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DISCLAIMER

The content (text, image, and graphics) used in this slide are 

adopted from many sources for academic purposes. Broadly, the 

sources have been given due credit appropriately. However, 

there is a chance of missing out some original primary sources. 

The authors of this material do not claim any copyright of such 

material. 
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1. Data Structures and Algorithm Analysis in C (DSAC) by Mark 

Allen Weiss, Second Edition

2. Data Structures, S. Lipschutz, Schaum’s Outline Series

3. Introduction to Algorithms by Thomas H. Cormen, Charles E. 

Leiserson, Ronald L. Rivest and Clifford Stein, Third Edition, 

The MIT Press

… and many more options

Books
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• Only C language is allowed
• It facilitates the development of better programming skills

Language
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• All class work is to be done independently.

• It is best to try to solve problems on your own, since problem solving is an important component 
of the course, and exam problems are often based on the outcome of the assignment 
problems.

• You are allowed to discuss class material, assignment problems, and general solution 
strategies with your classmates. But, when it comes to formulating or writing solutions or writing 
codes, you must work alone.

• You are not allowed to take the codes from any source, including online, books, your 
classmate, etc. in the home works and exams.

• You may use free and publicly available sources (at idea level only), such as books, journal and 
conference publications, and web pages, as research material for your answers. (You will not 
lose marks for using external sources.)

• You may not use any paid service and you must clearly and explicitly cite all outside sources 
and materials that you made use of.

• I consider the use of uncited external sources as portraying someone else's work as your own, 
and as such it is a violation of the Institute's policies on academic dishonesty.

• Instances will be dealt with harshly and typically result in a failing course grade.

• Cheating cases will attract severe penalties.

Course Ethics
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Hashing and Graphs!

Graph



• Algorithm:

• Outline, the essence of a computational procedure, step-by-step 

instructions

• Program:

• An implementation of an algorithm in some programming 

language

• Data Structure:

• Organization of data needed to solve the problem

Data Structure and Algorithms
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• Infinite number of input instances satisfying the input specification. 

• For eg: A sorted, non-decreasing sequence of natural numbers of 

non-zero, finite length: 

• 1, 15, 20, 300, 845, 9876

• 56, 67, 100

• 88

Algorithmic problem

8

Specification 

of Input

Specification of 

output as a 

function of 

input

?



• Algorithm describes actions on the input instance

• Infinitely many correct algorithms for the same algorithmic problem

Algorithmic solution

9

Input instance, 

adhering to the 

specification

Output related 

to the input as 

required

Algorithm



• Efficient

• Running time

• Spaces used

• Efficiency as a function of input size

• The number of bits in an input number

• Number of data elements (numbers, points)

What is a good algorithm
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• How should we measure the running

  time of an algorithm?

• Experimental study

• Write a program that implement the algorithm

• Run the program with data sets of varying size and 

composition

• Use the system time clock method to get an accurate 

measure of the actual running time

Measuring the Running Time
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• It is necessary to implement and test the algorithm in order 

to determine its running time.

• Experiments can be done on a limited set of inputs, and 

may not be indicative of the running time on other inputs 

not included in the experiment.

• In order to compare to algorithms, the same hardware and 

software environments should be used. 

Limitations of Experimental Studies
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We will develop a general methodology for analyzing running 

time of algorithms. This approach

• Uses a high-level description of the algorithm instead of 

testing its one of the implementations.

• Takes into account all possible inputs.

• Allows one to evaluate the efficiency of any algorithm in a 

way that is independent of the hardware and software 

environment.

Beyond Experimental Studies
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• A mixture of natural language and high-level programming 

concepts that describes the main ideas behind a generic 

implementation of a data structure or algorithm.

• Eg: Algorithm ArrayMax(A, n):

    Input: An array A storing n integers.

    Output: The maximum element in A.

    currentMax = A[0]

    for i = 1 to n-1 do

       if currentMax < A[i] then currentMax = A[i]

    return currentMax

Pseudo-Code
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It is more structured than usual prose, but less formal than a 

programming language.

• Expressions:

• Use standard mathematical symbols to describe numeric 

and boolean expressions

• Method Declarations:

• Algorithm name(param1, param2)

Pseudo-Code
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• Programming Constructs:

• decision structures: if …. then …. [else ….] 

• while-loops: while …. do ….  

• repeat-loops: repeat …. until ….

• for-loop: for … do ….

