
Data Structures and Algorithms

Indian Institute of Information Technology Allahabad

Asymptotic Analysis

Dr. Shiv Ram Dubey
Associate Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

• Sorting Algorithms
• InsertionSort: does it work and is it fast?

• MergeSort: does it work and is it fast?

• Skills:
• Analyzing correctness of iterative and recursive algorithms.

• Analyzing running time of recursive algorithms

• How do we measure the runtime of an algorithm?
• Worst-case analysis

• Asymptotic Analysis

3

The plan

Sorting a sorted list

should be fast!!

Algorithm

designer

Algorithm:

 Do the thing

 Do the stuff

 Return the answer

Here is your algorithm! Here is an input!
(Which I designed to be

terrible for your

algorithm!)

The “running time” for an algorithm is its

running time on the worst possible input.

Worst-case analysis

4

• What do we mean when we measure runtime?
• We probably care about wall time: how long does it take to

solve the problem, in seconds or minutes or hours?

• This is heavily dependent on the programming language,
architecture, etc.

• These things are very important, but are not the point of
this class.

• We want a way to talk about the running time of an
algorithm, independent of these considerations.

Big-O notation

5

Focus on how the runtime scales with n (the input size).

Number of operations
Asymptotic

Running Time
1

10
⋅ 𝑛2 + 100 𝑂 𝑛2

0.063 ⋅ 𝑛2 − .5 𝑛 + 12.7 𝑂 𝑛2

100 ⋅ 𝑛1.5 − 1010000 𝑛 𝑂 𝑛1.5

11 ⋅ 𝑛 log 𝑛 + 1 𝑂 𝑛 log 𝑛

We say this algorithm

is “asymptotically

faster” than the

others.

(Only pay attention to

the largest function of

n that appears.)

Informally….

Main idea:

6

But when

n=200,

that’s not

true at all!

Yeah, but it’s

true once n

is at least

700 or so.100 𝑛 log 𝑛

𝑛2

So 100 𝑛 log(𝑛) operations is
 “better” than 𝑛2 operations?

7

• Abstracts away from

hardware- and language-

specific issues.

• Makes algorithm

analysis much more

tractable.

• Only makes sense if n

is large (compared to

the constant factors).

Pros: Cons:

One algorithm is “faster” than another if its runtime

scales better with the size of the input.

1000000000 n

is “better” than n2 ?!?!

Asymptotic Analysis

8

• Let 𝑇 𝑛 , 𝑔 𝑛 be functions of positive integers.
• Think of 𝑇 𝑛 as a runtime: positive and increasing in n.

• We say “𝑇 𝑛 is 𝑂 𝑔 𝑛 ” if 𝑇 𝑛 grows no faster than
𝑔 𝑛 as n gets large.

• Formally,

𝑇 𝑛 = 𝑂 𝑔 𝑛

⟺

∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0,

0 ≤ 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

pronounced “big-oh of …” or sometimes “oh of …”

O(…) means an upper bound

9

𝑇 𝑛 = 𝑂 𝑔 𝑛

⟺
∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0,

0 ≤ 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

2𝑛2 + 10 = 𝑂 𝑛2

g(n) = n2

Example

10

2𝑛2 + 10 = 𝑂 𝑛2

g(n) = n2

3g(n) = 3n2

Example

11

𝑇 𝑛 = 𝑂 𝑔 𝑛

⟺
∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0,

0 ≤ 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

2𝑛2 + 10 = 𝑂 𝑛2

g(n) = n2

3g(n) = 3n2

n0=4

Example

12

𝑇 𝑛 = 𝑂 𝑔 𝑛

⟺
∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0,

0 ≤ 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

2𝑛2 + 10 = 𝑂 𝑛2

Formally:
• Choose c = 3

• Choose n0 = 4

• Then:

