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DISCLAIMER

The content (text, image, and graphics) used in this slide are
adopted from many sources for academic purposes. Broadly, the
sources have been given due credit appropriately. However,
there is a chance of missing out some original primary sources.
The authors of this material do not claim any copyright of such
material.




Books

1. Data Structures and Algorithm Analysis in C (DSAC) by Mark
Allen Weiss, Second Edition

2. Data Structures, S. Lipschutz, Schaum’s Outline Series

3. Introduction to Algorithms by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest and Clifford Stein, Third Edition,
The MIT Press

... and many more options




Language

* Only C language is allowed
* |t facilitates the development of better programming skills




Course Ethics

 All class work is to be done independently.

* |tis best to try to solve problems on your own, since problem solving is an important component
of the course, and exam problems are often based on the outcome of the assignment
problems.

* You are allowed to discuss class material, assignment problems, and general solution
strategies with your classmates. But, when it comes to formulating or writing solutions or writing
codes, you must work alone.

* You are not allowed to take the codes from any source, including online, books, your
classmate, etc. in the home works and exams.

* You may use free and publicly available sources (at idea level only), such as books, journal and
conference publications, and web pages, as research material for your answers. (You will not
lose marks for using external sources.)

* You may not use any paid service and you must clearly and explicitly cite all outside sources
and materials that you made use of.

* | consider the use of uncited external sources as portraying someone else's work as your own,
and as such it is a violation of the Institute's policies on academic dishonesty.

* Instances will be dealt with harshly and typically result in a failing course grade.
« Cheating cases will attract severe penalties. @
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Data Structure and Algorithms

* Algorithm:

 Outline, the essence of a computational procedure, step-by-step
instructions

* Program:

* An implementation of an algorithm in some programming
language

* Data Structure:
* Organization of data needed to solve the problem




Algorithmic problem

Specification of
Specification | sl mmmm) OUtpUt aS @
of Input function of

iInput

* Infinite number of input instances satisfying the input specification.

* For eg: A sorted, non-decreasing sequence of natural numbers of
non-zero, finite length:

* 1, 15, 20, 300, 845, 9876
* 56, 67, 100
* 38




Algorithmic solution

Input instance, Output related
adhering to the ) ) {6 the input as
required

specification

 Algorithm describes actions on the input instance

* Infinitely many correct algorithms for the same algorithmic problem




What is a good algorithm

* Efficient
* Running time
» Spaces used

» Efficiency as a function of input size
* The number of bits in an input number
* Number of data elements (numbers, points)



Measuring the Running Time
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* Experimental study o s
* Write a program that implement the algorithm

* Run the program with data sets of varying size and
composition

» Use the system time clock method to get an accurate
measure of the actual running time




Limitations of Experimental Studies

* |t is necessary to implement and test the algorithm in order
to determine its running time.

» Experiments can be done on a limited set of inputs, and
may not be indicative of the running time on other inputs
not included in the experiment.

* |n order to compare to algorithms, the same hardware and
software environments should be used.



Beyond Experimental Studies

We will develop a general methodology for analyzing running
time of algorithms. This approach

* Uses a high-level description of the algorithm instead of
testing its one of the implementations.

» Takes into account all possible inputs.
 Allows one to evaluate the efficiency of any algorithm in a

way that is independent of the hardware and software
environment.




Pseudo-Code

* A mixture of natural language and high-level programming
concepts that describes the main ideas behind a generic
implementation of a data structure or algorithm.

* Eg: Algorithm ArrayMax(A, n):

Input: An array A storing n integers.
Output: The maximum element in A.
currentMax = A[O]
fori=1ton-1do
if currentMax < A[i] then currentMax = AJi]

return currentMax



Pseudo-Code

It is more structured than usual prose, but less formal than a
programming language.
* EXpressions:

» Use standard mathematical symbols to describe numeric
and boolean expressions

* Method Declarations:
* Algorithm name(param1, param?2)



Pseudo-Code

* Programming Constructs:

» decision structures: if .... then .... [else ....]

» while-loops: while .... do ....

* repeat-loops: repeat .... until ....

e for-loop: for ... do ....

- array indexing: A[i], A[i,j] [Only indicative, might be

different at different places]

* Methods:

» calls: object method(args)

* returns: return value

©



Analysis of Algorithms

* Primitive Operation: Low-level operation independent of
programming language.

» Can be identified in pseudo-code. For eqg:
» Data movement (assignment)
 Control (branch, subroutine call, return)

 Arithmetic and logical operations (e.g., addition,
comparison, etc.)

By inspecting the pseudo-code, we can count the number of
primitive operations executed by an algorithm.




