Indian Institute of Information Technology Allahabad

Data Structures and Algorithms

Randomized Algorithm
Quick Sort

Dr. Shiv Ram Dubey

Associate Professor
Department of information Technology
Indian Institute of Information Technology, Allahabad

Email: Web:

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are
adopted from many sources for academic purposes. Broadly, the
sources have been given due credit appropriately. However,
there is a chance of missing out some original primary sources.
The authors of this material do not claim any copyright of such
material.

What is a Randomized Algorithm?

. An algorithm that incorporates randomness as part of its
operation.

. Basically, we'll make random choices during the algorithm:

o Sometimes, we'll just hope that our algorithm is fast!

o Other times, we’ll just hope that it works!

2

. Let's formalize this...

Las Vegas vs. Monte Carlo

LAS VEGAS
ALGORITHMS

Guarantees correctness!

But the runtime is a random variable.
(i.e. there’s a chance the runtime could take awhile)

Las Vegas vs. Monte Carlo

LAS VEGAS MONTE CARLO
ALGORITHMS ALGORITHMS
Guarantees correctness! Correctness is a random variable.

) . : i.e. there’s a chance the output is wron
But the runtime is a random variable. (P 9)

(i.e. there’s a chance the runtime could take awhile) But the runtime is guaranteed!

Las Vegas vs. Monte Carlo

LAS VEGAS MONTE CARLO
ALGORITHMS ALGORITHMS
Guarantees correctness! Correctness is a random variable.

) .) i.e. there’s a chance the output is wron
But the runtime is a random variable. (P 9)

(i.e. there’s a chance the runtime could take awhile) But the runtime is guaranteed!
We'll focus on these You’ll see some
algorithms today examples of these later

(BogoSort, QuickSort) in the DAA course!

How do we measure the runtime of a
randomized algorithm?

Scenario 1 Scenario 2
1. You publish your 1. You publish your
algorithm. algorithm.

Bad guy picks the input. 2. Bad guy picks the input.

You run your randomized 3. Bad guy chooses the
algorithm. randomness (fixes the

@ dice) and runs your
@ % algorithm. CO
* In Scenario 1, the running time is a random variable.
It makes sense to talk about expected running time.

* In Scenario 2, the running time is not random.
« We call this the worst-case running time of the randomized algorithm.

HOW do Wwe meadsielelisRe=EEEMVCIEIIE © Of a

: still thinking about the
randomized alg Qe R,

Scenario 1 Scenario 2
Don’t get confused!!! '

Even with randomized algorithms, we are still considering the WORST CASE
INPUT, regardless of whether we're computing expected or worst-case
runtime.

Expected runtime IS NOT runtime when given an expected input! We are
taking the expectation over the random choices that our algorithm would
make, NOT an expectation over the distribution of possible inputs.

* In Scenario z, tne running tme IS Not ranaom.
* We call this the worst-case running time of the randomized algorithm.

Quick Probability Exercise

X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and
0 with probability 99/100.

a. What is the expected value E[X]?

Quick Probability Exercise

X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and
0 with probability 99/100.

a. What is the expected value E[X]? 5[X| — 1(1(110) | 0(%) _ ﬁ

Quick Probability Exercise

X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and
0 with probability 99/100.

a. What is the expected value E[X]? 5[X| — 1(130) | 0(%) _ ﬁ

b. Suppose you draw n independent random variables X;, X,, ..., X
distributed like X. What is the expected value E[> " | X;] ?

n?

Quick Probability Exercise

X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and
0 with probability 99/100.

a. What is the expected value E[X]? 5[X| — 1(1(110) | 0(%) _ 150

b. Suppose you draw n independent random variables X;, X,, ..., X
distributed like X. What is the expected value E[> " | X;] ?

By linearity of expectation: 4"12?:1 Xz] — Z?:l g[XZ-} — D

n?

Quick Probability Exercise

X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and
0 with probability 99/100.

a. What is the expected value E[X]? 5[X| — 1(130) | 0(%) _ ﬁ

b. Suppose you draw n independent random variables X,, X,, ..., X,
distributed like X. What is the expected value E[> " | X;] ?

By linearity of expectation: t[Z?ﬁ XZ] - Z?:l ‘UIX@'} — %

C. Suppose you draw independent random variables X,, X,, ..., X, and you
stop when you see the first “1”. Let N be the last index that you draw. What is

the expected value of N?

