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DISCLAIMER

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly,

the sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.
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THE GREEDY PARADIGM

Commit to choices one-at-a-time,

never look back,
and hope for the best.

Greedy doesn’t always work.
And when it does, it’s not always easy to see & prove why it works.
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A STRATEGY FOR GREEDY PROOFS

Prove that after each choice, you’re not ruling out success. 
(i.e. you’re not ruling out finding an optimal solution) 

● INDUCTIVE HYPOTHESIS: After greedy choice t, you haven’t ruled out success

● BASE CASE: Success is possible before you make any choices

● INDUCTIVE STEP: If you haven’t ruled out success after choice t, then show that 
you won’t rule out success after choice t+1 (there’s an optimal solution that’s 
consistent with the choices we’ve made so far)

● CONCLUSION: If you reach the end of the algorithm and haven’t ruled out success 
then you must have succeeded.
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WHAT WE’LL COVER TODAY

● Applications of the greedy algorithm design paradigm to Minimum Spanning Trees

○ Prim’s algorithm

○ Kruskal’s algorithm
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MINIMUM 
SPANNING TREES

What are minimum spanning trees (MSTs)?  
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TREES IN GRAPHS
Let’s go over some terminology that we’ll be using today.

A tree is an undirected, acyclic, connected graph.

Which of these graphs are trees?
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TREES IN GRAPHS

This single node 
is technically a 

valid tree!

Let’s go over some terminology that we’ll be using today.

A tree is an undirected, acyclic, connected graph.

Which of these graphs are trees?

Contains cycle Contains cycle

Contains cycle
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Which of these graphs are spanning trees?

SPANNING TREES

A spanning tree is a tree that connects all of the vertices in the graph
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SPANNING TREES

Which of these graphs are spanning trees?

A spanning tree is a tree that connects all of the vertices

Doesn’t connect all vertices

Not a tree

Not a tree

Not a tree Doesn’t connect all vertices
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MINIMUM SPANNING TREES (MSTs)
For the remainder of today, we’re going to work with undirected, weighted, connected graphs.

The cost of a spanning tree is the sum of the weights on the edges.

An MST of a graph is a spanning tree of the graph with minimum cost.
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MINIMUM SPANNING TREES (MSTs)
For the remainder of today, we’re going to work with undirected, weighted, connected graphs.

Note: A graph may have 
multiple spanning trees. 

It may also have multiple MSTs 
(if 2 different spanning trees 

have the same exact cost)

The cost of a spanning tree is the sum of the weights on the edges.

An MST of a graph is a spanning tree of the graph with minimum cost.
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MINIMUM SPANNING TREES (MSTs)
For the remainder of today, we’re going to work with undirected, weighted, connected graphs.

The cost of a spanning tree is the sum of the weights on the edges.

An MST of a graph is a spanning tree of the graph with minimum cost.

Note: A graph may have 
multiple spanning trees. 

It may also have multiple MSTs 
(if 2 different spanning trees 

have the same exact cost)
This spanning tree 

has a cost of 67.
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MINIMUM SPANNING TREES (MSTs)
For the remainder of today, we’re going to work with undirected, weighted, connected graphs.

The cost of a spanning tree is the sum of the weights on the edges.

An MST of a graph is a spanning tree of the graph with minimum cost.

Note: A graph may have 
multiple spanning trees. 

It may also have multiple MSTs 
(if 2 different spanning trees 

have the same exact cost)

This spanning tree 
has a cost of 37.