• array indexing: A[i], A[i,j]

• Methods:

• calls: object method(args)

• returns: return value

Pseudo-Code
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[Only indicative, might be 
different at different places]



• Primitive Operation: Low-level operation independent of 

programming language.

• Can be identified in pseudo-code. For eg: 

• Data movement (assignment) 

• Control (branch, subroutine call, return)

• Arithmetic and logical operations (e.g., addition, 

comparison, etc.)

• By inspecting the pseudo-code, we can count the number of 

primitive operations executed by an algorithm.

Analysis of Algorithms
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• Sorting Algorithms
• InsertionSort: does it work and is it fast?

• MergeSort: does it work and is it fast?

• Skills:
• Analyzing correctness of iterative and recursive algorithms.

• Analyzing running time of recursive algorithms

• How do we measure the runtime of an algorithm?
• Worst-case analysis

• Asymptotic Analysis

18

The plan



• Important primitive

• For today, we’ll pretend all elements are distinct.

6 4 3 8 1 5 2 7

1 2 3 4 5 6 7 8
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Sorting



46 3 8 5

64 3 8 5

64 3 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 5 6 8

Start by moving A[1] toward 

the beginning of the list until 

you find something smaller 

(or can’t go any further):

Then move A[2]:

Then move A[3]:

Then move A[4]:

Then we are done!

46 3 8 5

20

Insertion Sort 
example



1. Does it work?

2. Is it fast?

21

Insertion Sort



1. Does it work?

2. Is it fast?
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Insertion Sort



• Claim: 

• The running time is 𝑂 𝑛2

23

Insertion Sort: Running Time



• Claim: 

• The running time is 𝑂 𝑛2
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Insertion Sort: Running Time

Verify this!



for j = 1 to n-1 do 

    key = A[j]  

    //Insert A[j] into the sorted 

    //Sequence A[0,…,j-1]  

    i = j-1     

    while i>=0 and A[i]>key  

        do A[i+1] = A[i]   

             i--     

    A[i+1] = key    

25

Analysis of Insertion Sort



for j = 1 to n-1 do 

    key = A[j]  

    //Insert A[j] into the sorted 

    //Sequence A[0,…,j-1]  

    i = j-1     

    while i>=0 and A[i]>key  

        do A[i+1] = A[i]   

             i--     

    A[i+1] = key    
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Analysis of Insertion Sort

n-1 iterations 

of the outer 

loop



for j = 1 to n-1 do 

    key = A[j]  

    //Insert A[j] into the sorted 

    //Sequence A[0,…,j-1]  

    i = j-1     

    while i>=0 and A[i]>key  

        do A[i+1] = A[i]   

             i--     

    A[i+1] = key    
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Analysis of Insertion Sort

n-1 iterations 

of the outer 

loopIn the worst 

case, about n 

iterations of 

this inner loop



for j = 1 to n-1 do 

    key = A[j]  

    //Insert A[j] into the sorted 

    //Sequence A[0,…,j-1]  

    i = j-1     

    while i>=0 and A[i]>key  

        do A[i+1] = A[i]   

             i--     

    A[i+1] = key    

28

Analysis of Insertion Sort

n-1 iterations 

of the outer 

loopIn the worst 

case, about n 

iterations of 

this inner loop

Running time is 𝑂 𝑛2



for j = 1 to n-1 do    c1  n

    key = A[j]     c2  n-1

    //Insert A[j] into the sorted  0  n-1

    //Sequence A[0,…,j-1]   0  n-1

    i = j-1      c3  n-1

    while i>=0 and A[i]>key   c4  σ𝑗=1
𝑛−1 𝑡𝑗

        do A[i+1] = A[i]    c5  σ𝑗=1
𝑛−1(𝑡𝑗−1)

             i--      c6  σ𝑗=1
𝑛−1(𝑡𝑗−1)

    A[i+1] = key     c7  n-1

Total time = n(c1+c2+c3+c7)+ σ𝑗=1
𝑛−1 𝑡𝑗(c4+c5+c6) – (c2+c3+c5+c6+c7)

29

Analysis of Insertion Sort
Cost        times



Total time = n(c1+c2+c3+c7)+ σ𝑗=1
𝑛−1 𝑡𝑗(c4+c5+c6) – (c2+c3+c5+c6+c7)

Best case: 

 elements already sorted; tj = 1, running time = f(n), i.e., 

linear time.

Worst case: 

 elements are sorted in inverse order; tj = j, running time = 

f(n2), i.e., quadratic time.

