
Data Structures and Algorithms

Indian Institute of Information Technology Allahabad

Single Source Shortest Paths (SSSP):

Dijkstra Algo

Dr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly,

the sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

This Class

• Shortest Paths
• BFS

• What if the graphs are weighted?

• Single Source
• Dijkstra!

• Bellman-Ford!

• All Source
• Floyd-Warshall

3

IIITA Graph

LT

BH5

CC2

CC3

Hospital

Peepal
Gaon

ATM

Admin

4

IIITA Graph

LT

BH5

CC2

CC3

Hospital

Peepal
Gaon

ATM

Admin

WE

ARE

HERE 5

Shortest path from BH5 to CC2?

LT

BH5

CC2

CC3

Hospital

Peepal
Gaon

ATM

Admin

6

Shortest path from BH5 to CC2?

Run BFS …

We should go to CC3

and then back to CC2 !!!

LT

BH5

CC2

CC3

Hospital

Peepal
Gaon

ATM

Admin

7

Shortest path from BH5 to CC2?

Run BFS …

1

1

4
25

20

10

10 17

15

22
LT

BH5

CC2

CC3

Hospital

Peepal
Gaon

ATM

Admin

17

8

We should go to CC3

and then back to CC2 !!!

What if we

label the

edges by

walking time ?

Shortest path from BH5 to CC2?

Run BFS …

1

1

4
25

20

10

10 17

15

22

That doesn’t make sense if we

label the edges by walking time.

LT

BH5

CC2

CC3

Hospital

Peepal
Gaon

ATM

Admin

9

We should go to CC3

and then back to CC2 !!!

weighted

graph

w(u,v) = weight

of edge between

u and v.

For now, edge

weights are non-

negative.

Shortest path from BH5 to CC2?

1

1

25

20

10

10
15

LT

BH5

CC2

CC3

Hospital

Peepal
Gaon

ATM

Admin

17

22 4

10

If we pay attention to the

weights, we should go to the

Admin, then LT, then CC2.

Shortest path from BH5 to CC2?

1

1

25

20

10

10
15

LT

BH5

CC2

CC3

Hospital

Peepal
Gaon

ATM

Admin

17

22 4

11

weighted

graph

w(u,v) = weight

of edge between

u and v.

For now, edge

weights are non-

negative.

Shortest path problem

• What is the shortest path between u and v in a
weighted graph?

• the cost of a path is the sum of the weights along that path

t
s

3 20
2

This path from s

to t has cost 25.

12

Shortest path problem

• What is the shortest path between u and v in a
weighted graph?

• the cost of a path is the sum of the weights along that path

• The shortest path is the one with the minimum cost.

t
s

3 20
2

This path from s

to t has cost 25.

13

Shortest path problem

• What is the shortest path between u and v in a
weighted graph?

• the cost of a path is the sum of the weights along that path

• The shortest path is the one with the minimum cost.

t
s

3

1

20
2

This path from s

to t has cost 25.

1
12 This path is shorter,

it has cost 5.

14

Shortest path problem

• What is the shortest path between u and v in a
weighted graph?

• the cost of a path is the sum of the weights along that path

• The shortest path is the one with the minimum cost.

• The distance d(u,v) between two vertices u and v is the cost of
the shortest path between u and v.

t
s

3

1

20
2

This path from s

to t has cost 25.

1
12 This path is shorter,

it has cost 5.

15

Shortest paths

This is the shortest

path from BH5 to

CC2.

It has cost 6.

1

1

25

20

10

10
15

LT

BH5

CC2

CC3

Hospital

Peepal
Gaon

ATM

Admin

17

22 4

16

Shortest paths

1

1

25

20

10

10
15

LT

BH5

CC2

CC3

Hospital

Peepal
Gaon

ATM

Admin

17

22 4 Q: What’s the

shortest path from

Admin to CC2?

17

This is the shortest

path from BH5 to

CC2.

It has cost 6.

Shortest paths

1

1

25

20

10

10
15

LT

BH5

CC2

CC3

Hospital

Peepal
Gaon

ATM

Admin

17

22 4 Q: What’s the

shortest path from

Admin to CC2?

18

This is the shortest

path from BH5 to

CC2.

It has cost 6.

Warm-up

• A sub-path of a shortest path is also a shortest path.

s
x t

19

• A sub-path of a shortest path is also a shortest path.

• Say this is a shortest path from s to t.

s
x t

Warm-up

20

• A sub-path of a shortest path is also a shortest path.

• Say this is a shortest path from s to t.

• Claim: this is a shortest path from s to x.

s
x t

Warm-up

21

• A sub-path of a shortest path is also a shortest path.

• Say this is a shortest path from s to t.

