
Data Structures and Algorithms

Indian Institute of Information Technology Allahabad

Linked List

Dr. Shiv Ram Dubey
Associate Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

.. and other linked structures

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

• List is a sequence of data items of same type.

• Array – one way to represent a list.

• Constant time access given index of an element

3

Lists

• List is a sequence of data items of same type.

• Array – one way to represent a list.

• Constant time access given index of an element

• Problems with arrays

• Size of an array should be specified beforehand (at least while

dynamically allocating memory).

• Deleting/Inserting an element requires shifting of elements.

• Wasted space.

4

Lists

Polynomial: x^25 + 3x^7 – 4

• List is a sequence of data items of same type.

• Array – one way to represent a list.

• Constant time access given index of an element

• Problems with arrays

• Size of an array should be specified beforehand (at least while

dynamically allocating memory).

• Deleting/Inserting an element requires shifting of elements.

• Wasted space.

poly[0] = -4, poly[7] = 3, poly[25] = 1

Store in an array poly[26]

poly[i] contains coefficient of x^i

poly[i] = 0 for all i != 0,7,25

Can we avoid storing so many 0's?

Store (0,-4), (7,3), (25,1) instead.

How do we 'link' these pairs? 5

Lists

typedef struct {

 int hiTemp;

 int loTemp;

 double precip;

} WeatherData;

int main () {

int numdays;

WeatherData *days;

scanf (“%d”, &numdays) ;

days=(WeatherData *)malloc

(sizeof(WeatherData)*numdays);

if (days == NULL)

 printf (“Insufficient memory\n”);

...

free (days) ;

} 6

Dynamic Memory Allocation: Review

A structure referencing itself – how?

7

Self-Referential Structures

A structure referencing itself – how?

So, we need a pointer inside a structure that points to a structure of

the same type.

struct list {

int data;

struct list *next;

};
8

Self-Referential Structures

struct list {

int data ;

struct list *next ;

} ;

The pointer variable next is called a link.

Each structure is linked to a succeeding structure by next.

9

Self-Referential Structures

A structure of type struct list

data next

The pointer variable next contains either

•an address of the location in memory of the successor list element

•or the special value NULL defined as 0.

NULL is used to denote the end of the list.

10

Pictorial Representation

struct list a, b, c;

a.data = 1; b.data = 2; c.data = 3;

a.next = b.next = c.next = NULL;

1 NULL

data next

a

2 NULL

data next

b

3 NULL

data next

c

11

Pictorial Representation

a.next = &b;

b.next = &c;

12

Pictorial Representation

What are the values of :

•a.data

•a.next->data

•a.next->next->data

1

data next

a

2

data next

b

3 NULL

data next

c

a.next = &b;

b.next = &c;

13

Pictorial Representation

What are the values of :

•a.data

•a.next->data

•a.next->next->data

1

data next

a

2

data next

b

3 NULL

data next

c

1

2

3

A singly linked list is a concrete data structure

consisting of a sequence of nodes

Each node stores

• element

• link to the next node

next

elem node

A B C D

NULL

14

Linked Lists

• A head pointer addresses the first element of the list.

• Each element points at a successor element.

• The last element has a link value NULL.

A B C D

NULL

head

15

Linear Linked Lists

#include <stdio.h>

#include <stdlib.h>

typedef char DATA;

struct list {

DATA d;

struct list *next;

};

typedef struct list ELEMENT;

typedef ELEMENT *LINK;

16

Header File: list.h

LINK head ;

head = (LINK) malloc (sizeof(ELEMENT));

head->d = ‘n’;

head->next = NULL;

creates a single element list.

n NULLhead

17

Storage Allocation

head->next = (LINK) malloc (sizeof(ELEMENT));

head->next->d = ‘e’;

head->next->next = NULL;

e NULL

18

Storage Allocation

A second element is added.

nhead

head->next->next = (LINK) malloc (sizeof(ELEMENT));

head->next->next->d = ‘w’;

head->next->next->next = NULL;

e

19

Storage Allocation

We have a 3-element list pointed to by head.

The list ends when next has the sentinel value NULL.

nhead w NULL

• How to initialize such a self referential structure (LIST),

• How to insert such a structure into the LIST,

• How to delete elements from it,

• How to search for an element in it,

• How to print it,

• How to free the space occupied by the LIST?

