Indian Institute of Information Technology Allahabad

Data Structures and Algorithms

Asymptotic Analysis

Dr. Shiv Ram Dubey

Associate Professor
Department of information Technology
Indian Institute of Information Technology, Allahabad

Email: Web:

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are
adopted from many sources for academic purposes. Broadly, the
sources have been given due credit appropriately. However,
there is a chance of missing out some original primary sources.
The authors of this material do not claim any copyright of such
material.

The plan

 Sorting Algorithms
* InsertionSort: does it work and is it fast?

* MergeSort: does it work and is it fast?
« Skills:

* Analyzing correctness of iterative and recursive algorithms.
* Analyzing running time of recursive algorithms

* How do we measure the runtime of an algorithm? -

* Worst-case analysis
* Asymptotic Analysis

Worst-case analysis

Sorting a sorted list
should be fast!!

The “running time” for an algorithm is its
running time on the worst possible input.

Here is your algorithm!

Algorithm:
Do the thing

Do the stuff
Return the answer

Algorithm
designer

Here is an input!
(Which | designed to be
terrible for your

algorithm!)

Big-O notation

. *What do we mean when we measure runtime”?
47 * We probably care about wall time: how long does it take to
<-..>) Solve the problem, in seconds or minutes or hours?

 This is heavily dependent on the programming language,
architecture, etc.

* These things are very important, but are not the point of
this class.

* We want a way to talk about the running time of an
algorithm, independent of these considerations.

Main idea:
Focus on how the runtime scales with n (the input size).

Informally....

: Asymptotic (Only pay attent!on to
Number of operations Al the largest function of

n that appears.)

= 100 0(n?)

0.063 @ 5n+12.7 0(n?)

100 @_ 1010000\/5 0(711'5) We say this algorithm

Is “asymptotically

.— faster” than the
11 1 O(nlog(n)) others.

S0 100 n log(n) operations is
“petter” than n? operations?

n~2 vs nlog(n)

aogooo
— 2
700000 1 === 100*nlog(n) - .
Yeah, but it's
00000 1
But when true once n
n=200, 00007 is at least
that’s not 400000 - 700 or so.
true at all! 300000 -
200000 1
100000 -
(]

I I I I I
200 400 GO0 800 1000

Asymptotic Analysis

-~

One algorithm is “faster” than another if its runtime
scales better with the size of the input.

~

v

N\

Pros: Cons:

* Abstracts away from * Only makes sense if n
hardware- and language- is large (compared to
specific issues. the constant factors).

Makes algorithm
analysis much more
tractable.

1000000000 n
is “better” than n? ?17?!

O(...) means an upper bound

pronounced “big-oh of ...” or sometimes “oh of ...”

*Let T(n), g(n) be functions of positive integers.
* Think of T(n) as a runtime: positive and increasing in n.

» We say “T'(n) is 0(g(n))” if T(n) grows no faster than
g(n) as n gets large.

* Formally,
T(n) = 0(g())
=
dc,ng > 0 s.t. Vn = ny,
0<Tn) <c-gn)

T(n) = 0(g(n))

Example o
M2+ 10 = 0(7’12) Jc,ng > 0 s.t. Vn = n,,
0<T(n) <c-gn)
250
— Tin)=2x"2 + 10
=== ginj=x"2
200 -
150 -
100 -
5|:| -
D_

Example T(n) = 0(g(m)

=
M2+ 10 = 0(7’12) Jc,ng > 0 s.t. Vn = n,,
0<T(n) <c-gn)
250
— Tin)=2x"2 + 10 ;"
=== ginj=x"2 = 3n2 /
2004 === 3*gin) = 3x"2 39(n) 3n;

Example T(m) = 0(g(m)
&
M2+ 10 = 0(7’12) Jc,ng > 0 s.t. Vn = n,,
. 0<Tn)<c-gn)
250 i
— Tin)=2x"2 + 10 S/
=T gim=xT2 3g(n) = 3n?
200 4 === 3*gin) =3x"2 iy

x=nl=4 #

T(n) = 0(g(n))

Example
—
212 4+ 10 = 0(7’12) 3c,ng > 0 s.t. Vn = n,,
0<Tn) <c-gn)
: Formally:
e 0 3g(n) = 32/ Y:
200 === 3%g(n) = 3x~2 « Choosec=3
— » Choose n, = 4
’ » Then:
vn = 4,
0<2n?+10<3-n?