• Claim: this is a shortest path from s to x.
• Suppose not, this one is a shorter path from s to x.

s
x t

Warm-up

22

• A sub-path of a shortest path is also a shortest path.

• Say this is a shortest path from s to t.

• Claim: this is a shortest path from s to x.
• Suppose not, this one is a shorter path from s to x.

• But then that gives an even shorter path from s to t!

s
x t

Warm-up

23

• A sub-path of a shortest path is also a shortest path.

• Say this is a shortest path from s to t.

• Claim: this is a shortest path from s to x.
• Suppose not, this one is a shorter path from s to x.

• But then that gives an even shorter path from s to t!

s
x t

Warm-up

24

Single-source shortest-path problem

• I want to know the shortest path from one vertex
(BH5) to all other vertices.

25

Single-source shortest-path problem

• I want to know the shortest path from one vertex
(BH5) to all other vertices.

Destination Cost To get there

Admin 1 Admin

LT 2 Admin-LT

Peepal Gaon 10 Peepal Gaon

ATM 17 ATM

CC2 6 Admin-LT-CC2

Hospital 10 Hospital

CC3 23 Admin-CC3
26

Example

• “what is the
shortest path from
IIITA to [anywhere
else]”

• Edge weights have
something to do
with time, money,
hassle.

27

Example
• Network routing

• I send information
over the internet,
from my
computer to all
over the world.

• Each path has a
cost which
depends on link
length, traffic,
other costs, etc..

• How should we
send packets?

28

Back to this example

LT

BH5

CC2

CC3

Hospital

Peepal
Gaon

ATM

Admin

29

Dijkstra’s algorithm

• Finds shortest paths from
BH5 to everywhere else.

BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

30

BH5

CC2CC3Admin
LT

Dijkstra
intuition

All vertices are on ground initially.

31

YOINK!

Dijkstra
intuition

BH5

CC2CC3Admin
LT

32

BH5

CC2CC3Admin
LT

YOINK!

A vertex is done when it’s not on

the ground anymore.

Dijkstra
intuition

33

BH5

CC2

Admin

YOINK!

1

Dijkstra
intuition

CC3
LT

34

BH5

CC2

Admin

LT

YOINK!

1

1

CC3

Dijkstra
intuition

35

BH5

CC2

Admin

LT

YOINK!

1

1

CC3

4

Dijkstra
intuition

36

Dijkstra
intuition BH5

CC2

Admin

LT

YOINK!

1

1

CC3

4 22

37

Dijkstra
intuition BH5

CC2

Admin

LT

YOINK!

1

1

CC3

4 22

This creates a

tree!

The shortest

paths are the

lengths along this

tree.

38

How do we actually implement this?

39

How do we actually implement this?

40

How do we actually implement this?

• Without string and gravity?

41

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

How far is a node from BH5?

42

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

How far is a node from BH5?

43

I’m not sure yet

Dijkstra by example
How far is a node from BH5?

BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

44

I’m not sure yet

I’m sure

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LTI’m not sure yet

I’m sure

How far is a node from BH5?

x
x = d[v] is my best over-

estimate for dist(BH5,v).

∞

∞

∞

∞Initialize d[v] = ∞
for all non-starting vertices v,

and d[BH5] = 0

0

45

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

How far is a node from BH5? ∞

∞

∞

∞

0

46

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

Initialize d[v] = ∞
for all non-starting vertices v,

and d[BH5] = 0

• Pick the not-sure node u with the smallest

estimate d[u].

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

∞

∞

∞

∞
Current node u

How far is a node from BH5?

47

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

∞

∞

∞

∞

How far is a node from BH5?

48

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

∞

∞

How far is a node from BH5?

25

1

49

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

∞

∞

How far is a node from BH5?

25

1

50

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

∞

∞

How far is a node from BH5?

25

1

51

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

∞

∞

How far is a node from BH5?

25

1

52

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

∞

How far is a node from BH5?

1

2

23
53

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

∞

How far is a node from BH5?

1

2

23
54

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

∞

How far is a node from BH5?

1

2

23
55

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

How far is a node from BH5?

1

2

23

6

56

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

How far is a node from BH5?

1

2

23

6

57

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

How far is a node from BH5?

1

2

23

6

58

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

How far is a node from BH5?

1

2

23

6

59

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

How far is a node from BH5?

1

2

23

6

60

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

How far is a node from BH5?

1

2

23

6

61

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

How far is a node from BH5?

1

2

23

6

• After all nodes are sure, say

that d(BH5, v) = d[v] for all v 62

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Dijkstra’s algorithm

• Set all vertices to not-sure

• d[v] = ∞ for all v in V

• d[s] = 0

• While there are not-sure nodes:

• Pick the not-sure node u with the smallest estimate

d[u].

• For v in u.neighbors:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Now d(s, v) = d[v]

Lots of implementation details left un-explained.