This is an MST of this graph, 
since there is no other spanning 

tree with smaller cost.
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MINIMUM SPANNING TREES (MSTs)

The task for today:
Given an undirected, weighted, and connected graph G, 

find the minimum spanning tree (as a subset of the G’s edges)

We would return this MST. 
Sometimes, there may be 

more than one MST as well, 
so return any MST of G.
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APPLICATIONS OF MSTs

Network design

Find the most cost-effective 
way to connect cities with 

roads/water/electricity/phone

Image processing

Image segmentation, which finds 
connected regions in the image with 

minimal differences

Cluster analysis

Find clusters in a dataset (one of the 
algorithms we’ll see can be modified 

slightly to basically do this)

Useful primitive

Finding an MST is often useful as a 
subroutine or approximation for 

more advanced graph algorithms 
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MINIMUM SPANNING TREES (MSTs)

Before we move on with the lecture… why don’t you give this a try?
Brainstorm some greedy algorithms to find an MST!
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A BRIEF ASIDE:
CUTS & “LIGHT” EDGES

What are cuts in graphs? And what can they tell us about MSTs?
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CUTS IN GRAPHS

A cut is a partition of the vertices into two nonempty parts.
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CUTS IN GRAPHS

A cut is a partition of the vertices into two nonempty parts.

4

8

1 2

6
7

11

10

14

9

4

78

2

B C

E

D

G F

A

H

I
e.g. this is the 
cut “{A,B,D,E} 

and
{C,I,F,G,H}”
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CUTS IN GRAPHS

A cut is a partition of the vertices into two nonempty parts.
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e.g. this is the 
cut “{B,D,H,F} 

and
{A,C,I,G,E}”
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CUTS IN GRAPHS
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We say a cut respects a set of edges S if no edges in S cross the cut

A cut is a partition of the vertices into two nonempty parts.
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CUTS IN GRAPHS

This cut 
respects this 
orange set of 

edges!
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We say a cut respects a set of edges S if no edges in S cross the cut

A cut is a partition of the vertices into two nonempty parts.
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CUTS IN GRAPHS

This cut 
respects this 
orange set of 

edges!
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An edge is light if it has the smallest weight of any edge crossing the cut

A cut is a partition of the vertices into two nonempty parts.

This edge is light

24



AN IMPORTANT LEMMA

This edge 
is light
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LEMMA: Consider a cut that respects a set of edges S. 
Suppose there exists an MST T* containing S. Let (u,v) be a light edge crossing this cut.

Then, there exists an MST containing S∪ {(u,v)}.
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AN IMPORTANT LEMMA

This edge 
is light
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7Before we prove this, why is 
this lemma important?

This is exactly the kind of statement 
we want for a greedy algorithm: If we 

haven’t ruled out the possibility of 
success so far, then adding a light 
edge still won’t rule out success!

We’ll see how this can translate to an 
algorithm later… let’s prove this first!

LEMMA: Consider a cut that respects a set of edges S. 
Suppose there exists an MST T* containing S. Let (u,v) be a light edge crossing this cut.

Then, there exists an MST containing S∪ {(u,v)}.
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PROOF OF LEMMA
LEMMA: Consider a cut that respects a set of edges S. 

Suppose there exists an MST T* containing S. Let (u,v) be a light edge crossing this cut.
Then, there exists an MST containing S∪ {(u,v)}.

Suppose (u,v) is not in T* .
If it is, then trivially, T* is an MST containing S∪ {(u,v)}.

Adding (u,v) to T* will make a cycle.
Since T* is an MST, we know that there must be an edge in T* crossing the 
cut (in order to connect nodes on opposite sides of the cut).
Call this edge (x,y).

If we replace (x,y) with (u,v) in T* , we end up with an MST T.
Why is T still an MST? Well, since T* was a tree, and we also delete (x,y), 
then T must also be a tree (no cycles). Since (u,v) is light, then T has at most 
the cost of T*, so T is also optimal.

Thus, there exists an MST (T) containing S∪ {(u,v)}
Suppose this is 

a light edge 
crossing the cut
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AN IMPORTANT LEMMA

We’ll see two famous MST algorithms which each have their 
own way of greedily claiming the next light edge.

We’ll keep this lemma in mind when working out the proofs of 
correctness for each of the algorithms!

LEMMA: Consider a cut that respects a set of edges S. 
Suppose there exists an MST T* containing S. Let (u,v) be a light edge crossing this cut.

