
Data Structures and Algorithms

Indian Institute of Information Technology Allahabad

Searching

Dr. Shiv Ram Dubey
Associate Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

[0] [1] [2] [3] [4] [700]

Number 506643548
Number 233667136Number 281942902

Number 155778322Number 580625685Number 701466868 …

Number 580625685Each record in list has an associated key.
In this example, the keys are ID numbers.

Given a particular key, how can we
efficiently retrieve the record from the
list?

Searching

3
3

Check if a given element (called key) occurs in the array.

• Example: array of student records; rollno can be the key.

Two methods to be discussed:

• If the array elements are unsorted.

• Linear search

• If the array elements are sorted.

• Binary search

4

Searching

4
4

5

 Linear Search

5
5

Basic idea:

• Start at the beginning of the array.

• Inspect elements one by one to see if it matches the key.

6

Basic Concept of Linear Search

6
6

Basic idea:

• Start at the beginning of the array.

• Inspect elements one by one to see if it matches the key.

Time complexity:

• A measure of how long an algorithm runs before terminating.

• If there are n elements in the array:

• Best case:

match found in first element (1 search operation)

• Worst case:

no match found, or match found in the last element (n search

operations)

• Average case: (n + 1) / 2 search operations 7

Basic Concept of Linear Search

7
7

Function linear_search returns the array index where a match is found.

It returns -1 if there is no match.

int linear_search (int a[], int size, int key)

{

int pos = 0;

while ((pos < size) && (a[pos] != key))

 pos++;

if (pos < size)

 return pos; /* Return the position of match */

return -1; /* No match found */

}
8

Linear Search

8
8

• For an array of n elements, the worst case time for

serial search requires n array accesses: O(n).

• Consider cases where we must loop over all n records:

• desired record appears in the last position of the

array

• desired record does not appear in the array at all

Worst Case Time for Linear Search

9
9

Assumptions:
1. All keys are equally likely in a search
2. We always search for a key that is in the array

Example:

• We have an array of 10 records.

• If search for the first record, then it requires 1 array
access; if the second, then 2 array accesses. etc.

The average of all these searches is:
(1+2+3+4+5+6+7+8+9+10)/10 = 5.5

Average Case for Linear Search

10
10

Generalize for array size n.

Expression for average-case running time:

(1+2+…+n)/n = n(n+1)/2n = (n+1)/2

Therefore, average case time complexity for serial search
is O(n).

Average Case Time for Linear Search

11
11

12

 Binary Search

12
12

Binary search is applicable if the array is sorted.

BASIC IDEA

• Look for the target in the middle.

• If you don’t find it, you can ignore half of the array, and repeat the

process with the other half.

In every step, we reduce the number of elements to search in by half.

13

Basic Concept

13
13

What do we want?

• Find split between values larger and smaller than key:

<=key >keyx:

n-1

L R

14

The Basic Strategy

0

14
14

What do we want?

• Find split between values larger and smaller than key:

• Situation while searching:

• Initially L and R contains the indices of first and last elements.

• Look at the element at index [(L+R)/2].

• Move L or R to the middle depending on the outcome of test.

<=key >keyx:

n-1

L R

15

The Basic Strategy

0

15
15

16
16

Binary Search

Example: sorted array of integer keys. Key=7.

[0] [1] [2] [3] [4] [5] [6]

3 6 7 11 32 33 53

Find approximate midpoint

17
17

Binary Search

Example: sorted array of integer keys. Key=7.

[0] [1] [2] [3] [4] [5] [6]

3 6 7 11 32 33 53

Is 7 = midpoint key? NO.

18
18

Binary Search

Example: sorted array of integer keys. Key=7.

[0] [1] [2] [3] [4] [5] [6]

3 6 7 11 32 33 53

[0] [1]

Example: sorted array of integer keys. Key=7.

[2] [3] [4] [5] [6]

Is 7 < midpoint key? YES.

19
19

Binary Search

3 6 7 11 32 33 53

[0] [1]

Example: sorted array of integer keys. Key=7.

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Search for the target in the area before midpoint.

20
20

Binary Search

[0] [1]

Example: sorted array of integer keys. Key=7.

[2] [3] [4] [5] [6]

Find approximate midpoint

21
21

Binary Search

3 6 7 11 32 33 53

[0] [1]

Example: sorted array of integer keys. Key=7.

[2] [3] [4] [5] [6]

Target = key of midpoint? NO.

22
22

Binary Search

3 6 7 11 32 33 53

[0] [1]

Example: sorted array of integer keys. Key=7.