20

List Operations

LINK StrToList (char s[]) {

LINK head ;

if (s[0] == ‘\0’) return NULL ;

else {

 head = (LINK) malloc (sizeof(ELEMENT));

 head->d = s[0];

 head->next = StrToList (s+1);

 return head;

}

#include <stdio.h>

#include <stdlib.h>

typedef char DATA;

struct list {

 DATA d;

 struct list *next;

};

typedef struct list

ELEMENT;

typedef ELEMENT

*LINK;
21

Produce a list from a string (Recursive Version)

LINK SToL (char s[]) {

 LINK head = NULL, tail; int i;

 if (s[0] != ‘\0’){

 head = (LINK) malloc (sizeof(ELEMENT));

 head->d = s[0];

 tail = head;

 for (i=1; s[i] != ‘\0’; i++){

 tail->next=(LINK)malloc(sizeof(ELEMENT));

 tail = tail->next; tail->d = s[i];

 }

 tail->next = NULL;

 }

return head;

}

H E L L O \0s

Hhead

tail

Hhead

tail

Hhead

tail

E

22

Produce a list from a string (Iterative Version)

Xhead Y

23

Inserting at the Head

1. Allocate a new node

Xhead Y

new new = malloc(sizeof(ELEMENT));

24

Inserting at the Head

1. Allocate a new node

2. Insert new element

Xhead Y

Wnew new = malloc(sizeof(ELEMENT));

New->d = ‘W’;

25

Inserting at the Head

1. Allocate a new node

2. Insert new element

3. Make new node point to old head
Xhead Y

Wnew new = malloc(sizeof(ELEMENT));

New->d = ‘W’;

new-> next = head;

Xhead Y

Wnew

26

Inserting at the Head

1. Allocate a new node

2. Insert new element

3. Make new node point to old head

4. Update head to point to new node

Xhead Y

Wnew new = malloc(sizeof(ELEMENT));

New->d = ‘W’;

new-> next = head;

head = new;
Xhead Y

Wnew

Xhead Y

Wnew

27

Inserting at the Head

1. Update head to point to next

node in the list

2. Allow garbage collector to

reclaim the former first node

Xhead Y

28

Removing the Head

1. Update head to point to next

node in the list

2. Allow garbage collector to

reclaim the former first node

new = head;
Xhead Y

new

29

Removing the Head

1. Update head to point to next

node in the list

2. Allow garbage collector to

reclaim the former first node

new = head;

head = new->next;

Xhead Y

new

X Y

new head

30

Removing the Head

1. Update head to point to next

node in the list

2. Allow garbage collector to

reclaim the former first node

new = head;

head = new->next;

free(new);

Xhead Y

new

X Y

new head

X Y

new head 31

Removing the Head

Xhead Y
NULL

tail

32

Inserting at the Tail

1. Allocate a new node

Xhead Y
NULL

tail

new
new = malloc(sizeof(ELEMENT));

33

Inserting at the Tail

1. Allocate a new node

2. Insert new element

Xhead Y
NULL

tail

Znew

34

Inserting at the Tail

new = malloc(sizeof(ELEMENT));

 new->d = ‘Z’;

1. Allocate a new node

2. Insert new element

3. Have new node point to null
Xhead Y

NULL

tail

Znew Z
NULL

new Z

35

Inserting at the Tail

new = malloc(sizeof(ELEMENT));

 new->d = ‘Z’;

new->next = NULL;

1. Allocate a new node

2. Insert new element

3. Have new node point to null

4. Have old last node point to new node
Xhead Y

NULL

tail

Znew Z
NULL

new Z

Xhead Y

tail

NULL
Z

new

tail->next = new;

36

Inserting at the Tail

new = malloc(sizeof(ELEMENT));

 new->d = ‘Z’;

new->next = NULL;

1. Allocate a new node

2. Insert new element

3. Have new node point to null

4. Have old last node point to new node

5. Update tail to point to new node

Xhead Y
NULL

tail

Znew Z
NULL

new Z

Xhead Y

tail

NULL
Z

new

Xhead Y
NULL

Z

tail

tail = new;

37

Inserting at the Tail

tail->next = new;

new = malloc(sizeof(ELEMENT));

 new->d = ‘Z’;

new->next = NULL;

1. Bring ptr to the second last node

Xhead Y

ptr

NULL
Z

tail

38

Removing the Tail

1. Bring ptr to the second last node

2. Make ptr->next equal to NULL

Xhead Y

ptr

NULL
Z

tail

ptr->next = NULL;Xhead Y

ptr

NULL
Z

tail

NULL

39

Removing the Tail

1. Bring ptr to the second last node

2. Make ptr->next equal to NULL

3. Free tail

4. Make ptr the new tail

Xhead Y

ptr

NULL
Z

tail

ptr->next = NULL;

free(tail);

tail = ptr;