Then, there exists an MST containing S∪ {(u,v)}.
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PRIM’S ALGORITHM

Greedily add the closest vertex!
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PRIM’S ALGORITHM: THE IDEA
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Greedy choice: 
Grow a single tree, & greedily add the shortest edge that could grow our tree 
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PRIM’S ALGORITHM: THE IDEA
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First, we can 

initialize our tree 
to contain a single 
arbitrary node in G 
(doesn’t matter which node)

Greedy choice: 
Grow a single tree, & greedily add the shortest edge that could grow our tree 
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 

4

8

1 2

6
7

11

10

14

9

4

78

2

B C

E

D

G F

A

H

I
Consider the 

edges coming out 
of the “frontier” of 
our growing tree.

32



PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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Claim the edge 

coming out of the 
“frontier” with the 

smallest weight
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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smallest weight
(if there’s a tie, choose any)
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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Consider the edges 
coming out of the 
“frontier” of our 

growing tree.
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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Claim the edge 

coming out of the 
“frontier” with the 

smallest weight
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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Consider the edges 
coming out of the 
“frontier” of our 

growing tree.
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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Claim the edge 

coming out of the 
“frontier” with the 

smallest weight
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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Consider the edges 
coming out of the 
“frontier” of our 

growing tree.
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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Claim the edge 

coming out of the 
“frontier” with the 

smallest weight
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PRIM’S ALGORITHM: THE IDEA
Greedy choice: 

Grow a single tree, & greedily add the shortest edge that could grow our tree 
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And we’re done!
This is our MST.
(with weight 37)
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PRIM’S ALGORITHM: SLOW VERSION

NAIVE_PRIM(G = (V,E), s):

MST = {}       

visited = {s}

while len(visited) < n:

find the lightest edge (x,v) in E s.t. 

● x in visited

● v not in visited

MST.add((x,v))

visited.add(v)

return MST

If we manually find the 
lightest edge each 

iteration, it could be O(m) 
time per iteration..

(Naive) Runtime: O(nm)
(We’ll speed this up by using smart data structures...)
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PRIM’S ALGORITHM: SLOW VERSION

NAIVE_PRIM(G = (V,E), s):

MST = {}       

visited = {s}

while len(visited) < n:

find the lightest edge (x,v) in E s.t. 

● x in visited

● v not in visited

MST.add((x,v))

visited.add(v)

return MST

If we manually find the 
lightest edge each 

iteration, it could be O(m) 
time per iteration..

(Naive) Runtime: O(nm)
(We’ll speed this up by using smart data structures...)

How should we actually implement this? 

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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HOW DO WE IMPLEMENT THIS?

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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A is part of the 
growing tree first
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HOW DO WE IMPLEMENT THIS?

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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unvisited node

current node

visited node

∞
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∞

∞
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0Now that A got 
added, see if any of 

its neighbors are 
closer to the tree 

because of it!
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HOW DO WE IMPLEMENT THIS?

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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unvisited node

current node

visited node
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Update their 
estimates, and now 
A is officially done. 

Time to choose the 
lightest edge on the 

frontier (i.e. the edge 
whose endpoint has the 
lowest distance stored)
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HOW DO WE IMPLEMENT THIS?

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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B is the closest 
node to the 

growing tree. 

Since we recorded 
how to get to the tree 

from B, we know 
which edge to add.
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HOW DO WE IMPLEMENT THIS?

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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Now that B is 

reached by the tree, 
see if any of its 
neighbors are 

closer to the tree 
because of it!
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HOW DO WE IMPLEMENT THIS?

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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Update their 
estimates, and now 
B is officially done. 

Time to choose the 
lightest edge on the 

frontier (i.e. the edge 
whose endpoint has the 
lowest distance stored)
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HOW DO WE IMPLEMENT THIS?

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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C is the closest 
node to the 

growing tree. 
(technically a tie, but let’s choose C)

Since we recorded 
how to get to the tree 

from C, we know 
which edge to add.
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HOW DO WE IMPLEMENT THIS?