Quick Probability Exercise

X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and

0 with probability 99/100.
a. What is the expected value E[X]?

b. Suppose you draw n independent random variables X;, X, ..

51X = 1() A

100 O(ﬂ) = 100

100 100
5 X,

distributed like X. What is the expected value E[> " | X;] ?

By linearity of expectation:

C. Suppose you draw independent random variables X,, X,, ..

D i Xi) =) ElX] = %

., X, and you

stop when you see the first “1”. Let N be the last index that you draw. What is

the expected value of N?

N is a geometric random variable.
We can use the formula:

= 100

1/100

©

Geometric Random Variable

« If N represents “number of trials/attempts”,
and p is the probability of “success” on each trial, then:

On the first trial we either succeed with probability p, or fail with probability (1-p).
If we fail the remaining mean number of trials until a success is identical to the original
mean. This follows from the fact that all trials are independent. From this we get:

E[N] =1(p) + (1 + E[N])(1 — p) ENJ1-(1-p) =1
=p+ (1 —-p)+ (1 - p)E[N] E[N](p) =1
=1+ (1-p)E[N] E[N] = 2

p

©

Bogo Sort

A bit silly, but a great pedagogical tool!

Bogo Sort

BOGOSORT(A):

while True: This randomly
A.shuffle() —~—~—— permutes A
sorted = True | (assume it takes
foriin[0,...,n-2]: O(n) time)

it A[i] > A[i+1]:
sorted = False
If sorted:
return A

Bogo Sort: Expected Runtime

BOGOSORT(A): What is the expected number of iterations?
while True:

A.shuffle()
sorted = True
foriin [O,...,n-2]:
it A[i] > A[i+1]:
sorted = False
If sorted:
return A

Bogo Sort: Expected Runtime

BOGOSORT(A): What is the expected number of iterations?
while True: Let X; be a Bernoulli/Indicator variable, where
A.shufﬂe() e X,=1 ifAis sortedon iteration i
sorted = True e X.=0 otherwise
for1in [O,...,n-2]:

it A[i] > A[i+1]:
sorted = False
If sorted:
return A

Bogo Sort: Expected Runtime

BOGOSORT(A):
while True:
A.shuffle()
sorted = True
for1in [O,...,n-2]:
it A[i] > A[i+1]:
sorted = False
If sorted:
return A

What is the expected number of iterations?

Let X, be a Bernoulli/Indicator variable, where

e X.=1 ifAis sorted on iteration i
e X,=0 otherwise

Probability that X; =1 (A is sorted) = 1/n!

since there are n! possible orderings of A and
only one is sorted (assume A has distinct
elements) = E[X] = 1/n!

Bogo Sort: Expected Runtime

BOGOSORT(A): What is the expected number of iterations?
while True: Let X; be a Bernoulli/Indicator variable, where
A.shufﬂe() e X,=1 ifAis sortedon iteration i
sorted = True e X.=0 otherwise
foriin[0,...,n-2]: . _
if Ali] > Afi+11: Probability that X; =1 (A is sorted) = 1/n!
sorted = False since there are n! possible orderings of A and
if sorted: only one is sorted (assume A has distinct
return A elements) = E[X] = 1/n!

E[# of iterations/trials | = 1/(prob. of success on each trial)
=1/(1/n!) = n!

Bogo Sort: Expected Runtime

BOGOSORT(A):
while True: E[runtime on a list of length n]
':\c-)sr?eudﬁlfglzrue = E[(# of iterations) * (time per iteration) |
foriin [O,...,n-2] = (time per iteration) * E[# of iterations]
if A[i] > A[i+1]: = O(n) * E[# of iterations]
sorted = False = 0O(n) * (n!)
If sorted: = O(n * n!)

return A = REALLY REALLY BIG

Bogo Sort: Worst-Case Runtime

BOGOSORT(A):
while True:
A.shuffle()
sorted = True
foriin [O,...,n-2]:
it A[i] > A[i+1]:
sorted = False
If sorted:
return A

Bogo Sort: Worst-Case Runtime

BOGOSORT(A):
while True:
A.shuffle() Worst-case runtime =
sorted = True
foriin [O,...,n-2]:
i Al > Afi+1]: o0
sorted = False
If sorted:
return A

This is as if the "bad guy” chooses all the randomness in the
algorithm, so each shuffle could be unlucky... forever...

