Indian Institute of Information Technology Allahabad

Data Structures and Algorithms

Single Source Shortest Paths (SSSP):

 Dijkstra AlgoDr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in
Web: https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are adopted from many sources for academic purposes. Broadly, the sources have been given due credit appropriately. However, there is a chance of missing out some original primary sources. The authors of this material do not claim any copyright of such material.

This Class

- Shortest Paths
- BFS
- What if the graphs are weighted?
- Single Source
- Dijkstra!
- Bellman-Ford!
- All Source
- Floyd-Warshall

IIITA Graph

IIITA Graph

Shortest path from BH5 to CC2?

Shortest path problem

- What is the shortest path between u and v in a weighted graph?
- the cost of a path is the sum of the weights along that path

Shortest path problem

- What is the shortest path between u and v in a weighted graph?
- the cost of a path is the sum of the weights along that path
- The shortest path is the one with the minimum cost.

Shortest path problem

- What is the shortest path between u and v in a weighted graph?
- the cost of a path is the sum of the weights along that path
- The shortest path is the one with the minimum cost.

Shortest path problem

- What is the shortest path between u and v in a weighted graph?
- the cost of a path is the sum of the weights along that path
- The shortest path is the one with the minimum cost.

- The distance $d(u, v)$ between two vertices u and v is the cost of the shortest path between u and v.

Shortest paths

Shortest paths

Shortest paths

Warm-up

- A sub-path of a shortest path is also a shortest path.

Warm-up

- A sub-path of a shortest path is also a shortest path.
- Say this is a shortest path from s to t .

Warm-up

- A sub-path of a shortest path is also a shortest path.
- Say this is a shortest path from s to t .
- Claim: this is a shortest path from s to x .

Warm-up

- A sub-path of a shortest path is also a shortest path.
- Say this is a shortest path from s to t .
- Claim: this is a shortest path from s to x .

Warm-up

- A sub-path of a shortest path is also a shortest path.
- Say this is a shortest path from s to t .
- Claim: this is a shortest path from s to x .
- Suppose not, this one is a shorter path from s to x.
- But then that gives an even shorter path from s to t !

Warm-up

- A sub-path of a shortest path is also a shortest path.
- Say this is a shortest path from s to t .
- Claim: this is a shortest path from s to x.
- Suppose not, this one is a shorter path from s to x.
- But then that gives an even shorter path from s to t !

Single-source shortest-path problem

- I want to know the shortest path from one vertex (BH5) to all other vertices.

Single-source shortest-path problem

- I want to know the shortest path from one vertex (BH5) to all other vertices.

Destination	Cost	To get there
Admin	1	Admin
LT	2	Admin-LT
Peepal Gaon	10	Peepal Gaon
ATM	17	ATM
CC2	6	Admin-LT-CC2
Hospital	10	Hospital
CC3	23	Admin-CC3

Example

- "what is the shortest path from IIITA to [anywhere else]"
- Edge weights have something to do with time, money, hassle.

Example

- Network routing
- I send information over the internet, from my computer to all over the world.
- Each path has a cost which depends on link length, traffic, other costs, etc..
- How should we send packets?

Back to this example

Dijkstra's algorithm

- Finds shortest paths from BH5 to everywhere else.

All vertices are on ground initially.

Dijkstra intuition

A vertex is done when it's not on the ground anymore.

YOINK!

Dijkstra intuition

Dijkstra intuition

Dijkstra
YOINK! intuition

Dijkstra intuition

Dijkstra intuition

This creates a tree!

The shortest paths are the lengths along this tree.

How do we actually implement this?

How do we actually implement this?

How do we actually implement this?

- Without string and gravity?

Dijkstra by example
How far is a node from BH5?

Dijkstra by example
How far is a node from BH5?
I'm not sure yet

Dijkstra by example
How far is a node from BH5?
I'm not sure yet
I'm sure

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.

Initialize d[v] = ∞ for all non-starting vertices v , and $\mathrm{d}[\mathrm{BH} 5]=0$

Dijkstra by example

How far is a node from BH5?

Initialize d[v] = ∞ for all non-starting vertices v ,
and $\mathrm{d}[\mathrm{BH} 5]=0$

- Pick the not-Sure node u with the smallest estimate d[u].

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.

Current node u

- Pick the not-Sulre node u with the smallest estimate d[u].

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.

Current node u

- Pick the not-Surre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+$ edgeWeight $(u, v))$

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.Current node u

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+$ edgeWeight $(u, v))$
- Mark u as sure.

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.Current node u

- Pick the not-Sulre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+$ edgeWeight $(u, v))$
- Mark u as sure.

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.Current node u

- Pick the not-Sulre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+$ edgeWeight $(u, v))$
- Mark u as sure.
- Repeat

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure

$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.Current node u

- Pick the not-Sulre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+$ edgeWeight $(u, v))$
- Mark u as sure.
- Repeat

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.Current node u

- Pick the not-Sulre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+$ edgeWeight $(u, v))$
- Mark u as sure.
- Repeat

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.

Current node u

- Pick the not-Sulre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+$ edgeWeight $(u, v))$
- Mark u as sure.
- Repeat

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure

$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.

Current node u

- Pick the not-Sulre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}]=\min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(\mathrm{u}, \mathrm{v}))$
- Mark u as sure.
- Repeat

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
(I'm sure

$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.

Current node u

- Pick the not-Sulre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+$ edgeWeight $(u, v))$
- Mark u as sure.
- Repeat

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.

Current node u

- Pick the not-Sulre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+$ edgeWeight $(u, v))$
- Mark u as sure.
- Repeat

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure

$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.