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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Now that C is 

reached by the tree, 
see if any of its 
neighbors are 

closer to the tree 
because of it!
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HOW DO WE IMPLEMENT THIS?

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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Update their 
estimates, and now C 

is officially done. 

Time to choose the 
lightest edge on the 

frontier (i.e. the edge 
whose endpoint has the 
lowest distance stored)
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HOW DO WE IMPLEMENT THIS?

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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I is the closest 
node to the 

growing tree. 

Since we recorded 
how to get to the tree 
from I, we know which 

edge to add.
61



HOW DO WE IMPLEMENT THIS?

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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Now that I is 

reached by the tree, 
see if any of its 
neighbors are 

closer to the tree 
because of it!
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HOW DO WE IMPLEMENT THIS?

Each vertex that’s not yet reached by the growing tree keeps track of:
1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that’s reached by the tree already)
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Update their 
estimates, and now I 

is officially done. 

Time to choose the 
lightest edge on the 

frontier (i.e. the edge 
whose endpoint has the 
lowest distance stored)
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PRIM’S ALGORITHM: PSEUDOCODE

PRIM(G = (V,E), s):
MST = {}       
visited = {s}
for all v besides s: d[v] = ∞ and k[v] = NULL
for each neighbor v of s: d[v] = w(s,v) and k[v] = s
while len(visited) < n:

x = unvisited vertex v with smallest d[v] value
MST.add((K[x], x))
for each unreached neighbor v of x: 

d[v] = min(w(x,v), d[v])
if d[v] was updated: k[v] = x

visited.add(x)
return MST

k[v] stores the the node in the 
growing tree that is closest to v 

(using one edge)

Runtime (using RB-Tree): O(m log n)
(Exact same structure as Dijkstra!  We will see, Dijkstra’s runtime depends on the data structure used for a priority queue.)
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PRIM’S ALGORITHM: PSEUDOCODE

PRIM(G = (V,E), s):
MST = {}       
visited = {s}
for all v besides s: d[v] = ∞ and k[v] = NULL
for each neighbor v of s: d[v] = w(s,v) and k[v] = s
while len(visited) < n:

x = unvisited vertex v with smallest d[v] value
MST.add((K[x], x))
for each unreached neighbor v of x: 

d[v] = min(w(x,v), d[v])
if d[v] was updated: k[v] = x

visited.add(x)
return MST

k[v] stores the the node in the 
growing tree that is closest to v 

(using one edge)

Runtime (using Fibonacci Heap): O(m + n log n)
(Exact same structure as Dijkstra! We will see, Dijkstra’s runtime depends on the data structure used for a priority queue.)
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PRIM’S ALGORITHM: CORRECTNESS
Let’s follow our framework from before:

Prove that after each choice, you’re not ruling out success. 
(i.e. you’re not ruling out finding an optimal solution) 

● INDUCTIVE HYPOTHESIS: After greedy choice t, you haven’t ruled out success

● BASE CASE: Success is possible before you make any choices

● INDUCTIVE STEP: If you haven’t ruled out success after choice t, then show that 
you won’t rule out success after choice t+1 (let’s elaborate on this!)

● CONCLUSION: If you reach the end of the algorithm and haven’t ruled out success 
then you must have succeeded
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PRIM’S ALGORITHM: CORRECTNESS
Let’s follow our framework from before:

Prove that after each choice, you’re not ruling out success. 
(i.e. you’re not ruling out finding an optimal solution) 

● INDUCTIVE HYPOTHESIS: After greedy choice t, you haven’t ruled out success

● BASE CASE: Success is possible before you make any choices

● INDUCTIVE STEP: If you haven’t ruled out success after choice t, then show that 
you won’t rule out success after choice t+1 (let’s elaborate on this!)