T(n) = 0(g(m)

Example
—
an + 10 = 0(7’12) dc,ng >0 s.t. Vn =n,,
0<Tn) <c-gn)
- Tin}=2x"2 + 10 ,’: Formally:
00| - gl 1x2 4 Tg(n) = 7n? « Choosec=7
= " « Choose n, =2

 Then:
vn = 2,

0<2n?+10<7-n?

Another example: T = 0(g(m)

&
dc,ng > 0 s.t. Vn = n,,

— 2
n = O(TL) 0<T) <c-g(n)
T(n) = O(g(n))
S E=ETE Choose c =1
== Tow g(n) =ny « Choose n, = 1
. * Then
1-“: vn = 1,
10 - 0<n< 712
00- This is not tight bound

000 025 050 075 100 125 150 175 200

“ asn = 0(n)

()(...) means a lower bound

» We say “T'(n) is Q(g(n))” if T(n) grows at least as fast
as g(n) as n gets large.

* Formally,

T(n) = Q(g(n))
=
dc,ng > 0 s.t. Vn = n,,

0<c-gn) <Tmn)
N /

Switched these!!

Example T(n) = 2(g(m)

—
- dc,ng > 0 s.t. Vn = ny,

nlog,(n) = Q(3n) 0<c- gn) <Tm)

T{n) = Omegalg(n))

— To=niogm 20 * Choose c = 1/3
. « Choose n, =2
s | Then
o Vn > 2,
N O S?Snl()gz(n)

©(...) means both!

*We say “T'(n) is ©(g(n))” iff both:

T(n)=0(gn))

and

T(n) =0Q(g(n))

Example: polynomials

« Suppose the p(n) is a polynomial of degree k:
p(n) = ay, + an + a,n? + -+ a,n* where a;, > 0.

» Then p(n) = 0(n*)

* Proof:

« Choose n, = 1 so that p(n) = 0 for all n = n,,
* Choose ¢ = |ay| + |a{| + -+ + |ay]

p(n)

// f\\/

Example: polynomials

» Suppose the p(n) is a polynomial of degree k:
p(n) = ag + ayn + a;n? + -+ a,n”* where a; > 0.

» Then p(n) = 0(n*)
* Proof:

* Choose ny = 1 so that p(n) = 0 for all n = n,,.

* Choose ¢ = |ay| + |aq| + -+ + |ag]

* Then for all n = ny:

* 0 <pn) =IpM)| < lagl + lagIn + - + |ag|n®

° < |ao|n® + |ay|In® + - + |ag In®

K
. =cCc-n
\ Because n < n

\ Definition of ¢ forn >ny = 1.

Example: more polynomials

» For any k > 1,n* is NOT 0(n*~1).
* Proof:

» Suppose that it were.

- Then there is some ¢, n, so that n* < ¢ - n*~1 for all
n=ng

*Aka,n <c foralln =>n,
e But that's not true!
* \We have a contradiction!

It can’t be that n* = 0(n*"1).

Take-away from examples

* To prove T(n) = O(g(n)), you have to come up with c
and n, so that the definition is satisfied.

» To prove T(n) is NOT O(g(n)), one way is proof by
contradiction:

* Suppose (to get a contradiction) that someone gives
you a ¢ and an n, so that the definition is satisfied.

» Show that this someone must by lying to you by
deriving a contradiction.

Yet more examples

*n3 + 3n = O(n° — n?)
*n3 + 3n = Q(n3 — n?)

*n3 + 3n = O(n3 — n?) Work through these
on your own!

+ 31 is NOT O(2")

* log(n) = Q(In(n))
* log(n) = O(2loglog(n))

remember that log = log,
In this class. @

Some brainteasers

* Are there functions f, g so that NEITHER f = O(g) nor f =
(g)”?
 Are there non-decreasing functions f, g so that the above
IS true?
 Define the n’th fibonacci number by F(0) =1, F(1) =1, F(n)
=F(n-1) + F(n-2) forn > 1.
°1,1, 2, 3, 5,8, 13, 21, 34, 55, ...
True or false:
*F(n) = O(2")
*F(n) = Q(2")

Recurrence
Relations!

Recurrence Relations!

* How do we calculate the runtime of a recursive algorithm?