What have we learned?

EXPECTED RUNNING WORST-CASE RUNNING
TIME TIME
1. You publish your randomized 1. You publish your randomized
algorithm algorithm
2. Bad guy picks an input 2. Bad guy picks an input
3. You get to roll the dice (leave it 3.Bad guy “rolls” the dice (will
up to randomness) choose the randomness in the

worst way possible)

What have we learned?

EXPECTED RUNNING WORST-CASE RUNNING
TIME TIME
1. You publish your randomized 1. You publish your randomized
algorithm algorithm
2. Bad guy picks an input 2. Bad guy picks an input
3. You get to roll the dice (leave it 3.Bad guy “rolls” the dice (will
up to randomness) choose the randomness in the

worst way possible)

Don’t use BogoSort.

Quick Sort

A much better randomized algorithm

Quick Sort Overview

EXPECTED RUNNING TIME WORST-CASE RUNNING TIME

O (n log n) O (n?)

Quick Sort Overview

EXPECTED RUNNING TIME WORST-CASE RUNNING TIME

O (n log n) O (n?)

In practice, it works great! It's competitive with
MergeSort (& often better in some contexts!), and it
runs in place (no need for lots of additional memory)

Quick Sort: The Idea

Let’s use DIVIDE-and-CONQUER again!

Select a pivot at random

Partition around it

Recursively sort L and R!

Quick Sort: The Idea

Pick this pivot
uniformly at random!

g
D
(0.0]

Select a pivot 312|761

Quick Sort: The Idea

Pick this pivot
Select a pivot 31276 1]5]4/38 uniformly at random!
A
Partition around pivot: L
Partition L 315014 5 lelglIR has elements less than
around it ﬂ pivot, and R has elements

greater than pivot.

Quick Sort: The Idea

Pick this pivot
Select a pivot 31276 1]5]4/38 uniformly at random!
A
Partition around pivot: L
Partition L 315014 5 lelglIR has elements less than
around it ﬂ pivot, and R has elements

greater than pivot.

| . A Recursive
§ _ _ : magic

- Recursively sort each side!

; v

Lll1]213]4 6 7|8|IR

Recurse!

Quick Sort: Pseudo-Code

QUICKSORT(A):
if len(A) <= 1:
return
pivot = random.choice(A)
PARTITION A into:
L (less than pivot) and
R (greater than pivot)
Replace A with [L, pivot, R]
QUICKSORT(L)
QUICKSORT(R)

Quick Sort: Recurrence Relation

QUICKSORT(A): Recurrence Relation
if len(A) <= 1: for QUICKSORT
return _
pivot = random.choice(A) T(n)=T(~) + T(_)+ O(n)
PARTITION A into: T(0)=T(1) = O(1)

L (less than pivot) and

R (greater than pivot)
Replace A with [L, pivot, R]
QUICKSORT(L)
QUICKSORT(R)

Quick Sort: Ideal Runtime?

QUICKSORT(A): Recurrence Relation
i len(A) <= 1: for QUICKSORT
ol T(n) = T(L|) + T(R]) + O(n)
pivot = random.choice(A)
PARTITION A into: T(0) = T(1) = O(1)

L (less than pivot) and

R (greater than pivot)
Replace A with [L, pivot, R] Ideal Runtime?
QUICKSORT(L)
QUICKSORT(R)

Quick Sort: Ideal Runtime?

QUICKSORT(A): Recurrence Relation

if len(A) <= 1: for QUICKSORT

return _
pivot = random.choice(A) T(n) =T -)+ T(_lRl) + O(n)
PARTITION A into: T(0)=T(1) = O(1)

L (less than pivot) and

R (greatelr than p_'VOt) In an ideal world, the pivot would
Replace Awith [L, pivot, R] split the array exactly in half, and
QUICKSORT(L) we'd get:

Quick Sort: Ideal Runtime?

QUICKSORT(A): Recurrence Relation
if len(A) <= 1: for QUICKSORT
return
o _ + T(|R]|) + O(n
pivot = randc In an ideal world: -(1)(_| C|))1 ")
PARTITION =0(1)
L (lessthi T(n)=2-T(n/2) + O(n)
R (greate T(n) = O(n log n) |, the pivot would
Replace A w. xactly in half, and

QUICKSORT(L,
QUICKSORT(R)

we’d get:

T(n) =T(n/2) + T(n/2) + O(n)

Quick Sort: Worst-Case Runtime?