● CONCLUSION: If you reach the end of the algorithm and haven’t ruled out success 
then you must have succeeded

Our greedy choice in Prim’s: choosing the lightest edge on our frontier
“Not ruling out success”: there’s still an MST that extends our current set of edges
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REMEMBER OUR LEMMA

This edge 
is light
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LEMMA: Consider a cut that respects a set of edges S. 
Suppose there exists an MST T* containing S. Let (u,v) be a light edge crossing this cut.

Then, there exists an MST containing S∪ {(u,v)}.
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PRIM’S ALGORITHM: CORRECTNESS
Inductive Step (sketch): Suppose we’ve already chosen a set S of k edges, and there’s an 

MST T* consistent with those choices. Then, Prim’s chooses the lightest edge on the 
frontier, so we need to show there’s an MST consistent with this new set of edges. 
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PRIM’S ALGORITHM: CORRECTNESS
Inductive Step (sketch): Suppose we’ve already chosen a set S of k edges, and there’s an 

MST T* consistent with those choices. Then, Prim’s chooses the lightest edge on the 
frontier, so we need to show there’s an MST consistent with this new set of edges. 
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Suppose our choices S so far don’t rule out success. 
This means there is an MST T* that contains S.
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PRIM’S ALGORITHM: CORRECTNESS

Suppose our choices S so far don’t rule out success. 
This means there is an MST T* that contains S.
Consider the cut {visited, unvisited}.

This cut respects the set of edges S. 4
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Inductive Step (sketch): Suppose we’ve already chosen a set S of k edges, and there’s an 
MST T* consistent with those choices. Then, Prim’s chooses the lightest edge on the 

frontier, so we need to show there’s an MST consistent with this new set of edges. 
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PRIM’S ALGORITHM: CORRECTNESS
Inductive Step (sketch): Suppose we’ve already chosen a set S of k edges, and there’s an 

MST T* consistent with those choices. Then, Prim’s chooses the lightest edge on the 
frontier, so we need to show there’s an MST consistent with this new set of edges. 

Suppose our choices S so far don’t rule out success. 
This means there is an MST T* that contains S.
Consider the cut {visited, unvisited}.

This cut respects the set of edges S.

The next edge we add is a light edge on this cut.
This is the smallest weight edge that crosses the cut, i.e. the 
frontier of our growing tree.
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PRIM’S ALGORITHM: CORRECTNESS
Inductive Step (sketch): Suppose we’ve already chosen a set S of k edges, and there’s an 

MST T* consistent with those choices. Then, Prim’s chooses the lightest edge on the 
frontier, so we need to show there’s an MST consistent with this new set of edges. 

Suppose our choices S so far don’t rule out success. 
This means there is an MST T* that contains S.
Consider the cut {visited, unvisited}.

This cut respects the set of edges S.

The next edge we add is a light edge on this cut.
This is the smallest weight edge that crosses the cut, i.e. the 
frontier of our growing tree.

By our Lemma, once we add this light edge, there is 
still an MST that is consistent with our new set of 
edges. Thus, we haven’t ruled out success!
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PRIM’S ALGORITHM: CORRECTNESS

INDUCTIVE HYPOTHESIS
After adding the tth edge, there is an MST that contains the edges added so far.

BASE CASE
After adding the 0th edge, there exists an MST with the edges added so far.

INDUCTIVE STEP (weak induction)
If the inductive hypothesis holds for t (i.e. the edge choices so far are safe), then it holds for t+1, as there is 
still an MST that contains these t+1 edges. We proved this by considering the cut between visited & 
unvisited nodes (i.e. the “frontier) and invoking our Lemma from earlier in class.

CONCLUSION
After adding the (n–1)st edge, there exists an MST containing the edges added so far. A tree containing n–1 
edges is already a spanning tree, so the tree we have must be a minimum spanning tree.