∀𝑛 ≥ 4,

0 ≤ 2𝑛2 + 10 ≤ 3 ⋅ 𝑛2g(n) = n2

3g(n) = 3n2

n0=4

Example

13

𝑇 𝑛 = 𝑂 𝑔 𝑛

⟺
∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0,

0 ≤ 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

2𝑛2 + 10 = 𝑂 𝑛2

Formally:
• Choose c = 7

• Choose n0 = 2

• Then:

∀𝑛 ≥ 2,

0 ≤ 2𝑛2 + 10 ≤ 7 ⋅ 𝑛2

g(n) = n2

7g(n) = 7n2

n0=2

Example

14

𝑇 𝑛 = 𝑂 𝑔 𝑛

⟺
∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0,

0 ≤ 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

𝑛 = 𝑂(𝑛2)

• Choose c = 1

• Choose n0 = 1

• Then

∀𝑛 ≥ 1,

0 ≤ 𝑛 ≤ 𝑛2

g(n) = n2

T(n) = n

Another example:

15

𝑇 𝑛 = 𝑂 𝑔 𝑛

⟺
∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0,

0 ≤ 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

This is not tight bound

as 𝑛 = 𝑂(𝑛)

• We say “𝑇 𝑛 is Ω 𝑔 𝑛 ” if 𝑇 𝑛 grows at least as fast

as 𝑔 𝑛 as n gets large.

• Formally,

𝑇 𝑛 = Ω 𝑔 𝑛

⟺

∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0,

0 ≤ 𝑐 ⋅ 𝑔 𝑛 ≤ 𝑇 𝑛

Switched these!!

Ω(…) means a lower bound

16

𝑛 log2 𝑛 = Ω 3𝑛

• Choose c = 1/3

• Choose n0 = 2

• Then

𝑇 𝑛 = Ω 𝑔 𝑛

⟺
∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0,

0 ≤ 𝑐 ⋅ 𝑔 𝑛 ≤ 𝑇 𝑛

∀𝑛 ≥ 2,

0 ≤
3𝑛

3
≤ 𝑛 log2 𝑛

Example

17

• We say “𝑇 𝑛 is Θ 𝑔(𝑛) ” iff both:

 𝑇 𝑛 = 𝑂 𝑔 𝑛

and

 𝑇 𝑛 = Ω 𝑔 𝑛

Θ(…) means both!

18

• Suppose the p(n) is a polynomial of degree k:

 𝑝 𝑛 = 𝑎0 + 𝑎1𝑛 + 𝑎2𝑛2 + ⋯ + 𝑎𝑘𝑛𝑘 where 𝑎𝑘 > 0.

• Then 𝑝 𝑛 = 𝑂 𝑛𝑘

• Proof:

• Choose 𝑛0 ≥ 1 so that 𝑝 𝑛 ≥ 0 for all 𝑛 ≥ 𝑛0.

• Choose 𝑐 = 𝑎0 + 𝑎1 + ⋯ + 𝑎𝑘

𝑝 𝑛

𝑛0

Example: polynomials

19

• Suppose the p(n) is a polynomial of degree k:

 𝑝 𝑛 = 𝑎0 + 𝑎1𝑛 + 𝑎2𝑛2 + ⋯ + 𝑎𝑘𝑛𝑘 where 𝑎𝑘 > 0.

• Then 𝑝 𝑛 = 𝑂 𝑛𝑘

• Proof:

• Choose 𝑛0 ≥ 1 so that 𝑝 𝑛 ≥ 0 for all 𝑛 ≥ 𝑛0.

• Choose 𝑐 = 𝑎0 + 𝑎1 + ⋯ + 𝑎𝑘

• Then for all 𝑛 ≥ 𝑛0:

• 0 ≤ 𝑝 𝑛 = 𝑝 𝑛 ≤ 𝑎0 + 𝑎1 𝑛 + ⋯ + 𝑎𝑘 𝑛𝑘

• ≤ 𝑎0 𝑛𝑘 + 𝑎1 𝑛𝑘 + ⋯ + 𝑎𝑘 𝑛𝑘

• = 𝑐 ⋅ 𝑛𝑘

Because 𝑛 ≤ 𝑛𝑘

for 𝑛 ≥ 𝑛0 ≥ 1.Definition of c

Example: polynomials

20

• For any 𝑘 ≥ 1, 𝑛𝑘 is NOT 𝑂 𝑛𝑘−1 .