QUICKSORT(A): Recurrence Relation
i len(A) <= 1: for QUICKSORT
ol T(n) = T(L|) + T(R]) + O(n)
pivot = random.choice(A)
PARTITION A into: T(0) = T(1) = O(1)

L (less than pivot) and

R (greater than pivot)
Replace A with [L, pivot, R] Worst-Case
QUICKSORT(L) L
QUICKSORT(R) Runtime:

Quick Sort: Worst-Case Runtime?

QUICKSORT(A):
if len(A) <= 1:
return
pivot = random.choice(A)
PARTITION A into:
L (less than pivot) and
R (greater than pivot)
Replace A with [L, pivot, R]
QUICKSORT(L)
QUICKSORT(R)

Recurrence Relation
for QUICKSORT

T(n) = T(L]) + T(IR]) + O(n)
T(0) = T(1) = O(1)

With the unluckiest randomness,
the pivot would be either min(A)
or max(A):

T(n) =T(0) + T(n-1) + O(n)

Quick Sort: Worst-Case Runtime?

QUICKSORT(A): Recurrence Relation

if len(A) <=1 for QUICKSORT

return

Ivot = ra : «“ ” r(lRl) t O(n)

p With the worst “randomness)= O(1)
PARTITI(

L (less T(n) = T(n-1) + O(n)

R (gre T(n) = O(n?) . randomness,
Replace / 2 either min(A)
QUICKSOR \L) or max(A):

QUICKSORT(R) T(n) = T(0) + T(n-1) + O(n)

Quick Sort: Expected Runtime

O(n log n)

* Inorder to prove this expected runtime:
* Lets compute
* How many times are any two items compared, in
expectation?

How Many Comparisons?

327 615438
A

How Many Comparisons?

327 615438

A Everything is compared to 5
once in this first step... and then
m never again with 5.
31214 A /716|8

How Many Comparisons?

327 615438

A Everything is compared to 5
once in this first step... and then
m never again with 5.
31214 A /716|8

How Many Comparisons?

327 615438

A Everything is compared to 5
once in this first step... and then
ﬁ@ never again with 5.
31214 /16|38
A
2 5 6
3 1 4 7/ 3
A A
LN 2 i D
1 34 /|8
A A

How Many Comparisons?

327 615438

A Everything is compared to 5
once in this first step... and then
ﬁ@ never again with 5.
31214 /716|8
A
Only 1, 3, & 4 are
3 i 1 4 5 7 i 8 compared to 2.

And only 7 & 8 are compared with 6.

m a\ No comparisons ever happen

718 between two numbers on opposite
A A sides of 5.

How Many Comparisons?

327 6 15 48
A Everything is compared to 5

= = once in this first step... and then
never again with 5.

Seems like whether or not two
elements are compared has Only 1,3, & 4 are
something to do with pivots... compared to 2.

And only 7 & 8 are compared with 6.

m a\ No comparisons ever happen

1 314 > 6 718 between two numbers on opposite
A A sides of 5.

N

How Many Comparisons?
Each pair of elements is compared either 0 or 1 times.

Let X, , be a Bernoulli/indicator random variable such that:
X,,= 1 ifaandbare compared

X,, = 0 otherwise

How Many Comparisons?

Each pair of elements is compared either 0 or 1 times.

Let X, , be a Bernoulli/indicator random variable such that:
X,,= 1 ifaandbare compared

X

.p = 0 otherwise

In our example, X, ; took on the value 1 since 2 and 5 were compared.
On the other hand, X; ; took on the value 0 since 3 and 7 are not compared.

How Many Comparisons?

Each pair of elements is compared either 0 or 1 times.

Let X, , be a Bernoulli/indicator random variable such that:
X,,= 1 ifaandbare compared

X..= 0 otherwise

a,b
In our example, X, ; took on the value 1 since 2 and 5 were compared.

On the other hand, X; ; took on the value 0 since 3 and 7 are not compared.

Total number of comparisons =

‘' n—2 n—1

ZZXab

L a=0 b=a+1 _

S

How Many Comparisons?

Each pair of elements is compared either 0 or 1 times.