The plan

 Sorting Algorithms
* InsertionSort: does it work and is it fast? -

* MergeSort: does it work and is it fast?
« Skills:

* Analyzing correctness of iterative and recursive algorithms.
* Analyzing running time of recursive algorithms

* How do we measure the runtime of an algorithm?
* Worst-case analysis
* Asymptotic Analysis




Sorting

* Important primitive
* For today, we’'ll pretend all elements are distinct.

6f4]afefr]sf2]7
1f2]sf4s]ef7]s




Insertion Sort 6|4|3|8|5

example

Start by moving A[1] toward
the beginning of the list until
you find something smaller

(or can’t go any further): Then move A[3].

6[4]3]8]5 3|4]6]8|5

4(6]3]8]|5 3|4]6]8|5
!

Then move A[2l: Then move AJ4]:

416 3|8]5 3/4]6[8]5
3]4]6[8]5 3|4 5/6]8

Then we are done!




Insertion Sort

1. Does it work?
2. Is it fast?




Insertion Sort

1. Does it work?

2. |s it fast? -




Insertion Sort: Running Time

» Claim:
 The running time is 0(n?)




Insertion Sort: Running Time

» Claim:
 The running time is 0(n?)

Verify this!




Analysis of Insertion Sort

forj=1ton-1do
key = Alj]
//Insert A[j] into the sorted
[/ISequence A[O,...,j-1]
i = j-1
while i>=0 and A[i]>key
do AJi+1] = AJi]
i

Ali+1] = key




Analysis of Insertion Sort

forj=1ton-1do
key = All]
//Insert A[j] into the sorted
[/ISequence A[O,...,j-1] n-1 iterations
| = J-1 = of the outer
while i>=0 and A[i]>key loop
do AJi+1] = AJi]

Ali+1] = key




Analysis of Insertion Sort

forj=1ton-1do )

key = A[j]
//Insert A[j] into the sorted
[/ISequence A[O,...,j-1] -1 iterations
| = -1 = of the outer
while i>=0 and A[i]>key In the worst loop

do Ali+1] = A[i] case, about n

- iterations of
his | |

Ali+1] = key this inner loop

/




Analysis of Insertion Sort

forj=1ton-1do )

key = A[j]
//Insert A[j] into the sorted
[/ISequence A[O,...,j-1] -1 iterations
| = -1 = of the outer
while i>=0 and A[i]>key In the worst loop

do Ali+1] = AJi] case, about n

- iterations of
his i |

Ali+1] = key this inner loop

J

Running time is 0(n*)




Analysis of Insertion Sort

forj=1ton-1do

key = All]

//Insert A[j] into the sorted

[/ISequence A[O,...,j-1]

i = j-1

while i>=0 and A[i]>key
do AJi+1] = AJi]

i

Ali+1] = key

Total time = n(c,+c,+C5+C,)+ Z?;ll tj(C4tCstCq) — (CotCytCstCgtCy)

times

n—1
j=1Y

P GTEY
P GTEEY
n-1

e



Analysis of Insertion Sort
Total time = n(c,+cy+Cstc, )+ X727 tj(C+Cs+Cg) — (Cp+CatCs+Cy+Cy)

Best case:
elements already sorted; t = 1, running time = f(n), i.e.,
linear time.

Worst case:
elements are sorted in inverse order; t. = |, running time =
f(n?), i.e., quadratic time.

Average case:
t =j/2, running time = f(n?), i.e., quadratic time.



Insertion Sort

1. Does it work? -

2. Is it fast?




Insertion Sort

1. Does it work? -

2. Is it fast?

¥« Okay, so it’s pretty obvious that it works.




Insertion Sort

1. Does it work? -

2. Is it fast?

3 . Okay, so it's pretty obvious that it works.

« HOWEVER! In the future it won't be so
obvious, so let’s take some time now to
see how we would prove this rigorously.




Insertion Sort: \WWhy does this work?

« Say you have a sorted list, BE , and another

element 5 1.

* Insert | O | right after the largest thing that’s still smaller than| 5

. (Aka, right after ).
* Then you get a sorted list: 5




Insertion Sort: So just use this logic at every step

The first element, [6], makes up a sorted list.
614[3]|8]5] ™" P maes up |
So correctly inserting 4 into the list [0]
.E.E. means that [4,6] becomes a sorted list.
. E.E The first two elements, [4,6], make up a sorted list.

So correctly inserting 3 into the list [4,0]

3 S
3 5
means that [3,4,6] becomes a sorted list.
5
3]4/6/8|5
S
S

The first three elements, [3,4,6], make up a sorted list.
3|4/6]8

So correctly inserting 8 into the list [3,4,6]

4

4

3
means that [3,4,6,8] becomes a sorted list.
EE The first four elements, [3,4,6,8], make up a sorted list.
-EE means that [3,4,5,6,8] becomes a sorted list.

So correctly inserting 5 into the list [3,4,6,8]
YAY WE ARE DONE!