• Proof:

• Suppose that it were.

• Then there is some c, n0 so that 𝑛𝑘 ≤ 𝑐 ⋅ 𝑛𝑘−1 for all
𝑛 ≥ 𝑛0

• Aka, 𝑛 ≤ 𝑐 for all 𝑛 ≥ 𝑛0

• But that’s not true!

• We have a contradiction!

• It can’t be that 𝑛𝑘 = 𝑂 𝑛𝑘−1 .

Example: more polynomials

21

• To prove T(n) = O(g(n)), you have to come up with c

and n0 so that the definition is satisfied.

• To prove T(n) is NOT O(g(n)), one way is proof by

contradiction:

• Suppose (to get a contradiction) that someone gives

you a c and an n0 so that the definition is satisfied.

• Show that this someone must by lying to you by

deriving a contradiction.

Take-away from examples

22

• n3 + 3n = O(n3 – n2)

• n3 + 3n = Ω(n3 – n2)

• n3 + 3n = Θ(n3 – n2)

• 3n is NOT O(2n)

• log(n) = Ω(ln(n))

• log(n) = Θ(2loglog(n))

Work through these

on your own!

remember that log = log2

in this class.

Yet more examples

23

• Are there functions f, g so that NEITHER f = O(g) nor f =
Ω(g)?

• Are there non-decreasing functions f, g so that the above
is true?

• Define the n’th fibonacci number by F(0) = 1, F(1) = 1, F(n)
= F(n-1) + F(n-2) for n > 1.

• 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

 True or false:

• F(n) = O(2n)

• F(n) = Ω(2n)

Some brainteasers

24

Recurrence
Relations!

• How do we calculate the runtime of a recursive algorithm?

25

Recurrence Relations!

• Let’s call this running time T(n),

when the input has length n.

• We know that T(n) = O(nlog(n)).

• We also know that T(n)

satisfies:

MERGESORT(A):

 n = length(A)

 if n ≤ 1:

 return A

 L = MERGESORT(A[1:n/2-1])

 R = MERGESORT(A[n/2:n])

 return MERGE(L,R)

𝑇 𝑛 ≤ 2 ⋅ 𝑇
𝑛

2
+ 𝑐 ⋅ 𝑛

Last time we showed that the time

to run MERGE on a problem of size

n is at most c*n operations.
26

Running time of MergeSort

• 𝑇 𝑛 = 2 ⋅ 𝑇
𝑛

2
+ 𝑐 ⋅ 𝑛 is a recurrence relation.

• It gives us a formula for T(n) in terms of T(less than n)

• The challenge:

 Given a recurrence relation for T(n), find a closed form

 expression for T(n).

• For example, T(n) = O(nlog(n)) in this case

27

Recurrence Relations

• Formally, we should always have base cases

with recurrence relations.

• 𝑇 𝑛 = 2 ⋅ 𝑇
𝑛

2
+ 𝑐 ⋅ 𝑛 with 𝑇 1 = 𝑂(1)

Why does T(1) = O(1)?

28

Technicalities I: Base Case

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

• The “tree” approach

from last time.

• Add up all the work

done at all the sub-

problems.

29

One approach

• 𝑇1 𝑛 = 𝑇1
𝑛

2
+ 𝑛, 𝑇1 1 = 1.

• Adding up over all layers:

෍

𝑖=0

log(𝑛)
𝑛

2𝑖
= 2𝑛 − 1

Size n

n/2

(Size 1)

…

n/4

n/2t

…

n

Contribution at

this layer:

n/2

n/4

n/2t

1
30

Another Example

31

Aside

• 𝑇1 𝑛 = 𝑇1
𝑛

2
+ 𝑛, 𝑇1 1 = 1.