[2] [3] [4] [5] [6]

Target < key of midpoint? NO.

23
23

Binary Search

3 6 7 11 32 33 53

[0] [1]

Example: sorted array of integer keys. Key=7.

[2] [3] [4] [5] [6]

Target > key of midpoint? YES.

24
24

Binary Search

3 6 7 11 32 33 53

[0] [1]

Example: sorted array of integer keys. Key=7.

[2] [3] [4] [5] [6]

Search for the target in the area after midpoint.

25
25

Binary Search

3 6 7 11 32 33 53

[0] [1]

Example: sorted array of integer keys. Key=7.

[2] [3] [4] [5] [6]

Find approximate midpoint.
Is target = midpoint key? YES.

26
26

Binary Search

3 6 7 11 32 33 53

27

Binary Search
int bin_search (int x[], int size, int key)

{

int L, R, mid;

______________;

while (________)

{

_________________;

}

______________________;

}

/* If key appears in

x[0..size-1], return its

location, pos such that

x[pos]==key.

If not found, return -1 */

27
27

28

The Basic Search Iteration
int bin_search (int x[], int size, int key)

{

int L, R, mid;

______________;

while (________)

{

mid = (L + R) / 2;

if (x[mid] <= key) L = mid;

else R = mid;

}

______________________;

}

/* If key appears in

x[0..size-1], return its

location, pos such that

x[pos]==key.

If not found, return -1 */

28
28

29

Loop Termination Criterion
int bin_search (int x[], int size, int key)

{

int L, R, mid;

______________;

while (L+1 != R)

{

mid = (L + R) / 2;

if (x[mid] <= key) L = mid;

else R = mid;

}

______________________;

}

/* If key appears in

x[0..size-1], return its

location, pos such that

x[pos]==key.

If not found, return -1 */

29
29

int bin_search (int x[], int size, int key)

{

int L, R, mid;

L = −1; R = size;

while (L+1 != R)

{

mid = (L + R) / 2;

if (x[mid] <= key) L = mid;

else R = mid;

}

if (L >= 0 && x[L] == key) return L;

else return −1;

} 30

Initialization and Return Value
/* If key appears in

x[0..size-1], return its

location, pos such that

x[pos]==key.

If not found, return -1 */

30
30

-17 -5 3 6 12 21 45 63 50

Sorted array

L= –1; R=9; x[4]=12;

L= –1; R=4; x[1]= –5;

L= 1; R=4; x[2]=3;

L=2; R=4; x[3]=6;

L=2; R=3; return L;

Trace :

bin_search (x, 9, 3);

bin_search (x, 9, 145);

bin_search (x, 9, 45);

 We may modify the algorithm by checking equality with x[mid].
31

Binary Search Examples

31
31

Suppose that the array x has 1000 elements.

Ordinary search

– If key is a member of x, it would require 500 comparisons on the

average.

32

Is it worth the trouble ?

32
32

Suppose that the array x has 1000 elements.

Ordinary search

– If key is a member of x, it would require 500 comparisons on the

average.

Binary search

• after 1st compare, left with 500 elements.

• after 2nd compare, left with 250 elements.

• After at most 10 steps, you are done.

33

Is it worth the trouble ?

33
33

34

If there are n elements in the array.

• Number of iterations required: log2n

For n = 64 (say).

• Initially, list size = 64.

• After first compare, list size = 32.

• After second compare, list size = 16.

• After third compare, list size = 8.

• …….

• After sixth compare, list size = 1.

log264 = 6

log21024 = 10

2k= n, where k is

the number of

steps.

Time Complexity

34
34

Trace of binsearch(x,9,12):

L= –1; R=9; x[4]=12;

L= 4; R=9; x[6]= 45;

L= 4; R=6; x[5]=21;

L=4; R=5; return L;

We know in first iteration that x[4] = 12. Why not stop then?

-17 -5 3 6 12 21 45 63 50

35

Are exactly log2n steps required for all cases?

35
35

int bin_search_1 (int x[], int size, int key)

{

int L, R, mid;

L = 0; R = size-1;

while (L <= R)

{

mid = (L + R) / 2;

if (x[mid] == key) return mid;

if (x[mid] < key) L = mid+1;

else R = mid-1;

}

return -1;

}
36

Are exactly log2n steps required for all cases?

36
36

37

Write a recursive version of the Binary Search function.

Exercise

37
37

• Linear search: average case O(n)

• Binary search: average case O(log2n)

Summary

38
38

• Boston University

• IIT Kharagpur

39

Acknowledgement

Thank You

40

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Thank You