Xhead Y

ptr

NULL
Z

tail

NULL

Xhead Y

ptr tail

NULL
Z

NULL

40

Removing the Tail

Create a new node containing the data

Nnew

new = malloc(sizeof(ELEMENT));

New->d = ‘N’;

41

Insertion into an ordered list

Create a new node containing the data

Find the correct place in the list

Ahead M

prev

P

Nnew

new = malloc(sizeof(ELEMENT));

New->d = ‘N’;

42

Insertion into an ordered list

Create a new node containing the data

Find the correct place in the list, and

Link the new node at this place.

Ahead M

prev

P

Nnew

Ahead M

prev

P

Nnew

new = malloc(sizeof(ELEMENT));

New->d = ‘N’;

new->next = prev->next;

prev->next = new;

43

Insertion into an ordered list

Create a new node containing the data

Find the correct place in the list, and

Link the new node at this place.

Ahead M

prev

P

Nnew

Ahead M

prev

P

Nnew

new = malloc(sizeof(ELEMENT));

New->d = ‘N’;

new->next = prev->next;

prev->next = new;

Why is the following not okay?
prev->next = new;
new->next = prev->next;

44

Insertion into an ordered list

45

#include <stdio.h>

#include <stdlib.h>

struct list {

 int data;

 struct list *next;
};

typedef struct list ELEMENT;

typedef ELEMENT * LINK;

LINK create_node(int val) {

 LINK newp;
 newp = (LINK) malloc (sizeof
 (ELEMENT));
 newp -> data = val;
 return (newp);
}

LINK insert (int value, LINK ptr)
{ LINK newp, prev, first;

newp = create_node(value);

if (ptr == NULL || value <= ptr -> data)

{ // insert as new first node

 newp -> next = ptr;

 return newp; // return pointer to first node

 }

 else { // not first one

 first = ptr; // remember start

 prev = ptr;

 ptr = ptr-> next; // second

 while (ptr != NULL && value > ptr -> data)

 { prev = ptr; ptr = ptr -> next; }
 prev -> next = newp; // link in
 newp -> next = ptr; //new node
 return first;
 }
 }

Insertion Function

Steps:

• Finding the data item in the list

Ahead M

prev

PN

ptr

46

Deletion

Steps:

• Finding the data item in the list, and
• Linking out this node

Ahead M

prev

PN

ptr

Ahead M

prev

PN

prev->next = ptr->next;

47

Deletion

N

ptr

Steps:

• Finding the data item in the list, and
• Linking out this node, and
• Freeing up this node as free space.

Ahead M

prev

PN

ptr

Ahead M

prev

PN

ptr

48

Deletion

prev->next = ptr->next;

free(ptr);

Steps:

• Finding the data item in the list, and
• Linking out this node, and
• Freeing up this node as free space.

Ahead M

prev

PN

ptr

Ahead M

prev

PN

ptr

What will happen if we did the following?
free(ptr);
prev->next = ptr->next;

49

Deletion

prev->next = ptr->next;

free(ptr);

50

// delete the item from ascending list

LINK delete_item(int val, LINK ptr) {

 LINK prev, first;

 first = ptr; //remember start

 if (ptr == NULL) return NULL;

 else if (val == ptr -> data) //first node

 {

ptr = ptr -> next; //second node

first->next = NULL;

free(first); //free up node

return ptr; //second

 }

else //check rest of list

{ prev = ptr;

ptr = ptr -> next;

 // find node to delete

 while (ptr != NULL && val > ptr->data)

 { prev = ptr; ptr = ptr -> next; }

 if (ptr == NULL || val != ptr->data){

 // NOT found in ascending list

 return first; //original

 }

 else { //found, delete ptr node

 prev -> next = ptr -> next;

 ptr->next = NULL;

 free(ptr); //free node

 return first; //original

}}}

Deletion Function

int Search(LINK head, int element) {

 LINK temp;

 temp = head;

 while (temp != NULL) {

if (temp -> data == element) return 1;

temp = temp -> next;

 }

 return 0;

}

51

Linear Searching for a data element in a list

void print_list (LINK head) {

 LINK temp;

 temp = head;

 while(temp!=NULL) {

 if(temp->next ==NULL)

 printf("%d. END OF LIST \n", temp->data);

 else printf("%d -> ", temp->data);

 temp = temp->next;

 }

} 52

Printing a list

.
head

• How can you print backwards when the links are in forward direction?