74



KRUSKAL’S ALGORITHM

Greedily add the cheapest edge!
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KRUSKAL’S ALGORITHM: THE IDEA
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Greedy choice: 
Maintain a forest of trees, & greedily add the cheapest edge to combine trees
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KRUSKAL’S ALGORITHM: THE IDEA
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Every node on its 
own starts as an 
individual tree in 

this forest

Greedy choice: 
Maintain a forest of trees, & greedily add the cheapest edge to combine trees
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KRUSKAL’S ALGORITHM: THE IDEA
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Choose the 

cheapest edge that 
would combine 

two trees 
(i.e. that won’t cause a cycle) 

Greedy choice: 
Maintain a forest of trees, & greedily add the cheapest edge to combine trees

78



KRUSKAL’S ALGORITHM: THE IDEA
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Choose the 

cheapest edge that 
would combine 

two trees 
(i.e. that won’t cause a cycle) 

Greedy choice: 
Maintain a forest of trees, & greedily add the cheapest edge to combine trees

If there’s a tie, choose 
one of the edges
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KRUSKAL’S ALGORITHM: THE IDEA
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Choose the 

cheapest edge that 
would combine 

two trees 
(i.e. that won’t cause a cycle) 

Greedy choice: 
Maintain a forest of trees, & greedily add the cheapest edge to combine trees
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KRUSKAL’S ALGORITHM: THE IDEA
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Greedy choice: 
Maintain a forest of trees, & greedily add the cheapest edge to combine trees

Choose the 
cheapest edge that 

would combine 
two trees 

(i.e. that won’t cause a cycle) 

If there’s a tie, choose 
one of the edges
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KRUSKAL’S ALGORITHM: THE IDEA
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Greedy choice: 
Maintain a forest of trees, & greedily add the cheapest edge to combine trees

Choose the 
cheapest edge that 

would combine 
two trees 

(i.e. that won’t cause a cycle) 
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KRUSKAL’S ALGORITHM: THE IDEA
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Greedy choice: 
Maintain a forest of trees, & greedily add the cheapest edge to combine trees

Choose the 
cheapest edge that 

would combine 
two trees 

(i.e. that won’t cause a cycle) 

83



KRUSKAL’S ALGORITHM: THE IDEA
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Greedy choice: 
Maintain a forest of trees, & greedily add the cheapest edge to combine trees

Choose the 
cheapest edge that 

would combine 
two trees 

(i.e. that won’t cause a cycle) 
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KRUSKAL’S ALGORITHM: THE IDEA
Greedy choice: 

Maintain a forest of trees, & greedily add the cheapest edge to combine trees

Choose the 
cheapest edge that 

would combine 
two trees 

(i.e. that won’t cause a cycle) 
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KRUSKAL’S ALGORITHM: THE IDEA
Greedy choice: 

Maintain a forest of trees, & greedily add the cheapest edge to combine trees

We’re done! 
This is the MST.
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KRUSKAL’S ALGORITHM: 
PSEUDOCODE

KRUSKAL_NOT_VERY_DETAILED(G = (V,E)):

E_SORTED = E sorted by weight in non-decreasing order       

MST = {}

for v in V:

put v in its own tree

for (u,v) in E_SORTED:

if u’s tree and v’s tree are not the same:

MST.add((u,v))

merge u’s tree with v’s tree

return MST
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KRUSKAL’S ALGORITHM: 
PSEUDOCODE

KRUSKAL_NOT_VERY_DETAILED(G = (V,E)):

E_SORTED = E sorted by weight in non-decreasing order       

MST = {}

for v in V:

put v in its own tree

for (u,v) in E_SORTED:

if u’s tree and v’s tree are not the same:

MST.add((u,v))

merge u’s tree with v’s tree

return MST

To implement these lines, we’ll use a Union-Find data structure,
which supports 3 operations: MAKE_SET(x),  FIND(x),  and  UNION(x,y)

88



KRUSKAL’S ALGORITHM: 
PSEUDOCODE

KRUSKAL_NOT_VERY_DETAILED(G = (V,E)):

E_SORTED = E sorted by weight in non-decreasing order       

MST = {}

for v in V:

put v in its own tree

for (u,v) in E_SORTED:

if u’s tree and v’s tree are not the same:

MST.add((u,v))

merge u’s tree with v’s tree

return MST

To implement these lines, we’ll use a Union-Find data structure,
which supports 3 operations: MAKE_SET(x),  FIND(x),  and  UNION(x,y)

MAKE_SET(x): creates a set {x} in O(1)
FIND(x): returns the set containing x in O(1)

UNION(x,y): merges the sets containing x and y in O(1)
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KRUSKAL’S ALGORITHM: 
PSEUDOCODE

KRUSKAL(G = (V,E)):

E_SORTED = E sorted by weight in non-decreasing order       

MST = {}

for v in V:

MAKE_SET(v)

for (u,v) in E_SORTED:

if FIND(u) != FIND(v):

MST.add((u,v))

UNION(u,v)

return MST

(With union-find data structure) Runtime = O(m log n)

Basically, the time to sort the edge 
weights dominates the runtime. 

O(m log m) = O(m log n), since m ≤ n2
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KRUSKAL’S ALGORITHM: 
PSEUDOCODE

KRUSKAL(G = (V,E)):

E_SORTED = E sorted by weight in non-decreasing order       

MST = {}

for v in V:

MAKE_SET(v)

for (u,v) in E_SORTED:

if FIND(u) != FIND(v):

MST.add((u,v))

UNION(u,v)

return MST

(With union-find data structure & RadixSort) Runtime = O(m)

If the edge weights are of 
appropriate values and RadixSort 

can be applied instead
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KRUSKAL’S CORRECTNESS
Let’s follow our framework from before:

Prove that after each choice, you’re not ruling out success. 
(i.e. you’re not ruling out finding an optimal solution) 

● INDUCTIVE HYPOTHESIS: After greedy choice t, you haven’t ruled out success

● BASE CASE: Success is possible before you make any choices

● INDUCTIVE STEP: If you haven’t ruled out success after choice t, then show that 
you won’t rule out success after choice t+1 (let’s elaborate on this!)

● CONCLUSION: If you reach the end of the algorithm and haven’t ruled out success 
then you must have succeeded
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KRUSKAL’S CORRECTNESS
Let’s follow our framework from before:

Prove that after each choice, you’re not ruling out success. 
(i.e. you’re not ruling out finding an optimal solution) 

● INDUCTIVE HYPOTHESIS: After greedy choice t, you haven’t ruled out success

● BASE CASE: Success is possible before you make any choices

● INDUCTIVE STEP: If you haven’t ruled out success after choice t, then show that 
you won’t rule out success after choice t+1 (let’s elaborate on this!)

● CONCLUSION: If you reach the end of the algorithm and haven’t ruled out success 
then you must have succeeded

Our greedy choice: choosing the cheapest edge that combines two trees
“Not ruling out success”: there’s still an MST that extends our current set of edges
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REMEMBER OUR LEMMA
LEMMA: Consider a cut that respects a set of edges S. 

Suppose there exists an MST T* containing S. Let (u,v) be a light edge crossing this cut.
Then, there exists an MST containing S∪ {(u,v)}.

This edge 
is light
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KRUSKAL’S CORRECTNESS
Inductive Step (sketch): Suppose we’ve already chosen a set S k edges, and there’s an MST 

T* consistent with those choices. Then, Kruskal’s adds the cheapest edge that would 
merge 2 trees, so we show there’s still an MST consistent with this new set of edges. 
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KRUSKAL’S CORRECTNESS
Inductive Step (sketch): Suppose we’ve already chosen a set S k edges, and there’s an MST 

T* consistent with those choices. Then, Kruskal’s adds the cheapest edge that would 
merge 2 trees, so we show there’s still an MST consistent with this new set of edges. 
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Suppose our choices S so far don’t rule out success. 
This means there is an MST  T* that contains S.
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KRUSKAL’S CORRECTNESS
Inductive Step (sketch): Suppose we’ve already chosen a set S k edges, and there’s an MST 

T* consistent with those choices. Then, Kruskal’s adds the cheapest edge that would 
merge 2 trees, so we show there’s still an MST consistent with this new set of edges. 
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Suppose our choices S so far don’t rule out success. 
This means there is an MST  T* that contains S.
The next edge we add will merge two trees, T1 & T2

This edge is the cheapest edge that bridge two trees.