Insertion Sort

Proof By
Induction!




Recall: proof by induction

* Maintain a loop invariant. A loop invariant is

» Proceed by induction. something that should be
true at every iteration.

* Four steps in the proof by induction:
* Inductive Hypothesis: The loop invariant holds after the it

iteration.
- Base case: the loop invariant holds before the 1st iteration.

* Inductive step: If the loop invariant holds after the i" iteration,
then it holds after the (i+1)st iteration

» Conclusion: If the loop invariant holds after the last iteration,
then we win.




Formally: induction A loop invariant” is

something that we maintain
at every iteration of the

* Loop invariant(i): A[O:i] is sorted. algorithm.

Inductive Hypothesis:
« The loop invariant(i) holds at the end of the it" iteration (of the outer loop).
Base case (i=0):
« Before the algorithm starts, A[0] is sorted. v
Inductive step:
« If the inductive hypothesis holds at step i-1, it holds at step i
« Aka, if A[O:i-1] is sorted at step i-1, then A[0O:i] is sorted at step |
Conclusion:

« At the end of the n-1'st iteration (aka, at the end of the algorit
 That’s what we wanted! /

A[O:n-1] = Ais sorted.

E E The first two elements, [4.6], make up a sorted list.
So correctly inserting 3 into the list [4,6] |
3 E E means that [3,4,6] becomes a sorted list. NS was
iteration i=2.




Correctness of Insertion Sort

 Inductive hypothesis. After iteration / of the outer loop, A[O:i] is
sorted.

« Base case. After iteration 0 of the outer loop (aka, before the
algorithm begins), the list A[0] contains only one element, and this
IS sorted.

* Inductive step. Suppose that the inductive hypothesis holds for i-
1, so A[0:i-1] is sorted after the i-1’st iteration. We want to show that
A[O:1] is sorted after the i’'th iteration.

« Suppose that k' element is the largest integerin {0, ..., i— 1}
such that A[k] < A[i]. Then the effect of the inner loop is to turn

[A[O], A[1], ... ,AIK], ..., Al — 1], Ali]]
Into
[A[O], A[1], . .., AIK], A[l], Ak + 1], . . ., Ali — 1]]



Correctness of Insertion Sort

* We claim that the following list is sorted:

[A[O], A[1], ..., A[k], A[ll, Alk + 1], . . ., Ali — 1]]

* This is because A[i] > A[k], and by the inductive hypothesis, we
have A[K] 2 A[j] for all j < k , and so AJi] is larger than everything that
IS positioned before it.

« Similarly, by the choice of k we have A[i] < Alk + 1] <A[j] for all j 2 k
+ 1, so AJ[i] is smaller than everything that comes after it. Thus, AJi]

IS in the right place. All of the other elements were already in the
right place, so this proves the claim.

* Thus, after the i’'th iteration completes, A[O:i] is sorted, and this
establishes the inductive hypothesis for i.



Correctness of Insertion Sort

* Conclusion. By induction, we conclude that the inductive
hypothesis holds for all i < n — 1. In particular, this implies that after
the end of the n—1’st iteration (after the algorithm ends) A[0:n-1] is
sorted.

» Since A[O:n-1] is the whole list, this means the whole list is sorted
when the algorithm terminates, which is what we were trying to
show.



What have we learned?

InsertionSort Is an algorithm that
correctly sorts an arbitrary n-element
array in time 0(n?).

Can we do better?




The plan

 Sorting Algorithms
* InsertionSort: does it work and is it fast?

* MergeSort: does it work and is it fast?
« Skills:

* Analyzing correctness of iterative and recursive algorithms.
* Analyzing running time of recursive algorithms

* How do we measure the runtime of an algorithm?
* Worst-case analysis
* Asymptotic Analysis




Can we do better?
* MergeSort: a divide-and-conguer approach
Big

Divide and problem
Conquier:

Smaller
problem

Smaller
problem

Recurse!

Yet smaller Yet smaller
problem problem

Recurse!

Yet smaller Yet smaller

problem problem




Can we do better?

6fa]afefr]sf2|7




Can we do better?

6fa]afefr]sf2|7




Can we do better?

6fa]afefr]sf2|7

6fafale| [rfs]2]7]
Recursivemagic! @~ Recursive ma gic!
3)afefs] [1]2]5]7

A A

verce [1 [2[3 456 [7]6




MergeSort Pseudocode

MERGESORT(A):
* n = length(A)
e if n < 1: If A has length 1,
* return A It is already sorted!

L= MERGESORT(A[O : (n/2)-1]) Sort the left half
« R=MERGESORT(A[n/2 : n-1])  Sort the right half
* return MERGE(L,R) Merge the two halves




What actually happens?

First, recursively break up the array all the way down to the base cases

BNBNNERN
el Lol
<4 Gl
HE BE

This array of length
1 is sorted!