We’ll get to that!

Dijkstra(G,s):

63

As usual

• Does it work?

• Is it fast?

64

As usual

• Does it work?
• Yes.

• Is it fast?
• Depends on how you implement it.

65

As usual

• Does it work?
• Yes.

• Is it fast?
• Depends on how you implement it.

66

Why does this work?
• Theorem:

• Suppose we run Dijkstra on G =(V,E), starting from s.
• At the end of the algorithm, the estimate d[v] is the actual distance

d(s,v).

• Proof outline:
• Claim 1: For all v, d[v] ≥ d(s,v).
• Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.
• When v is marked sure, d[v] = d(s,v).
• d[v] ≥ d(s,v) and never increases, so after v is sure, d[v] stops changing.
• This implies that at any time after v is marked sure, d[v] = d(s,v).
• All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Let’s rename “BH5” to

“s”, our starting vertex.

67

Why does this work?
• Theorem:

• Suppose we run Dijkstra on G =(V,E), starting from s.
• At the end of the algorithm, the estimate d[v] is the actual distance

d(s,v).

• Proof outline:
• Claim 1: For all v, d[v] ≥ d(s,v).
• Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.
• When v is marked sure, d[v] = d(s,v).
• d[v] ≥ d(s,v) and never increases, so after v is sure, d[v] stops changing.
• This implies that at any time after v is marked sure, d[v] = d(s,v).
• All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Let’s rename “BH5” to

“s”, our starting vertex.

68

Why does this work?
• Theorem:

• Suppose we run Dijkstra on G =(V,E), starting from s.
• At the end of the algorithm, the estimate d[v] is the actual distance

d(s,v).

• Proof outline:
• Claim 1: For all v, d[v] ≥ d(s,v).
• Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.
• When v is marked sure, d[v] = d(s,v).
• d[v] ≥ d(s,v) and never increases, so after v is sure, d[v] stops changing.
• This implies that at any time after v is marked sure, d[v] = d(s,v).
• All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Claim 2

Claim 1 + def of algorithm

Let’s rename “BH5” to

“s”, our starting vertex.

69

Why does this work?
• Theorem:

• Suppose we run Dijkstra on G =(V,E), starting from s.
• At the end of the algorithm, the estimate d[v] is the actual distance

d(s,v).

• Proof outline:
• Claim 1: For all v, d[v] ≥ d(s,v).
• Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.
• When v is marked sure, d[v] = d(s,v).
• d[v] ≥ d(s,v) and never increases, so after v is sure, d[v] stops changing.
• This implies that at any time after v is marked sure, d[v] = d(s,v).
• All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Claim 2

Claim 1 + def of algorithm

Let’s rename “BH5” to

“s”, our starting vertex.

70
Next let’s prove the claims!

Claim 1
d[v] ≥ d(s,v) for all v.

BH5

CC2

CC3

Admin
1

1

4
25

20

22

LT

0

2

∞

23

1

6

Intuition!

71

Claim 1
d[v] ≥ d(s,v) for all v.

• Every time we update d[v], we have a path in mind:

Informally:

Intuition!

BH5

CC2

CC3

Admin
1

4
25

20

LT

0

2

∞

23

1

6

72

1

22

Claim 1
d[v] ≥ d(s,v) for all v.

• Every time we update d[v], we have a path in mind:

Informally:

Intuition!

d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

BH5

CC2

CC3

Admin
1

4
25

20

LT

0

2

∞

23

1

6

73

1

22

Claim 1
d[v] ≥ d(s,v) for all v.

• Every time we update d[v], we have a path in mind:

Informally:

Intuition!

d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

Whatever path we had

in mind before The shortest path to u, and then

the edge from u to v.

BH5

CC2

CC3

Admin
1

4
25

20

LT

0

2

∞

23

1

6

74

1

22

Claim 1
d[v] ≥ d(s,v) for all v.

• Every time we update d[v], we have a path in mind:

• d[v] = length of the path we have in mind

≥ length of shortest path

= d(s,v)

Informally:

Intuition!

d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

Whatever path we had

in mind before The shortest path to u, and then

the edge from u to v.

BH5

CC2

CC3

Admin
1

4
25

20

LT

0

2

∞

23

1

6

75

1

22

Claim 1
d[v] ≥ d(s,v) for all v.

• Every time we update d[v], we have a path in mind:

• d[v] = length of the path we have in mind

≥ length of shortest path

= d(s,v)

Informally:

Formally:

• We should prove this by induction.

Intuition!

d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

Whatever path we had

in mind before The shortest path to u, and then

the edge from u to v.

BH5

CC2

CC3

Admin
1

4
25

20

LT

0

2

∞

23

1

6

76

1

22

Claim 1
d[v] ≥ d(s,v) for all v.