Let X, , be a Bernoulli/indicator random variable such that:
X,,= 1 ifaandbare compared

X..= 0 otherwise

a,b

In our example, X, ; took on the value 1 since 2 and 5 were compared.
On the other hand, X; ; took on the value 0 since 3 and 7 are not compared.

Total number of comparisons =

‘n—2 n—1 —92 n—1
& Z Z Xa’ b by I|near|ty of Z Z . |:Xa"bi|
L a=0 b=a+1 - expectation! =0 b=a+1

How Many Comparisons?

Each pair of elements is compared either 0 or 1 times.

Let X, , be a Bernoulli/indicator random variable such that:
X,,= 1 ifaandbare compared

X..= 0 otherwise

a,b

In our example, X, ; took on the value 1 since 2 and 5 were compared.
On the other hand, X; ; took on the value 0 since 3 and 7 are not compared.

. We need to
Total number of comparisons = . .
figure out this
"n—2 n—1 1 value!

S

Z Z Xab by linearity of Z Zl ﬂ[Xaab}
—0 b=a—+

L A= 0 b= a+1 _ expectation!

How Many Comparisons?

So, what’s E[X, ,]?

How Many Comparisons?
So, what’s E[X, ,]?
E[X,,] = 1-P(X,,= 1) + 0- P(X,, = 0) = P(X,, = 1)

How Many Comparisons?

So, what’s E[X, ,]?

E[X,p] = 1-P(X,,= 1) + 0+ P(X,,= 0) = P(X,, = 1)
So, what’s P(X, , = 1)?

How Many Comparisons?
So, what’s E[X, ,]?
E[X,,] = 1-P(X,,= 1) + 0- P(X,, = 0) = P(X,, = 1)

So, what’s P(X, , =1)?

It’s the probability that a and b are compared. Consider this example:
P(X;; = 1) is the probability that 3 and 7 are
compared.

312/7 61548

How Many Comparisons?
So, what’s E[X, ,]?
E[X,,] = 1-P(X,,= 1) + 0- P(X,, = 0) = P(X,, = 1)

So, what’s P(X, , =1)?

It’s the probability that a and b are compared. Consider this example:
P(X;; = 1) is the probability that 3 and 7 are
compared.

312/7 61548

This is exactly the probability that either 3 or 7 is first

327615438 , . .
picked to be a pivot out of the highlighted entries.

How Many Comparisons?
So, what’s E[X, ,]?
E[X,,] = 1-P(X,,= 1) + 0- P(X,, = 0) = P(X,, = 1)

So, what’s P(X, , =1)?

It’s the probability that a and b are compared. Consider this example:
P(X;; = 1) is the probability that 3 and 7 are
compared.

312/7 61548

This is exactly the probability that either 3 or 7 is first

327615438 , . .
picked to be a pivot out of the highlighted entries.

112134 5 78 If 4, 5, or 6 get picked as a pivot first, then 3 and 7

A would be separated and never see each other again.

How Many Comparisons?
So, what's E[X, ,]?

E I4
[Xap P(X,, = 1) aka probability that a & b are compared

So, w -

It'stl probability that either a or b are selected as a pivot
3 5 before elements between a and b.

J 2 irst
1 (# elements from a to b, inclusive)

1[5 If 4, 5, or 6 get picked as a pivot first, then 3 and 7
1234 LﬁJ 7/8 =P ° |
o o would be separated and never see each other again.

How Many Comparisons?
So, what's E[X, ,]?

E I4
[Xap P(X,, = 1) aka probability that a & b are compared

So, w -

It'stl probability that either a or b are selected as a pivot
before elements between a and b.

1 2 irst
3ﬁ b—a+1

113 514 If4,5, or 6 get picked as a pivot first, then 3 and 7
would be separated and never see each other again.

Quick Sort Expected Runtime

n—2 n—1

Total number of A
o - > o > o E |:Xa”bi|
comparisons = 90 beat1

Quick Sort Expected Runtime

n—2 n—1 n—2 n—1

Total number of >ﬂ >- E[X 7 T We just computed
comparisons = — = b +1 E[X, 0] = P(X,5,=1)

Quick Sort Expected Runtime

n—2 n—1 n—2 n—1
Total number of >ﬂ >- BlX] — 2 We just computed
comparisons = — e = b—a+1 ElX J=P(X,,=1)
n—2n—a—1 9