• Can you apply recursion?

53

Printing a list backwards

void PrintArray(LINK head) {

 if(head -> next == NULL) { //boundary condition to stop recursion

 printf(" %d, ",head -> data);

 return;

 }

 PrintArray(head -> next); //calling function recursively

 printf(" %d,",head -> data); //Printing current element

 return;

}

54

Printing a list backwards – recursively

• What will happen if we free the first node of the list without placing a

pointer on the second?

55

Freeing a list

• What will happen if we free the first node of the list without placing a

pointer on the second?

• In each iteration temp1 points at the head of the list and temp2 points at

the second node.

 void Free(ELEMENT *head) {

 ELEMENT *temp1, *temp2;

 temp1 = head;

 while(temp1 != NULL) {

 temp2 = temp1 -> next;

 temp1->next = NULL;

 free(temp1);

 temp1 = temp2;

}

 } 56

Freeing a list

RECURSIVE APPROACH

int count (LINK head) {

 if (head == NULL) return 0;

 return 1+count(head->next);

}

ITERATIVE APPROACH

int count (LINK head) {

 int cnt = 0;

 for (; head != NULL; head=head->next)

 ++cnt;

 return cnt;

}

57

Counting the number of nodes in a list

void concatenate (LINK ahead, LINK bhead) {

 if (ahead->next == NULL)

 ahead->next = bhead ;

 else

 concatenate (ahead->next, bhead);

}

58

Concatenate two Lists

• Like Trees, Sparse Matrices and Graphs

Binary Tree
(Height = 3)

Graph
(Number of Vertices = 10)

(Number of Edges = 11)

Sparse Matrix

59

… And “Other” linked structures

23

18 3427 40

36

4 21 29 38 42

At most 2 branches

Left Child Right Child

Parent Node

Leaf Nodes

Internal Node

Root
Data

30

60

… And “Other” linked structures: Binary Trees

23

18 3427 40

36

4 21 29 38 42

At most 2 branches

struct node {

 int data;

 struct node* left;

 struct node* right;

}
Left Child Right Child

Parent Node

Leaf Nodes

Internal Node

Root
Data

30

61

… And “Other” linked structures: Binary Trees

To Left
Child

To Right
Child

Data

Node

For the sparse matrix below:

Storage as a 2-D Array:

int M[5][6];

Storage required for 30 elements (with only 4 non-zero entries)

= 30 * sizeof(int) = 120Bytes (For integers of size 4 Bytes)
62

… And “Other” linked structures: Sparse matrices

Storage as a list of Tripples: (row, column, data)

1

head

struct tripple {

 int row, column, data;

 struct tripple *next;

}

2 9 2 6 5 3 1 6 5 5 3

Row Column Data

Storage required for 4 entries = (3 × sizeof(int) + sizeof(struct tripple*) × 4)

= (3 × 4 + 8) ×4

= 80 Bytes < 120Bytes
63

… And “Other” linked structures: Sparse matrices

NULL

Adjacency Matrix Representation:

• Matrix location (i , j) indicates an edge between

vertices “i” and “j”

Storage as a 2-D Array:

int G[6][6];

Storage required for 36 elements (with 6 vertices 5 edges)

= 36 * sizeof(int) = 144Bytes (For integers of size 4 Bytes)

1

5

4
0

2

3

Adjacency Matrix

for an undirected

graph

64

… And “Other” linked structures: Graphs

Adjacency List Representation:

• Each vertex’s neighbours are maintained in a linked list

1

5

4
0

2

3
0

1

2

3

4

5

0 2

1

1 3

2 5

3

3

NULL

NULL

NULL

NULL

NULL

NULL

Storage required = (| V | + sum of degree) * sizeof(structure)

struct vertex{

 int id;

 struct vertex *next_adj;

}

4

65

… And “Other” linked structures: Graphs

1. Concatenate two lists (iteratively)

2. Reverse a list

3. Delete the maximum element from a list

4. Rotate the list by k positions counter-clockwise

5. Write functions to create, insert, delete, display, search a sparse

matrix

For each of the above, first create the linked list by reading in integers

from the keyboard and inserting one by one to an empty list

66

Practice Problems

• IIT Kharagpur

Acknowledgement

67

68

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