• Inductive hypothesis.
• After t iterations of Dijkstra,

d[v] ≥ d(s,v) for all v.

BH5

CC2

CC3

Admin

1

1

4
25

20

22

LT

0

2

23

1

u

v

77

6

Claim 1
d[v] ≥ d(s,v) for all v.

• Inductive hypothesis.
• After t iterations of Dijkstra,

d[v] ≥ d(s,v) for all v.

• Base case:
• At step 0, d s, s = 0, and 𝑑 𝑠, 𝑣 ≤ ∞

BH5

CC2

CC3

Admin

1

1

4
25

20

22

LT

0

2

23

1

u

v

78

6

Claim 1
d[v] ≥ d(s,v) for all v.

• Inductive hypothesis.
• After t iterations of Dijkstra,

d[v] ≥ d(s,v) for all v.

• Base case:
• At step 0, d s, s = 0, and 𝑑 𝑠, 𝑣 ≤ ∞

• Inductive step: say hypothesis holds for t.

• At step t+1:
• Pick u; for each neighbor v:

• d[v] ← min(d[v] , d[u] + w(u,v))

By induction,

𝑑[𝑣] ≥ 𝑑 𝑠, 𝑣

≥ 𝑑(𝑠, 𝑣)

d 𝑣 = 𝑑[𝑢] + 𝑤 𝑢, 𝑣
≥ 𝑑(𝑠, 𝑢) + 𝑤 𝑢, 𝑣 ≥ d(s,v)

using induction again for d[u]

BH5

CC2

CC3

Admin

1

1

4
25

20

22

LT

0

2

23

1

u

v

79

6

Claim 1
d[v] ≥ d(s,v) for all v.

• Inductive hypothesis.
• After t iterations of Dijkstra,

d[v] ≥ d(s,v) for all v.

• Base case:
• At step 0, d s, s = 0, and 𝑑 𝑠, 𝑣 ≤ ∞

• Inductive step: say hypothesis holds for t.

• At step t+1:
• Pick u; for each neighbor v:

• d[v] ← min(d[v] , d[u] + w(u,v))

By induction,

𝑑[𝑣] ≥ 𝑑 𝑠, 𝑣

≥ 𝑑(𝑠, 𝑣)

d 𝑣 = 𝑑[𝑢] + 𝑤 𝑢, 𝑣
≥ 𝑑(𝑠, 𝑢) + 𝑤 𝑢, 𝑣 ≥ d(s,v)

using induction again for d[u]

BH5

CC2

CC3

Admin

1

1

4
25

20

22

LT

0

2

23

1

u

v

80

6

So the inductive

hypothesis holds for

t+1, and Claim 1

follows.

Claim 2
When a vertex u is marked sure, d[u] = d(s,u)

• Inductive Hypothesis:
• When we mark the t’th vertex v as sure, d[v] = d(s,v).

• Base case:
• The first vertex marked sure is s, and d[s] = d(s,s) = 0.

• Inductive step:
• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:

• Assume by induction that every v already marked sure has
d[v] = d(s,v).

• Want to show that d[u] = d(s,u). 81

Claim 2
When a vertex u is marked sure, d[u] = d(s,u)
• Inductive Hypothesis:

• When we mark the tth vertex v as sure, d[v] = d(s,v).

• Base case:
• The first vertex marked sure is s, and d[s] = d(s,s) = 0.

• Inductive step:
• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:

• Assume by induction that every v already marked sure has d[v] = d(s,v).
• Want to show that d[u] = d(s,u).

82

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Claim 2
When a vertex u is marked sure, d[u] = d(s,u)
• Inductive Hypothesis:

• When we mark the tth vertex v as sure, d[v] = d(s,v).

• Base case:
• The first vertex marked sure is s, and d[s] = d(s,s) = 0.

• Inductive step:
• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:

• Assume by induction that every v already marked sure has d[v] = d(s,v).
• Want to show that d[u] = d(s,u).

83

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Claim 2
When a vertex u is marked sure, d[u] = d(s,u)
• Inductive Hypothesis:

• When we mark the tth vertex v as sure, d[v] = d(s,v).

• Base case:
• The first vertex marked sure is s, and d[s] = d(s,s) = 0.

• Inductive step:
• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:

• Assume by induction that every v already marked sure has d[v] = d(s,v).
• Want to show that d[u] = d(s,u).

84

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Claim 2
When a vertex u is marked sure, d[u] = d(s,u)
• Inductive Hypothesis:

• When we mark the tth vertex v as sure, d[v] = d(s,v).

• Base case:
• The first vertex marked sure is s, and d[s] = d(s,s) = 0.

• Inductive step:
• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:

• Assume by induction that every v already marked sure has d[v] = d(s,v).
• Want to show that d[u] = d(s,u).