T1
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KRUSKAL’S CORRECTNESS
Inductive Step (sketch): Suppose we’ve already chosen a set S k edges, and there’s an MST 

T* consistent with those choices. Then, Kruskal’s adds the cheapest edge that would 
merge 2 trees, so we show there’s still an MST consistent with this new set of edges. 
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Suppose our choices S so far don’t rule out success. 
This means there is an MST  T* that contains S.
The next edge we add will merge two trees, T1 & T2

This edge is the cheapest edge that bridge two trees.

Consider the cut {T1, V – T1}.
This cut respects S. Our new edge is light for the cut (it’s the 
cheapest edge after all).

T1
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KRUSKAL’S CORRECTNESS
Inductive Step (sketch): Suppose we’ve already chosen a set S k edges, and there’s an MST 

T* consistent with those choices. Then, Kruskal’s adds the cheapest edge that would 
merge 2 trees, so we show there’s still an MST consistent with this new set of edges. 
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Suppose our choices S so far don’t rule out success. 
This means there is an MST  T* that contains S.
The next edge we add will merge two trees, T1 & T2

This edge is the cheapest edge that bridge two trees.

Consider the cut {T1, V – T1}.
This cut respects S. Our new edge is light for the cut (it’s the 
cheapest edge after all).

By our Lemma, once we add this light edge, there is 
still an MST that is consistent with our new set of 
edges. Thus, we haven’t ruled out success!

T1
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KRUSKAL’S CORRECTNESS

INDUCTIVE HYPOTHESIS
After adding the tth edge, there is an MST that contains the edges added so far.

BASE CASE
After adding the 0th edge, there exists an MST with the edges added so far.

INDUCTIVE STEP (weak induction)
If the inductive hypothesis holds for t (i.e. the edge choices so far are safe), then it holds for t+1, as there is 
still an MST that contains these t+1 edges. We proved this by considering the cut between the tree living 
at one endpoint of our chosen edge & all remaining vertices, & invoking our favorite Lemma.

CONCLUSION
After adding the (n–1)st edge, there exists an MST containing the edges added so far. A tree containing n–1 
edges is already a spanning tree, so the tree we have must be a minimum spanning tree.
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PRIM’S vs. KRUSKAL’S

Prim’s Algorithm

Grows a single tree by greedily adding 
the cheapest edge on the “frontier” 

of the growing tree.

Runtime (RB-tree): O(m log n)
Runtime (Fibonacci Heap): O(m + n log n)

Prim’s may be better on dense graphs (where m 
is ~n2) if you can’t RadixSort edge weights

Kruskal’s Algorithm

Maintains a forest and greedily chooses 
the cheapest edge that would be 

able to merge two trees

Runtime (union-find data struct.): O(m log n)
Runtime (union-find + radixSort) : O(m)

Kruskal’s may be better on sparse graphs 
if you can RadixSort edge weights

Both are greedy algorithms, with similar reasoning (that piggyback off of our lemma). 
Optimal substructure: subgraphs generated by cuts — the way to make safe choices is to choose light edges crossing the 

cut.
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CAN WE DO BETTER?

Karger-Klein Tarjan (1995)
O(m) expected time randomized algorithm

Chazelle (2000)
O(m·α(n)) time deterministic algorithm

Pettie-Ramachandran (2002)

O( ) time deterministic algorithm
optimal # of comparisons… 

whatever that is (i.e. if there exists 
an algo which uses X comparisons, 

this algo will run in time O(X)

This bound is unknown! 
For now, we know it’s Ω(n) and O(m·α(n)).

The algorithms are all 
comparison-based!
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