Average case: 

 tj = j/2, running time = f(n2), i.e., quadratic time.

30

Analysis of Insertion Sort



1. Does it work?

2. Is it fast?

31

Insertion Sort



1. Does it work?

2. Is it fast?

32

Insertion Sort

• Okay, so it’s pretty obvious that it works.



1. Does it work?

2. Is it fast?
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Insertion Sort

• Okay, so it’s pretty obvious that it works.

• HOWEVER!  In the future it won’t be so 
obvious, so let’s take some time now to 
see how we would prove this rigorously.



• Say you have a sorted list,                             ,  and another 

element       .

• Insert         right after the largest thing that’s still smaller than        

.  (Aka, right after        ). 

• Then you get a sorted list:

43 6 8

5

5

43 6 85

5

4

34

Insertion Sort: Why does this work?



The first element, [6], makes up a sorted list.

So correctly inserting 4 into the list [6] 

means that [4,6] becomes a sorted list.

The first two elements, [4,6], make up a sorted list.

The first three elements, [3,4,6], make up a sorted list.

So correctly inserting 3 into the list [4,6] 

means that [3,4,6] becomes a sorted list.

So correctly inserting 8 into the list [3,4,6] 

means that [3,4,6,8] becomes a sorted list.

The first four elements, [3,4,6,8], make up a sorted list.

46 3 8 54 3 8 5

64 3 8 5

64 3 8 5

4 63 8 5

43 6 8 5

43 6 85

43 6 8 5

43 6 8 5
So correctly inserting 5 into the list [3,4,6,8] 

means that [3,4,5,6,8] becomes a sorted list.

YAY WE ARE DONE! 35

Insertion Sort: So just use this logic at every step



Proof By

Induction!

36

Insertion Sort



• Maintain a loop invariant.

• Proceed by induction.

• Four steps in the proof by induction:
• Inductive Hypothesis: The loop invariant holds after the ith  

iteration.

• Base case: the loop invariant holds before the 1st iteration.

• Inductive step: If the loop invariant holds after the ith iteration, 
then it holds after the (i+1)st iteration

• Conclusion: If the loop invariant holds after the last iteration, 
then we win.

A loop invariant is 

something that should be 

true at every iteration.

37

Recall: proof by induction



• Loop invariant(i): A[0:i] is sorted.

• Inductive Hypothesis:  
• The loop invariant(i) holds at the end of the ith iteration (of the outer loop).

• Base case (i=0):  
• Before the algorithm starts, A[0] is sorted. ✓

• Inductive step:  
• If the inductive hypothesis holds at step i-1, it holds at step i
• Aka, if A[0:i-1] is sorted at step i-1, then A[0:i] is sorted at step i

• Conclusion: 
• At the end of the n-1’st iteration (aka, at the end of the algorithm), A[0:n-1] = A is sorted.  
• That’s what we wanted! ✓

The first two elements, [4,6], make up a sorted list.

So correctly inserting 3 into the list [4,6] 

means that [3,4,6] becomes a sorted list.

64 3 8 5

4 63 8 5

A “loop invariant” is 

something that we maintain 

at every iteration of the 

algorithm.

This was 

iteration i=2. 38

Formally: induction



• Inductive hypothesis. After iteration i of the outer loop, A[0:i] is 

sorted. 

• Base case. After iteration 0 of the outer loop (aka, before the 

algorithm begins), the list A[0] contains only one element, and this 

is sorted. 

• Inductive step. Suppose that the inductive hypothesis holds for i-

1, so A[0:i-1] is sorted after the i-1’st iteration. We want to show that 

A[0:i] is sorted after the i’th iteration. 

• Suppose that kth element is the largest integer in {0, . . . , i − 1} 

such that A[k] < A[i]. Then the effect of the inner loop is to turn 

        [A[0], A[1], . . . , A[k], . . . , A[i − 1], A[i]] 

   into 

 [A[0], A[1], . . . , A[k], A[i], A[k + 1], . . . , A[i − 1]] 39

Correctness of Insertion Sort



• We claim that the following list is sorted: 

 [A[0], A[1], . . . , A[k], A[i], A[k + 1], . . . , A[i − 1]]

• This is because A[i] > A[k], and by the inductive hypothesis, we 

have A[k] ≥ A[j] for all j ≤ k , and so A[i] is larger than everything that 

is positioned before it. 