85

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Intuition
When a vertex u is marked sure, d[u] = d(s,u)

u

sBH5

CC2

Admin

LT

YOINK!

1

1

CC3

4

86

Intuition
When a vertex u is marked sure, d[u] = d(s,u)

sBH5

CC2

Admin

LT

YOINK!

1

1

CC3

4

87

u

• The first path that lifts u off
the ground is the shortest one.

Intuition
When a vertex u is marked sure, d[u] = d(s,u)

• The first path that lifts u off
the ground is the shortest one.

• But we should actually prove
it.

sBH5

CC2

Admin

LT

YOINK!

1

1

CC3

4

88

u

Claim 2
Inductive step

• Want to show that u is good.

• Consider a true shortest path from s to u:

u
s

True shortest path.

Temporary definition:

v is “good” means that d[v] = d(s,v)

The vertices in between may

or may not be sure. 89

Claim 2
Inductive step

• Want to show that u is good.

u
s

True shortest path.

means good means not good

“by way of contradiction”

u

BWOC, suppose u isn’t good.

90

Temporary definition:

v is “good” means that d[v] = d(s,v)

The vertices in between may

or may not be sure.

Claim 2
Inductive step

• Want to show that u is good.

• Say z is the good vertex before u.

u
s

True shortest path.

means good means not good

“by way of contradiction”

u

BWOC, suppose u isn’t good.

Z

91

Temporary definition:

v is “good” means that d[v] = d(s,v)

The vertices in between may

or may not be sure.

Claim 2
Inductive step

• Want to show that u is good.

u
s

r

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of shortest

paths are shortest

paths.

BWOC, suppose u isn’t good.

Claim 1

t

Z

92

Temporary definition:

v is “good” means that d[v] = d(s,v)

Claim 2
Inductive step

• Want to show that u is good.

u
s

r

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of shortest

paths are shortest

paths.

Claim 1

• If 𝑑 𝑧 = 𝑑 𝑢 , then u is good.

BWOC, suppose u isn’t good.

t

Z

93

Temporary definition:

v is “good” means that d[v] = d(s,v)

Claim 2
Inductive step

• Want to show that u is good.

u
s

r

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of shortest

paths are shortest

paths.

Claim 1

• If 𝑑 𝑧 = 𝑑 𝑢 , then u is good.

BWOC, suppose u isn’t good.

t

Z

94

Temporary definition:

v is “good” means that d[v] = d(s,v)

But u is not good!

Claim 2
Inductive step

• Want to show that u is good.

u
s

r

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of shortest

paths are shortest

paths.

Claim 1

• If 𝑑 𝑧 = 𝑑 𝑢 , then u is good.

• So 𝑑 𝑧 < 𝑑 𝑢 , so z is sure. We chose u so that d[u] was

smallest of the unsure vertices.

BWOC, suppose u isn’t good.

t

Z

95

Temporary definition:

v is “good” means that d[v] = d(s,v)

But u is not good!

Claim 2
Inductive step

• Want to show that u is good.

u
s

r

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of shortest

paths are shortest

paths.

Claim 1

• If 𝑑 𝑧 = 𝑑 𝑢 , then u is good.

• So 𝑑 𝑧 < 𝑑 𝑢 , so z is sure.

BWOC, suppose u isn’t good.

z

t
96

Temporary definition:

v is “good” means that d[v] = d(s,v)

We chose u so that d[u] was

smallest of the unsure vertices.

But u is not good!

Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

means good means not good

u
s

r

BWOC, suppose u isn’t good.

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

z

t
97

Temporary definition:

v is “good” means that d[v] = d(s,v)

Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

means good means not good

def of update

u
s

r

BWOC, suppose u isn’t good.

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

That is, the

value of d[z]

when z was

marked

sure…

z

t
98

Temporary definition:

v is “good” means that d[v] = d(s,v)

Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑢)

means good means not good

def of update

u
s

r

BWOC, suppose u isn’t good.

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

By induction when z was added to

the sure list it had d(s,z) = d[z]
That is, the

value of d[z]

when z was

marked

sure…

z

t
99

Temporary definition:

v is “good” means that d[v] = d(s,v)

Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑢)

= 𝑑 𝑠, 𝑢

means good means not good

def of update

u
s

r

sub-paths of shortest paths are shortest paths

BWOC, suppose u isn’t good.

z

t
100

Temporary definition:

v is “good” means that d[v] = d(s,v)

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

By induction when z was added to

the sure list it had d(s,z) = d[z]
That is, the

value of d[z]

when z was

marked

sure…

Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑢)

= 𝑑 𝑠, 𝑢

≤ 𝑑[𝑢]

means good means not good

def of update

u
s

r

Claim 1

BWOC, suppose u isn’t good.

z

t
101

Temporary definition:

v is “good” means that d[v] = d(s,v)

sub-paths of shortest paths are shortest paths

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

By induction when z was added to

the sure list it had d(s,z) = d[z]
That is, the

value of d[z]

when z was

marked

sure…

Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑢)

= 𝑑 𝑠, 𝑢

≤ 𝑑[𝑢]

means good means not good

def of update

u
s

r

So d(s, 𝑢) = d[𝑢] and so 𝑢 is good.

