
head —| X > TY — T LnuLL tail->next = new;
tail new

Insertj_ng at the Tail 1. Allocate a new node
2. Insert new element
3. Have new node point to null
head —| X g ,nuLL |4 Have old last node point to new node
T 5. Update tail to point to new node
tail
new = malloc(sizeof(ELEMENT));
new —| Z -1T—> new—— 7 _|_> new->d = ‘Z,;
NULL
new->next = NULL;
— - _ y 4 -
head X g TY — T _|->Nu|_|_ tail->next = new;
tail new
T NULL
tail @

RemOVing the Tail 1. Bring ptr to the second last node

X -1 Y — Z —
head —> g T — T LnuLL
ptr tail

&)

RemOVll’lg' the Ta-]-]- 1. Bring ptr to the second last node
2. Make ptr->next equal to NULL

X -1 Y | — Z | —
head — > T —> T ‘|_>NULL
ptr tail
X 1y | - Z | — ptr->next = NULL;
head —> > T —|—>NULL T _|—>NULL

2

RemOVil’lg' the Ta-]-]- 1. Bring ptr to the second last node
2. Make ptr->next equal to NULL

3. Free tall
4

Make ptr the new tail

head —| X > —-| Y | 4+—| Z —
= T T _|—>NULL
ptr tail
head —| X > —- Y | T Z | — ptr->next = NULL;
T —|—>NULL T _|—>NULL
ptr tail
head —>| X s _H Y . frc_ee(tail);
NULL tail = ptr;

ptr tail

Insertion into an ordered list

new —>

Create a new node containing the data

new = malloc(sizeof(ELEMENT));
New->d = ‘N’;

&)

Insertion into an ordered list

Create a new node containing the data

new —| N | — Find the correct place in the list
head — A > —- M > P > — -
T new = malloc(sizeof(ELEMENT));
prev New->d = ‘N’;

&)

Insertion into an ordered list

Create a new node containing the data

new —| N | — Find the correct place in the list, and
Link the new node at this place.
head —| A > -1 M > P > -
T new = malloc(sizeof(ELEMENT));
prev New->d = ‘N’;
_ new->next = prev->next;
head - g o P g prev->next = new;

|Irev L

new—>| N

O

Insertion into an ordered list

new —>

head —

head —

Create a new node containing the data
Find the correct place in the list, and

Link the new node at this place.

> -

new = malloc(sizeof(ELEMENT));
New->d = ‘N’;

new->next = prev->next;
prev->next = new;

prev

new —>

Why is the following not okay?

prev->next = new;

new->next = prev->next; O
e

. . LINK insert (int value, LINK ptr)
IIlSGI'thII F'llIICthII { LINK newp, preyv, first;

#include <stdio.h> newp = create_node(value);
#include <stdlib h> if (ptr == NULL || value <= ptr -> data)
struct list { { /l'insert as new first node

int data: newp -> next = ptr;

struct list *next: return newp; // return pointer to first node
}; }
typedef struct list ELEMENT; else { // not first one
typedef ELEMENT * LINK; first = ptr; // remember start

prev = ptr;

LINK create_node(int val) {

LINK newp;
newp = (LINK) malloc (sizeof

ptr = ptr-> next; // second
while (ptr != NULL && value > ptr -> data)

(ELEMENT)); { prev = ptr; ptr = ptr -> next; }
newp -> data = val; prev -> next = newp; //linkin
return (newp): newp -> next = ptr; //new node

) ’ return first;

. o

Deletion

Steps:
* Finding the data item in thelist

head — A

__)lp . — -

M N
I |
prev ptr

&)

Deletion

Steps:
* Finding the data item in thelist, and
 Linking out this node

head — A

__)lp . — -

head —| A

M N
I |
prev ptr

prev->next = ptr->next;

14 P . —-

—1 =

prev

ptr

o

Deletion Steps:

* Finding the data item in thelist, and
 Linking out this node, and

* Freeing up this node as free space.

head —| A > —-| M —1—| N ——)| P > — -
prev ptr
prev->next = ptr->next;
head —s| A s - /\P s -

—1 =

prev free(ptr);

Deletion

Steps:

* Finding the data item in thelist, and
 Linking out this node, and

* Freeing up this node as free space.

head — A

——| N ——)|P > — -

head —| A

—*g

prev

prev->next = ptr->next;
/\P -

T

prev

free(ptr);

What will happen if we did the following?

free(ptr);

prev->next = ptr->next;

O

Deletion Function

// delete the item from ascending list
LINK delete item(int val, LINK ptr) {
LINK prev, first;

first = ptr; //remember start
If (ptr == NULL) return NULL,;
else if (val == ptr -> data) //first node

{

ptr = ptr -> next; //second node
first->next = NULL;

free(first); //free up node
return ptr; //second

else //check rest of list
{ prev = ptr;
ptr = ptr -> next;
// find node to delete
while (ptr = NULL && val > ptr->data)
{ prev = ptr; ptr = ptr -> next; }
if (ptr == NULL || val != ptr->data){
[/ NOT found in ascending list
return first; //original
}
else { //found, delete ptr node
prev -> next = ptr -> next;
ptr->next = NULL,;
free(ptr); //free node
return first; //original

W ©

Linear Searching for a data element in a list

int Search(LINK head, int element) {
LINK temp;

temp = head;

while (temp != NULL) {
if (temp -> data == element) return 1;
temp = temp -> next;

}

return O;

Printing a list
void print_list (LINK head) {
LINK temp;
temp = head;
while(temp!=NULL) {
if(temp->next ==NULL)
printf("%d. END OF LIST \n", temp->data);
else printf("%d -> ", temp->data);

temp = temp->next;

Printing a list backwards

‘head

AN

 How can you print backwards when the links are in forward direction?