• Adding up over all layers:

෍

𝑖=0

log(𝑛)
𝑛

2𝑖
= 2𝑛 − 1

 So 𝑇1 𝑛 = 𝑂 𝑛 .

Size n

n/2

(Size 1)

…

n/4

n/2t

…

n

Contribution at

this layer:

n/2

n/4

n/2t

1
32

Another Example

• 𝑇2 𝑛 = 4𝑇2
𝑛

2
+ 𝑛, 𝑇2 1 = 1.

• Adding up over all layers:

෍

𝑖=0

log(𝑛)

4𝑖 ⋅
𝑛

2𝑖
= 𝑛 ෍

𝑖=0

log 𝑛

2𝑖 = 𝑛(2𝑛 − 1)

• So 𝑇2 𝑛 = 𝑂 𝑛2

n

Contribution at

this layer:

2n

4n

2tn

n2

4x

n2 x

4t x

16x

Size n

(Size 1)

…

n/4

n/2t

…

n/2

33

Another Example

Recursion 1
• T(n) = 4 T(n/2) + O(n)
• T(n) = O(n2)

Recursion 2
• T(n) = 3 T(n/2) + O(n)
• T(n) = O(𝑛log2 3

≈ n1.6)

Recursion 3
• T(n) = 2T(n/2) + O(n)
• T(n) = O(nlog(n))

Recursion 4
• T(n) = T(n/2) + O(n)
• T(n) = O(n)

T(n) = time to solve a

problem of size n.

What’s the pattern?!?!?!?!
34

More examples

• A formula for many recurrence relations.

Jedi master Yoda

35

The master theorem

• Suppose that 𝑎 ≥ 1, 𝑏 > 1, and 𝑑 are constants
(independent of n).

• Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑂 𝑛𝑑 . Then

Many

symbols

those are….

Three parameters:

a : number of subproblems

b : factor by which input size shrinks

d : need to do nd work to create all the

subproblems and combine their solutions.

We can also take n/b to

mean either
𝑛

𝑏
 or

𝑛

𝑏
 and

the theorem is still true.

𝑇 𝑛 =

O 𝑛𝑑 log 𝑛 if 𝑎 = 𝑏𝑑

O 𝑛𝑑 if 𝑎 < 𝑏𝑑

O 𝑛log𝑏 𝑎 if 𝑎 > 𝑏𝑑

36

The master theorem (Optional)

• Recursion 1
• T(n) = 4 T(n/2) + O(n)

• T(n) = O(n2)

• Recursion 2
• T(n) = 3 T(n/2) + O(n)

• T(n) = O(𝑛log2 3 ≈ n1.6)

• Recursion 3
• T(n) = 2T(n/2) + O(n)

• T(n) = O(nlog(n))

• Recursion 4
• T(n) = T(n/2) + O(n)

• T(n) = O(n)

𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑂 𝑛𝑑 .

a = 4

b = 2

d = 1

a = 3

b = 2

d = 1

a = 2

b = 2

d = 1

a > bd

a > bd

a = bd

✓
✓
✓

a = 1

b = 2

d = 1
a < bd ✓

𝑇 𝑛 =

O 𝑛𝑑 log 𝑛 if 𝑎 = 𝑏𝑑

O 𝑛𝑑 if 𝑎 < 𝑏𝑑

O 𝑛log𝑏 𝑎 if 𝑎 > 𝑏𝑑

37

Examples

• Stanford University

38

Acknowledgement

Thank You

39

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 11: 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 12: 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 13: 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 14: 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 15: n , equals , cap O open paren n 2 close paren
	Slide 16
	Slide 17: n log sub 2 of open paren n , close paren equals cap omega open paren 3 n , close paren
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Thank You