BWOC, suppose u isn’t good.

z

t
102

Temporary definition:

v is “good” means that d[v] = d(s,v)

Claim 1

sub-paths of shortest paths are shortest paths

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

By induction when z was added to

the sure list it had d(s,z) = d[z]
That is, the

value of d[z]

when z was

marked

sure…

Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑢)

= 𝑑 𝑠, 𝑢

≤ 𝑑[𝑢]

means good means not good

def of update

u
s

r

So d(s, 𝑢) = d[𝑢] and so 𝑢 is good.

BWOC, suppose u isn’t good.

z

t
103

Temporary definition:

v is “good” means that d[v] = d(s,v)

Claim 1

sub-paths of shortest paths are shortest paths

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

By induction when z was added to

the sure list it had d(s,z) = d[z]
That is, the

value of d[z]

when z was

marked

sure…

Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑢)

= 𝑑 𝑠, 𝑢

≤ 𝑑[𝑢]

means good means not good

def of update

u
s

r

So d(s, 𝑢) = d[𝑢] and so 𝑢 is good.

BWOC, suppose u isn’t good.

So u is good!

z

t
104

Temporary definition:

v is “good” means that d[v] = d(s,v)

Claim 1

sub-paths of shortest paths are shortest paths

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

By induction when z was added to

the sure list it had d(s,z) = d[z]
That is, the

value of d[z]

when z was

marked

sure…

Claim 2
When a vertex u is marked sure, d[u] = d(s,u)
• Inductive Hypothesis:

• When we mark the tth vertex v as sure, d[v] = d(s,v).

• Base case:
• The first vertex marked sure is s, and d[s] = d(s,s) = 0.

• Inductive step:
• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:

• Assume by induction that every v already marked sure has d[v] = d(s,v).
• Want to show that d[u] = d(s,u).

105

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Conclusion: Claim 2 holds!

Why does this work?

• Theorem:
• Run Dijkstra on G =(V,E) starting from s.

• At the end of the algorithm, the estimate d[v] is the actual distance d(s,v).

• Proof outline:
• Claim 1: For all v, d[v] ≥ d(s,v).

• Claim 2: When a vertex is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.

106

As usual

• Does it work?
• Yes.

• Is it fast?
• Depends on how you implement it.

107

Running time?
Dijkstra(G,s):

108

• Set all vertices to not-sure

• d[v] = ∞ for all v in V
• d[s] = 0

• While there are not-sure nodes:

• Pick the not-sure node u with the smallest estimate d[u].

• For v in u.neighbors:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Now dist(s, v) = d[v]

Running time?

• n iterations (one per vertex)

• How long does one iteration take?

Depends on how we implement it…

• Set all vertices to not-sure

• d[v] = ∞ for all v in V
• d[s] = 0

• While there are not-sure nodes:

• Pick the not-sure node u with the smallest estimate d[u].

• For v in u.neighbors:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Now dist(s, v) = d[v]

Dijkstra(G,s):

109

We need a data structure that:

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Just the inner loop:

110

We need a data structure that:

• Stores unsure vertices v
• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Just the inner loop:

111

We need a data structure that:

• Stores unsure vertices v

• Keeps track of d[v]
• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Just the inner loop:

112

We need a data structure that:

• Stores unsure vertices v

• Keeps track of d[v]

• Can find u with minimum d[u]
• findMin()

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Just the inner loop:

113

We need a data structure that:

• Stores unsure vertices v

• Keeps track of d[v]

• Can find u with minimum d[u]
• findMin()

• Can remove that u
• removeMin(u)

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Just the inner loop:

114

We need a data structure that:

• Stores unsure vertices v

• Keeps track of d[v]

• Can find u with minimum d[u]
• findMin()

• Can remove that u
• removeMin(u)

• Can update (decrease) d[v]
• updateKey(v,d)

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Just the inner loop:

115

We need a data structure that:

• Stores unsure vertices v

• Keeps track of d[v]

• Can find u with minimum d[u]
• findMin()

• Can remove that u
• removeMin(u)

• Can update (decrease) d[v]
• updateKey(v,d)

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

෍
𝑢∈𝑉

𝑇 findMin + ෍

𝑣∈𝑢.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑇 updateKey + 𝑇(removeMin)

Total running time is big-oh of:

Just the inner loop:

116

We need a data structure that:

• Stores unsure vertices v

• Keeps track of d[v]

• Can find u with minimum d[u]
• findMin()

• Can remove that u
• removeMin(u)

• Can update (decrease) d[v]
• updateKey(v,d)

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

෍
𝑢∈𝑉

𝑇 findMin + ෍

𝑣∈𝑢.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑇 updateKey + 𝑇(removeMin)

= n(T(findMin) + T(removeMin)) + m T(updateKey)

Total running time is big-oh of:

Just the inner loop:

117

If we use an array

118

If we use an array

• T(findMin) = O(n)

• T(removeMin) = O(n)

• T(updateKey) = O(1)

119

If we use an array

• T(findMin) = O(n)

• T(removeMin) = O(n)

• T(updateKey) = O(1)

• Running time of Dijkstra
=O(n(T(findMin) + T(removeMin)) + m T(updateKey))

=O(n2) + O(m)

=O(n2)

120

If we use a red-black tree

121

If we use a red-black tree

• T(findMin) = O(log(n))

• T(removeMin) = O(log(n))

• T(updateKey) = O(log(n))

122

If we use a red-black tree

• T(findMin) = O(log(n))

• T(removeMin) = O(log(n))

• T(updateKey) = O(log(n))

• Running time of Dijkstra
=O(n(T(findMin) + T(removeMin)) + m T(updateKey))

=O(nlog(n)) + O(mlog(n))

=O((n + m)log(n))

123

If we use a red-black tree

• T(findMin) = O(log(n))

• T(removeMin) = O(log(n))

• T(updateKey) = O(log(n))

• Running time of Dijkstra
=O(n(T(findMin) + T(removeMin)) + m T(updateKey))

=O(nlog(n)) + O(mlog(n))

=O((n + m)log(n))

Better than an array if the graph is sparse!
aka if m is much smaller than n2

124

Heaps support these operations

• T(findMin)

• T(removeMin)

• T(updateKey)

• A heap is a tree-based data structure that has
the property that every node has a smaller key
than its children.

104

3

0

2

56

125

Many heap implementations
Nice chart on Wikipedia:

126

Say we use a Fibonacci Heap

127

Say we use a Fibonacci Heap

• T(findMin) = O(1)

• T(removeMin) = O(log(n))

• T(updateKey) = O(1)

128

Say we use a Fibonacci Heap

• T(findMin) = O(1)

• T(removeMin) = O(log(n))

• T(updateKey) = O(1)

• Running time of Dijkstra
=O(n(T(findMin) + T(removeMin)) + m T(updateKey))

=O(nlog(n) + m)

129

Dijkstra is used in practice

• eg, OSPF (Open Shortest Path First), a routing protocol for IP
networks, uses Dijkstra.

But there are
some things it’s
not so good at.

130

Dijkstra Drawbacks

• Needs non-negative edge weights.

• If the weights change, we need to re-run the whole
thing.

• in OSPF, a vertex broadcasts any changes to the network,
and then every vertex re-runs Dijkstra’s algorithm from
scratch.

131

Summary

• BFS:
• (+) O(n+m)

• (-) only unweighted graphs

• Dijkstra’s algorithm:
• (+) weighted graphs

• (+) O(nlog(n) + m) if you implement it right.

• (-) no negative edge weights

• (-) very “centralized” (need to keep track of all the vertices
to know which to update).