• Similarly, by the choice of k we have A[i] ≤ A[k + 1] ≤ A[j] for all j ≥ k 

+ 1, so A[i] is smaller than everything that comes after it. Thus, A[i] 

is in the right place. All of the other elements were already in the 

right place, so this proves the claim. 

• Thus, after the i’th iteration completes, A[0:i] is sorted, and this 

establishes the inductive hypothesis for i.

40

Correctness of Insertion Sort



• Conclusion. By induction, we conclude that the inductive 

hypothesis holds for all i ≤ n − 1. In particular, this implies that after 

the end of the n−1’st iteration (after the algorithm ends) A[0:n-1] is 

sorted. 

• Since A[0:n-1] is the whole list, this means the whole list is sorted 

when the algorithm terminates, which is what we were trying to 

show.

41

Correctness of Insertion Sort



InsertionSort is an algorithm that 
correctly sorts an arbitrary n-element 

array in time 𝑂 𝑛2 .

Can we do better?
42

What have we learned?



• Sorting Algorithms
• InsertionSort: does it work and is it fast?

• MergeSort: does it work and is it fast?

• Skills:
• Analyzing correctness of iterative and recursive algorithms.

• Analyzing running time of recursive algorithms

• How do we measure the runtime of an algorithm?
• Worst-case analysis

• Asymptotic Analysis

43

The plan



• MergeSort: a divide-and-conquer approach

Big 

problem

Smaller 

problem
Smaller 

problem

Yet smaller 

problem

Yet smaller 

problem

Yet smaller 

problem

Yet smaller 

problem

Recurse!

Divide and 

Conquer:

Recurse!

44

Can we do better?



6 4 3 8 1 5 2 7
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Can we do better?



6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

46

Can we do better?



1

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

3 4 6 8 1 2 5 7

2 3 4 5 6 7 8

Recursive magic!Recursive magic!

MERGE!

47

Can we do better?



• n = length(A)

• if n ≤ 1:
• return A

• L = MERGESORT(A[0 : (n/2)-1])

• R = MERGESORT(A[n/2 : n-1])

• return MERGE(L,R)

MERGESORT(A):

If A has length 1,

It is already sorted!

Sort the right half

Sort the left half

Merge the two halves

48

MergeSort Pseudocode



First, recursively break up the array all the way down to the base cases

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

This array of length 

1 is sorted! 49

What actually happens?



64 3 8 1 5 2 7

1 2 5 73 4 6 8

1 2 3 4 5 6 7 8

Merge!Merge!Merge!Merge!

Merge! Merge!

Merge!

4 3 8 1 5 2 76

A bunch of sorted lists of length 1 (in the order of the original sequence).

Sorted sequence!

50

Then, merge them all back up!

What actually happens?



Two questions

1. Does this work?

2. Is it fast?

Empirically: 
1. Seems to work. 

2. Seems fast.

51

MergeSort



• Inductive hypothesis: “In every 
recursive call on an array of length at 
most i, MERGESORT returns a sorted 
array.”

• Base case (i=1): a 1-element array 
is always sorted.

• Inductive step: Need to show: If L 
and R are sorted, then MERGE(L,R) 
is sorted.

• Conclusion: In the top recursive 
call, MERGESORT returns a sorted 
array.

• MERGESORT(A):

• n = length(A)

• if n ≤ 1:

• return A

• L = MERGESORT(A[0 : (n/2)-1])

• R = MERGESORT(A[n/2 : n-1])

• return MERGE(L,R)

Assume that n is a power of 2 

for convenience.

52

MergeSort: It works



CLAIM:

MergeSort requires at most c*n (log(n) + 1) 
operations to sort n numbers.

• How does this compare to InsertionSort?
• Recall InsertionSort used on the order of 𝑛2 operations.

53

MergeSort: It’s fast Assume that n is a power of 2 

for convenience.



𝑛 log 𝑛  vs. 𝑛2?  (Analytically)
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𝑛 log 𝑛  vs. 𝑛2?  (Analytically)

• log 𝑛  “grows much more slowly” than 𝑛

• 𝑛 log 𝑛  “grows much more slowly” than 𝑛2

55



Quick log refresher
• Def: log(n) is the number so that 2log 𝑛 = 𝑛.

• Intuition: log(n) is how many times you need to 
divide n by 2 in order to get down to 1.