What actually happens?

Then, merge them all back up!

n n Sorted sequence!
Merge!

3|4le]8




MergeSort

Two questions

1. Does this work?
2. Is it fast?

Empirically:
1. Seems to work.
2. Seems fast.




MergeSort: It works

* Inductive hypothesis: “In every
recursive call on an array of length at

most i, MERGESORT returns a sorted
array.”

- Base case (i=1): a 1-element array
IS always sorted.

* Inductive step: Need to show: If L
and R are sorted, then MERGE(L,R)
IS sorted.

* Conclusion: In the top recursive
call, MERGESORT returns a sorted
array.

Assume that n is a power of 2
for convenience.

« MERGESORT(A):
* n =length(A)
e ifn<1:
* return A
 L=MERGESORT(A[O : (n/2)-1])
* R=MERGESORT(A[N/2 : n-1])
* return MERGE(L,R)




MergeSQrt: It’s fast Assume that n is a power of 2

for convenience.

CLAIM:

MergeSort requires at most c*n (log(n) + 1)
operations to sort n numbers.

 How does this compare to InsertionSort?
 Recall InsertionSort used on the order of n? operations.




nlog(n) vs. n*? (Analytically)



nlog(n) vs. n*? (Analytically)

* log(n) “grows much more slowly” than n
* nlog(n) “grows much more slowly” than n?



Aside:
Quick log refresher

- Def: log(n) is the number so that 21°8() = .

* Intuition: log(n) is how many times you need to
divide n by 2 in order to get down to 1.

\32, 16, 8, 4, 2, 1} - |og(32) =5
|

Halve 5 times

*log(n) grows

64,32, 16,8,4,2,1 = |og(64) = 6
v very slowly!
Halve 6 times log(128) =7
log(256) = 8
log(512) =9




MergeSQrt: It’s fast Assume that n is a power of 2

for convenience.

Now let’'s prove the claim

CLAIM:

MergeSort requires at most c*n (log(n) + 1)
operations to sort n numbers.




MergeSort: Let's prove the claim

@ Level 0

Focus on just one of

these sub-problems \@ Levelt

0‘0‘0‘0’0‘0‘0’0’0’0
(Size 1)




MergeSort: Let's prove the claim

How much work in this sub-problem?

Time spent MERGE-
Ing the two
subproblems

o=

Time spent within the
two sub-problems




MergeSort: Let's prove the claim

How much work in this sub-problem?

Let k=n/2t... |
Time spent MERGE-

Ing the two
subproblems

o=

Time spent within the
two sub-problems




MergeSort &
How long does it

take to MERGE?

k/2 k{Z
( : \ ( \
STelels

vercer| 123 f4]s]6[7]8
|

K




MergeSort &
How long does it

take to MERGE?

About how many operations does it
take to run MERGE on two lists of

/ size k/27?




MergeSort

How long does it
take to MERGE?

« Time to initialize an array of size
Kk

* Plus the time to initialize three
counters

* Plus the time to increment two
of those counters k/2 times each

* Plus the time to compare two
values at least k times

* Plus the time to copy k values
from the existing array to the big
array.

 Plus...




MergeSort

How long does it
take to MERGE?

« Time to initialize an array of size

Kk ,
 Plus the time to initialize three Let's Say no more
counters than c*k
 Plus the time to increment two operations.

of those counters k/2 times each

* Plus the time to compare two
values at least k times

* Plus the time to copy k values
from the existing array to the big
array.

* Plus...




MergeSort: Recursion tree

There are c*k
operations done
at this node.

(Size 1)




MergeSort: Recursion tree "
@ L How many operations are done at this level
of the tree? (Just MERGE-ing subproblems).
@ 0 « How about at this level of the tree?
(between both n/2-sized problems)
There are c*k

@ @ O @SThis level?
_ . operations done

e®e ®
(Size 1)




MergeSort: Recursion tree

# Seifir? ' Amount of work
Level problems oroblem at this level

1 n c*n

2 n/2 c'n

4 n/4 c'n

2t n/2t c*n

Note: At the lowest level we only
have two operations per problem,
to get the length of the array and
compare it to 1.

2*n = ¢*n




MergeSort: Total runtime...

*c*n steps per level, at every level

*log(n) + 1 levels

c*n (log(n) + 1) steps total

That was the claim!




What have we learned?

* MergeSort correctly sorts a list of n integers in at
most c*n(log(n) + 1) operations.
* C is roughly 11




A few reasons to be grumpy

 Sorting

1f2]3f4]s]ef7]8

should take zero steps...




How we will deal
with grumpiness

* Take a deep breath...
* Worst case analysis

* Asymptotic notation

THIS APPROACH
MAKESNO.SENSE
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Thank You
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