132

Acknowledgement

• Stanford University

133

Thank You

134

	Slide 1
	Slide 2
	Slide 3: This Class
	Slide 4: IIITA Graph
	Slide 5: IIITA Graph
	Slide 6: Shortest path from BH5 to CC2?
	Slide 7: Shortest path from BH5 to CC2?
	Slide 8: Shortest path from BH5 to CC2?
	Slide 9: Shortest path from BH5 to CC2?
	Slide 10: Shortest path from BH5 to CC2?
	Slide 11: Shortest path from BH5 to CC2?
	Slide 12: Shortest path problem
	Slide 13: Shortest path problem
	Slide 14: Shortest path problem
	Slide 15: Shortest path problem
	Slide 16: Shortest paths
	Slide 17: Shortest paths
	Slide 18: Shortest paths
	Slide 19: Warm-up
	Slide 20: Warm-up
	Slide 21: Warm-up
	Slide 22: Warm-up
	Slide 23: Warm-up
	Slide 24: Warm-up
	Slide 25: Single-source shortest-path problem
	Slide 26: Single-source shortest-path problem
	Slide 27: Example
	Slide 28: Example
	Slide 29
	Slide 30: Dijkstra’s algorithm
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Dijkstra intuition
	Slide 38: Dijkstra intuition
	Slide 39: How do we actually implement this?
	Slide 40: How do we actually implement this?
	Slide 41: How do we actually implement this?
	Slide 42: Dijkstra by example
	Slide 43: Dijkstra by example
	Slide 44: Dijkstra by example
	Slide 45: Dijkstra by example
	Slide 46: Dijkstra by example
	Slide 47: Dijkstra by example
	Slide 48: Dijkstra by example
	Slide 49: Dijkstra by example
	Slide 50: Dijkstra by example
	Slide 51: Dijkstra by example
	Slide 52: Dijkstra by example
	Slide 53: Dijkstra by example
	Slide 54: Dijkstra by example
	Slide 55: Dijkstra by example
	Slide 56: Dijkstra by example
	Slide 57: Dijkstra by example
	Slide 58: Dijkstra by example
	Slide 59: Dijkstra by example
	Slide 60: Dijkstra by example
	Slide 61: Dijkstra by example
	Slide 62: Dijkstra by example
	Slide 63: Dijkstra’s algorithm
	Slide 64: As usual
	Slide 65: As usual
	Slide 66: As usual
	Slide 67: Why does this work?
	Slide 68: Why does this work?
	Slide 69: Why does this work?
	Slide 70: Why does this work?
	Slide 71: Claim 1 d[v] greater than or equal to d(s,v) for all v.
	Slide 72: Claim 1 d[v] greater than or equal to d(s,v) for all v.
	Slide 73: Claim 1 d[v] greater than or equal to d(s,v) for all v.
	Slide 74: Claim 1 d[v] greater than or equal to d(s,v) for all v.
	Slide 75: Claim 1 d[v] greater than or equal to d(s,v) for all v.
	Slide 76: Claim 1 d[v] greater than or equal to d(s,v) for all v.
	Slide 77: Claim 1 d[v] greater than or equal to d(s,v) for all v.
	Slide 78: Claim 1 d[v] greater than or equal to d(s,v) for all v.
	Slide 79: Claim 1 d[v] greater than or equal to d(s,v) for all v.
	Slide 80: Claim 1 d[v] greater than or equal to d(s,v) for all v.
	Slide 81: Claim 2 When a vertex u is marked sure, d[u] = d(s,u)
	Slide 82: Claim 2 When a vertex u is marked sure, d[u] = d(s,u)
	Slide 83: Claim 2 When a vertex u is marked sure, d[u] = d(s,u)
	Slide 84: Claim 2 When a vertex u is marked sure, d[u] = d(s,u)
	Slide 85: Claim 2 When a vertex u is marked sure, d[u] = d(s,u)
	Slide 86: Intuition When a vertex u is marked sure, d[u] = d(s,u)
	Slide 87: Intuition When a vertex u is marked sure, d[u] = d(s,u)
	Slide 88: Intuition When a vertex u is marked sure, d[u] = d(s,u)
	Slide 89: Claim 2 Inductive step
	Slide 90: Claim 2 Inductive step
	Slide 91: Claim 2 Inductive step
	Slide 92: Claim 2 Inductive step
	Slide 93: Claim 2 Inductive step
	Slide 94: Claim 2 Inductive step
	Slide 95: Claim 2 Inductive step
	Slide 96: Claim 2 Inductive step
	Slide 97: Claim 2 Inductive step
	Slide 98: Claim 2 Inductive step
	Slide 99: Claim 2 Inductive step
	Slide 100: Claim 2 Inductive step
	Slide 101: Claim 2 Inductive step
	Slide 102: Claim 2 Inductive step
	Slide 103: Claim 2 Inductive step
	Slide 104: Claim 2 Inductive step
	Slide 105: Claim 2 When a vertex u is marked sure, d[u] = d(s,u)
	Slide 106: Why does this work?
	Slide 107: As usual
	Slide 108: Running time?
	Slide 109: Running time?
	Slide 110: We need a data structure that:
	Slide 111: We need a data structure that:
	Slide 112: We need a data structure that:
	Slide 113: We need a data structure that:
	Slide 114: We need a data structure that:
	Slide 115: We need a data structure that:
	Slide 116: We need a data structure that:
	Slide 117: We need a data structure that:
	Slide 118: If we use an array
	Slide 119: If we use an array
	Slide 120: If we use an array
	Slide 121: If we use a red-black tree
	Slide 122: If we use a red-black tree
	Slide 123: If we use a red-black tree
	Slide 124: If we use a red-black tree
	Slide 125: Heaps support these operations
	Slide 126: Many heap implementations
	Slide 127: Say we use a Fibonacci Heap
	Slide 128: Say we use a Fibonacci Heap
	Slide 129: Say we use a Fibonacci Heap
	Slide 130: Dijkstra is used in practice
	Slide 131: Dijkstra Drawbacks
	Slide 132: Summary
	Slide 133: Acknowledgement
	Slide 134: Thank You