Introducec=b—-—ato
c+1 make notation nicer

Quick Sort Expected Runtime

1
bo
T
-

n—2 n—1

Total number of >ﬂ >- E[X;] = 2 We just computed
e a’) o — —
comparisons = — . e = b—a+1 ElX J=P(X,,=1)
n—2n—a—1 9
_ Z Introducec=b—-ato
c+1 make notation nicer
a=0 c=1
n—1n—1

2 Increase summation limits to
¢+ 1 makethem nicer (hence the <)

VA

i
jw)
]
1
[a—

Quick Sort Expected Runtime

i
bo
T
-

n—2 n—1

Total number of A
o - > o > o E |:Xa”bi|
comparisons = 90 beat1

2 We just computed
b—a+1 E[Xa,b] = P(Xa’b’= 1)

1
b Ok
i
]
+ K
[y

S

I
i
7
(-

2 Introducec=b—-ato
+1 make notation nicer

(]

a=0 c=1
n—1 n—1 . ..
< 2 Increase summation limits to
- = +1 make them nicer (hence the <)
a=0 c=
) | Nothing in the summation
— 4n c-+1 depends on a, so pull 2 out

i
I
—_

Quick Sort Expected Runtime

n—2 n-—1 n—2 n-—1 9 .
Total number of >ﬂ >- IE[X b} B We just computed
[a’) o — —
comparisons = — e = b—a+1 ElX J=P(X,,=1)
n—2n—a—1 9
. Z Introducec=b—-ato
‘ / c +1 make notation nicer
a= c=
n—1 n—1 . ..
< 2 Increase summation limits to
B e e 1 make them nicer (hence the <)
a=0 c=
) | Nothing in the summation
— an c+1 depends on a, so pull 2 out
c=1
nlq decrease each denominator -
< 2n E we get the harmonic series!

1

C

Quick Sort Expected Runtime

n—2 n—1 n—2 n-—1 9 .
Total number of >‘ >1 E[X b} B We just computed
[a’) o — —
comparisons = — e = b—a+1 ElX J=P(X,,=1)
n—2n—a—1 9
. Z Introducec=b—-ato
? / c +1 make notation nicer
a= c=
n—1 n-1 _ o
< 2 Increase summation limits to
B e e 1 make them nicer (hence the <)
a=0 c=
| Nothing in the summation
=2n c+1 depends on a, so pull 2 out
c=1
n—1

decrease each denominator -
we get the harmonic series!

AN

S

]
o |

o
I
—

O(nlogn)

Quick Sort Expected Runtime

n—2 n—1 n—2 n—1 9]
Total number of >* >1 Blx .| — We just computed
comparisons = — e = b—a+1 ElX J=P(X,,=1)
n—2n—a—1 9
_ Z Introducec=b—-ato
= et 1 make notation nicer
If E[# comparisons] = O(n log n), n—1 n—1 o
: : : 2 Increase summation limits to
does this mean E[running time] < .
_ c+1 makethem nicer (hence the <)
is also O(n log n)? a=0 c=1
- Nothing in the summation
YES! Intuitively, the runtime is - 2 depends on a, so pull 2 out
o o C=
dominated by comparisons. 01 _
1 decrease each denominator -
<2 Z E we get the harmonic series!

O(n log n)

Quick Sort

QUICKSORT(A):
if len(A) <=1
return
pivot = random.choice(A)
PARTITION A into:
L (less than pivot) and
R (greater than pivot)
Replace A with [L, pivot, R]
QUICKSORT(L)
QUICKSORT(R)

Worst case runtime:
O(n?)

Expected runtime:
O(n log n)

Quick Sort in Practice

How is it implemented? Do people use it?

Implementing Quick Sort

In practice, a more clever approach is used to implement
PARTITION, so that the entire QuickSort algorithm can be
implemented “in-place”

(i.e. via swaps, rather than constructing separate L or R
subarrays)

An Example In-Place Partition

72391548

Choose pivot & swap
with last element so
pivot is at the end.

An Example In-Place Partition

72391548

712]3]8[1]5]4[6

Choose pivot & swap Initialize
with last element so = andl
pivot is at the end.

An Example In-Place Partition

72391548

712]3]8[1]5]4[6

7‘2381546
U

Choose pivot & swap Initialize Increment | until it sees

with last element so —> |and| — something smaller than pivot,
swap the things ahead of the

bars & increment both bars

pivot is at the end.