Running time of MergeSort

* Let’s call this running time T(n),
when the input has length n.

* We know that T(n) = O(nlog(n)).

MERGESORT(A):
* We also know that T(n) n = length(A)
satisfies: . i< 1-
T(n)SZ-T(E)+C/-n return A
L = MERGESORT(A[1:n/2-1])

Last time we showed that the time _ _
to run MERGE on a problem of size R =MERGESORT(A[n/2:n])

n is at most c*n operations. return MERGE(L,R)

Recurrence Relations

cT(n)=2-T (g) + ¢ - n is a recurrence relation.

* |t gives us a formula for T(n) in terms of T(less than n)
* The challenge:
Given a recurrence relation for T(n), find a closed form

expression for T(n).

* For example, T(n) = O(nlog(n)) in this case

Technicalities |: Base Case

* Formally, we should always have base cases
with recurrence relations.

e T(n) = z-T(g) +c-n with 7(1) = 0(1)

Why does T(1) = O(1)?

One approach

* The "tree” approach @
from last time. 0 0

09095945999 ,0,9,0,
(Size 1)

* Add up all the work
done at all the sub-
problems.

An Other Example Contribution at

this layer:

o T, (n) = Tl()+n T,(1) = 1.

* Adding up over all layers: 0 /2

log(n)

n
Z ?=27’l—1

1=0

n/4

n/2t

O 1

(Size 1)

Aside

Finite Geometric Series

To find the sum of a finite geometric series, use the formula,

1—g
S’ﬁ‘, — al(l_:),T #]_,

where n is the number of terms, a; is the first term and 7 is the common ratio .

Another Example

o T, (n) = Tl()+n T,(1) = 1.
* Adding up over all layers:

log(n)

n
Z ?=27’l—1

1=0

SoT;(n) =0(n).

(Size 1)

Contribution at

this layer:

n/4

n/2t

Another Example

o T,(n) = 4T, (g) +n, T,(1)=1.
_ Contribution at
* Adding up over all layers: this layer:

log(n) log(n) @ |

z 4i-%=n 2 2i=n(2n—1) 2n

i=0 (=0

+ S0 Ty(n) = 0(n?) < 16X@_> "
S T

More examples

Recursion 1
*T(n)=4T(n/2) + O(n)
* T(n) = O(n?)

Recursion 2
*T(n) =3 T(n/2) + O(n)
* T(n) = O(nl982(3) ~ n16)

Recursion 3

* T(n)=2T(n/2) + O(n)
* T(n) = O(nlog(n))
Recursion 4

* T(n) =T(n/2) + O(n)
*T(n)=0(n)

T(n) = time to solve a
problem of size n.

The master theorem

A formula for many recurrence relations.

Jedi master Yoda

The maSter theorem (OptIOna|) We can also take n/b to

mean either lg| or E] and

» Suppose that a = 1,b > 1,and d are constants the theorem is st true.
(independent of n).

- Suppose T(n) =a-T (%) + 0(n). Then

fO(nd log(n)) if a = b
T(n) = { 0(n?) ifa < b?
kO(nlogb(“)) if a > b“

Three parameters:

a : number of subproblems

b : factor by which input size shrinks

d : need to do n9 work to create all the
subproblems and combine their solutions.

Many
symbols
those are....

Examples

 Recursion 1
« T(n)=4T(n/2) + O(n)
* T(n)=0(n?)

T(n) =a- T(g) + 0(n4).

T(n) = | O(nd)

fO(nd log(n))

0(nlo8s@)

ifa = b2
ifa < b?
ifa > b?

O T QO

i

=N b
QO
\
O
o

 Recursion 2

« T(n) =3 T(n/2) + O(n) T s \/
. T(n) = O(n'o8:(3 ~ n16) d=1

* Recursion 3 s
+ T(n) = 2T(n/2) + O(n) D=5 4= pd \/
* T(n) = O(nlog(n)) d=1

* Recursion 4)
+ T(n) = T(n12) + O(n) o a<he \/
* T(n)=0O(n) d=1

Acknowledgement

» Stanford University

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 11: 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 12: 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 13: 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 14: 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 15: n , equals , cap O open paren n 2 close paren
	Slide 16
	Slide 17: n log sub 2 of open paren n , close paren equals cap omega open paren 3 n , close paren
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Thank You