32, 16, 8, 4, 2, 1 log(32) = 5

64, 32, 16, 8, 4, 2, 1 log(64) = 6

log(128) = 7

log(256) = 8 

log(512) = 9

….

log(# particles in the universe) < 280

Halve 5 times

Halve 6 times

⇒

⇒
• log(n) grows 
very slowly!

Aside:
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Now let’s prove the claim

CLAIM:

MergeSort requires at most c*n (log(n) + 1) 
operations to sort n numbers.

57

MergeSort: It’s fast Assume that n is a power of 2 

for convenience.



Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…Focus on just one of 

these sub-problems

Level 0

Level 1

Level t

58

MergeSort: Let’s prove the claim



How much work in this sub-problem?

n/2t

n/2t+1 n/2t+1

Time spent MERGE-

ing the two 

subproblems

Time spent within the 

two sub-problems

+

59

MergeSort: Let’s prove the claim



k

k/2 k/2
Time spent within the 

two sub-problems

Let k=n/2t…

60

Time spent MERGE-

ing the two 

subproblems

+

How much work in this sub-problem?

MergeSort: Let’s prove the claim



1

How long does it 
take to MERGE?

3 4 6 8 1 2 5 7

2 3 4 5 6 7 8MERGE!

k

k/2 k/2

k/2k/2

k 61

MergeSort



k

k/2 k/2

About how many operations does it 

take to run MERGE on two lists of 

size k/2?

62

How long does it 
take to MERGE?

MergeSort



k

k/2 k/2

• Time to initialize an array of size 

k

• Plus the time to initialize three 

counters

• Plus the time to increment two 

of those counters k/2 times each

• Plus the time to compare two 

values at least k times

• Plus the time to copy k values 

from the existing array to the big 

array.

• Plus… 63

How long does it 
take to MERGE?

MergeSort



k

k/2 k/2

64

How long does it 
take to MERGE?

MergeSort

Let’s say no more 

than c*k 

operations.

• Time to initialize an array of size 

k

• Plus the time to initialize three 

counters

• Plus the time to increment two 

of those counters k/2 times each

• Plus the time to compare two 

values at least k times

• Plus the time to copy k values 

from the existing array to the big 

array.

• Plus…



Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

65

MergeSort:

k

k/2 k/2

There are c*k 

operations done 

at this node.  



Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

How many operations are done at this level 

of the tree?  (Just MERGE-ing subproblems).

How about at this level of the tree?

(between both n/2-sized problems)

This level?

This level?

k

k/2 k/2

There are c*k 

operations done 

at this node.  

66

Recursion treeMergeSort:



…

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

Level

Amount of work 

at this level

0

# 

problems

1

2

t

log(n)

1

2

4

2t

n

Size of 

each

problem

n

n/2

n/4

n/2t

1

c*n

c*n

c*n

c*n

2*n =̃ c*n

…
Note: At the lowest level we only 

have two operations per problem, 

to get the length of the array and 

compare it to 1.

67

Recursion treeMergeSort:



• c*n steps per level, at every level

• log(n) + 1 levels

•c*n (log(n) + 1) steps total

That was the claim! 

68

MergeSort: Total runtime…



• MergeSort correctly sorts a list of n integers in at 

most c*n(log(n) + 1) operations.

• c is roughly 11

69

What have we learned?



A few reasons to be grumpy

• Sorting

 should take zero steps…

1 2 3 4 5 6 7 8

70



How we will deal 
with grumpiness

• Take a deep breath…

• Worst case analysis

• Asymptotic notation

71



• Stanford University

• IIT Delhi

72

Acknowledgement



Thank You

73


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: First, recursively break up the array all the way down to the base cases
	Slide 50
	Slide 51: Two questions
	Slide 52
	Slide 53
	Slide 54: n log open paren n , close paren  vs. n squared?  (Analytically)
	Slide 55: n log open paren n , close paren  vs. n squared?  (Analytically)
	Slide 56: Quick log refresher
	Slide 57: Now let’s prove the claim
	Slide 58
	Slide 59: How much work in this sub-problem?
	Slide 60: How much work in this sub-problem?
	Slide 61: How long does it take to MERGE?
	Slide 62: How long does it take to MERGE?
	Slide 63: How long does it take to MERGE?
	Slide 64: How long does it take to MERGE?
	Slide 65: Recursion tree
	Slide 66: Recursion tree
	Slide 67: Recursion tree
	Slide 68
	Slide 69
	Slide 70: A few reasons to be grumpy
	Slide 71: How we will deal with grumpiness
	Slide 72
	Slide 73: Thank You