An Example In-Place Partition

72391548

712]3]8[1]5]4[6

Choose pivot & swap Initialize Increment I until it sees Repeat until the | bar
with last element so > |and| something smaller than pivot, —, reaches the end, then
swap the things ahead of the swap the pivot into the

pivot is at the end.
bars & increment both bars right place. @

An Example In-Place Partition

72391548

712]3]8[1]5]4[6

71213181154[6

2 713181115146

213 781115146

Choose pivot & swap Initialize Increment I until it sees Repeat until the | bar
with last element so > |and| something smaller than pivot, —, reaches the end, then
swap the things ahead of the swap the pivot into the

pivot is at the end.
bars & increment both bars right place. @

An Example In-Place Partition

71213[6/1/5(4|8 213 7/811(5/4(6
A >

712]3]8[1]5]4[6

71213181154[6

2 713181115146

213 781115146

Choose pivot & swap Initialize Increment I until it sees Repeat until the | bar
with last element so > |and| something smaller than pivot, —, reaches the end, then
swap the things ahead of the swap the pivot into the

pivot is at the end.
bars & increment both bars right place.

An Example In-Place Partition

/1213[6]1
A

5

A

3

2

37

(00
=

A%

71213181

5

A

6

2

3

1

~N
o1 |On

3

712131811

5

6

5

6

2 71318]1

213 71811

5

6

Choose pivot & swap Initialize

with last element so —> and
pivot is at the end.

g

Increment | until it sees
something smaller than pivot, =
swap the things ahead of the

bars & increment both bars

Repeat until the | bar
reaches the end, then
swap the pivot into the

right place. @

An Example In-Place Partition

712136115418 213 718115/4[6
A "V
712]3]8[1]5]4[6 2131 8]7|5/4[6
"V

7‘2381546 2131115 718|4[6

Vi -

2 7‘3 811/514[6

WV
213 7|8 11574]6
Choose pivot & swap Initialize Incrementluntil it sees Repeatuntilthelbar

with last element so > |and| — something smaller than pivot, = reaches the end, then
swap the things ahead of the swap the pivot into the

pivot is at the end.
bars & increment both bars right place.

An Example In-Place Partition

712136115418 213 718115/4[6
A "V
712]3]8[1]5]4[6 2131 8]7|5/4[6
"V
7‘2381546 2131115 718|4[6
Vi -
27‘381546 2315487|6
WV N
213 7|8 11574]6
Choose pivot & swap Initialize Incrementluntil it sees Repeatuntilthelbar

with last element so > |and| something smaller than pivot, —, reaches the end, then
swap the things ahead of the swap the pivot into the
bars & increment both bars right place.

pivot is at the end.

An Example In-Place Partition

712136115418 213 718115/4[6
N "
712]3]8[1]5]4[6 2131 8]7|5/4[6
"V
7‘2381546 2131115 718|4[6
U .V
27‘381546 2315487|6
U N
237|81546 2[31]5/4[6]718
Choose pivot & swap Initialize Incrementl until it sees Repeat untilthelbar

with last element so > |and| something smaller than pivot, —, reaches the end, then
swap the things ahead of the swap the pivot into the
bars & increment both bars right place.

pivot is at the end.

You do not need to understand

Quick Sort vs. Merge Sort

QuickSort (random pivot)

any of this stuff

N

Used by

In-place?
(i.e. with O(log n)
extra memory)

Worst-case: O(n?)
Expected: O(n log n)

Java (primitive types),
C (gsort), Unix, gcc...

Yes, pretty easily!

No

Good cache locality if
implemented for arrays

MergeSort (deterministic)

Worst-case: O(n log n)

Java for objects, perl

Easy if you sacrifice runtime
(O(nlogn) MERGE runtime).
Not so easy if you want to keep
runtime & stability.

Yes

Merge step is really efficient
with linked lists

https://en.wikipedia.org/wiki/Block_sort

Recap

o Runtimes of randomized algorithms can be measured in two
main ways:

o Expected runtime (you roll the dice)
o Worst-case runtime (the bad guy gets to fix the dice)

« QUICKSORT!

o Another DIVIDE and CONQUER sorting algorithm that employs
randomness

o Elegant, structurally simple, and actually used in practice!

Acknowledgement

» Stanford University

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Bogo Sort
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Quick Sort
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: O(n log n)
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Thank You