« Can you apply recursion?

©

Printing a list backwards — recursively

void PrintArray(LINK head) {

if(head -> next == NULL) { //boundary condition to stop recursion
printf(" %d, ",head -> data);

return;
h
PrintArray(head -> next); //calling function recursively
printf(" %d,",head -> data); //Printing current element
return;

Freeing a list

« What will happen if we free the first node of the list without placing a
pointer on the second?

O

Freeing a list

« What will happen if we free the first node of the list without placing a
pointer on the second?

* |n each iteration temp1 points at the head of the list and temp2 points at
the second node.

void Free(ELEMENT *head) {
ELEMENT *temp1, *temp2;
temp1 = head;
while(temp1 = NULL) {
temp2 = temp1 -> next;
temp1->next = NULL,;
free(temp1);
temp1 = temp2;

Counting the number of nodes in a list

RECURSIVE APPROACH ITERATIVE APPROACH
int count (LINK head) { int count (LINK head) {
if (head == NULL) return O; intent = 0;
for (; head != NULL; head=head->next)
return 1+count(head->next); ++ent:
} return cnt;

Concatenate two Lists

void concatenate (LINK ahead, LINK bhead) {
if (ahead->next == NULL)
ahead->next = bhead ;
else
concatenate (ahead->next, bhead);

O

... And “Other” linked structures

» Like Trees, Sparse Matrices and Graphs

B(Il-lr;?gt-l;rg)e Sparse Matrix (Numbersfr\alsrlsices =10)
(Number of Edges =11)

0 9 0 0 0 O

0 0 0 0 0 5

6 0 0 0 0 O

0 0 0 0 0 O

0 0 0 0 3 O-

... And “Other” linked structures: Binary Trees
Root

Data
30

At most 2 branches

Parent Node

Internal Node

23

Left Child Right Child

... And “Other” linked structures: Binary Trees
Root

Data struct node {

int data;

Internal Node struct node” left;
struct node” right;

30

At most 2 branches

Parent Node

23 }
Right Child

Left Child

Node

TolLeft ToRight
Child Child

©

... And “Other” linked structures: Sparse matrices

For the sparse matrix below:

0 9 0 0 0 O
0 0 0 0 0 5
6 0 0 0 0 O
0O 0 0 0 0 O
0 0 0 0 3 O-

Storage as a 2-D Array:
int M[5][6];

Storage required for 30 elements (with only 4 non-zero entries)
= 30 * sizeof(int) = 120Bytes (For integers of size 4 Bytes)

©

... And “Other” linked structures: Sparse matrices

Storage as a list of Tripples: (row, column, data)

09 0 0 0 O st.ruct tripple {

0 0 0 0 0 5§ int row, column, data;
6 0 0 0 0 O struct tripple *next;

0O 0 0 0 0 O \

0 0 0o 0 3 0.

head

> NULL

Storage required for 4 entries = (3 x sizeof(int) + sizeof(struct tripple™) x 4)
=(3x4+8)x4

= 80 Bytes < 120Bytes @

Row Column Data

... And “Other” linked structures: Graphs

Adjacency Matrix Representation:

« Matrix location (i, j) indicates an edge between
vertices “i" and j”

0 1 0 0 0 O

1 0 1 0 O O

01 0 1 0 0 (-\

O 01 0 1 1 : :
000 1 0 0 Ad jacency Matrix
o o o 1 o ol foranundirected

graph
Storage as a 2-D Array:
int G[6][6];

Storage required for 36 elements (with 6 vertices 5 edges)
= 36 * sizeof(int) = 144Bytes (For integers of size 4 Bytes)

... And “Other” linked structures: Graphs

Adjacency List Representation:

« Each vertex’s neighbours are maintained in a linked list

NULL

struct vertex{
NULL int id;
struct vertex *next_adj;

NULL

NULL }

Storage required = (| V | + sum of degree) * sizeof(structure) @

Practice Problems

. Concatenate two lists (iteratively)

. Reverse a list

. Delete the maximum element from a list

. Rotate the list by k positions counter-clockwise

. Write functions to create, insert, delete, display, search a sparse
matrix

OO~ WON -

For each of the above, first create the linked list by reading in integers
from the keyboard and inserting one by one to an empty list

o

Acknowledgement

* |[IT Kharagpur

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