Current node u

- Pick the not-Sulre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}]=\min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(\mathrm{u}, \mathrm{v}))$
- Mark u as sure.
- Repeat

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+$ edgeWeight $(u, v))$
- Mark u as sure.
- Repeat

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
(I'm sure

$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.

Current node u

- Pick the not-Sulre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}]=\min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(\mathrm{u}, \mathrm{v}))$
- Mark u as sure.
- Repeat

Dijkstra by example

How far is a node from BH5?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.

Current node u

- Pick the not-Sulre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+$ edgeWeight $(u, v))$
- Mark u as sure.
- Repeat

Dijkstra by example

How far is a node from BH5?

I'm not sure yet

I'm sure

$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best overestimate for $\operatorname{dist}(\mathrm{BH} 5, \mathrm{v})$.

Current node u

- Pick the lnot-Sulre node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+$ edgeWeight $(u, v))$
- Mark u as sure.
- After all nodes are sure, say that $d(B H 5, v)=d[v]$ for all v

Dijkstra's algorithm

Dijkstra(G,s):

- Set all vertices to not-sure
- $d[v]=\infty$ for all v in V
- d[s] = 0
- While there are not-sure nodes:
- Pick the not-sure node u with the smallest estimate d[u].
- For v in u.neighbors:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(\mathrm{u}, \mathrm{v}))$
- Mark u as sure.
- Now d(s, v) $=d[v]$

As usual

- Does it work?
- Is it fast?

As usual

- Does it work?
- Yes.
- Is it fast?
- Depends on how you implement it.

As usual

- Does it work?
- Yes.
- Is it fast?
- Depends on how you implement it.

Why does this work?

- Theorem:
- Suppose we run Dijkstra on $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, starting from s .
- At the end of the algorithm, the estimate $\mathrm{d}[\mathrm{v}]$ is the actual distance $d(\mathrm{~s}, \mathrm{v})$.

Let's rename "BH5" to
"s", our starting vertex.

Why does this work?

- Theorem:
- Suppose we run Dijkstra on $G=(\mathrm{V}, \mathrm{E})$, starting from s .
- At the end of the algorithm, the estimate $\mathrm{d}[\mathrm{v}]$ is the actual distance $d(s, v)$.
- Proof outline:

Let's rename "BH5" to
"s", our starting vertex.

- Claim 1: For all $v, d[v] \geq d(s, v)$.
- Claim 2: When a vertex v is marked sure, $d[v]=d(s, v)$.

Why does this work?

- Theorem:
- Suppose we run Dijkstra on $G=(\mathrm{V}, \mathrm{E})$, starting from s .
- At the end of the algorithm, the estimate $d[v]$ is the actual distance $d(s, v)$.
- Proof outline:

Let's rename "BH5" to

"s", our starting vertex.

- Claim 1: For all $v, d[v] \geq d(s, v)$.
- Claim 2: When a vertex v is marked sure, $d[v]=d(s, v)$.
- Claims 1 and 2 imply the theorem.
- When v is marked sure, $d[v]=d(s, v)$.
- $d[v] \geq d(s, v)$ and never increases, so after v is sure, $d[v]$ stops changing.
- This implies that at any time after v is marked sure, $d[v]=d(s, v)$.
- All vertices are sure at the end, so all vertices end up with $d[v]=d(s, v)$.

Why does this work?

- Theorem:
- Suppose we run Dijkstra on $G=(\mathrm{V}, \mathrm{E})$, starting from s .
- At the end of the algorithm, the estimate $d[v]$ is the actual distance $d(s, v)$.
- Proof outline:

Let's rename "BH5" to
"s", our starting vertex.

- Claim 1: For all $v, d[v] \geq d(s, v)$.
- Claim 2: When a vertex v is marked sure, $d[v]=d(s, v)$.
- Claims 1 and 2 imply the theorem.
- When v is marked sure, $d[v]=d(s, v)$.
- $d[v] \geq d(s, v)$ and never increases, so after v is sure, $d[v]$ stops changing.
- This implies that at any time after v is marked sure, $d[v]=d(s, v)$.
- All vertices are sure at the end, so all vertices end up with $d[v]=d(s, v)$.

Claim 1 $d[v] \geq d(s, v)$ for all v.

Claim 1 $\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

Informally:

- Every time we update d[v], we have a path in mind:

Claim 1 $\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

Informally:

- Every time we update d[v], we have a path in mind:

$$
\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[u]+\text { edgeWeight }(u, v))
$$

Claim 1 $\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

Informally:

- Every time we update d[v], we have a path in mind:
$\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(\mathrm{u}, \mathrm{v}))$
Whatever path we had in mind before

The shortest path to u, and then the edge from u to v

Claim 1 $\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

Claim 1
 $\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

Formally:

 d[u] + edgeWeight(u,v))Whatever path we had in mind before

- $\mathrm{d}[\mathrm{v}]=$ length of the path we have in mind

$$
\begin{aligned}
& \geq \text { length of shortest path } \\
& =d(s, v)
\end{aligned}
$$

- We should prove this by induction.

Claim 1 $\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

- Inductive hypothesis.
- After titerations of Dijkstra, $\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

Claim 1 $\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

- Inductive hypothesis.
- After t iterations of Dijkstra, $d[v] \geq d(s, v)$ for all v.
- Base case:
- At step $0, d(s, s)=0$, and $d(s, v) \leq \infty$

Claim 1 $\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

- Inductive hypothesis.
- After t iterations of Dijkstra, $d[v] \geq d(s, v)$ for all v.
- Base case:
- At step $0, d(s, s)=0$, and $d(s, v) \leq \infty$
- Inductive step: say hypothesis holds for t.
- At step t+1:
- Pick u; for each neighbor v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})) \geq d(s, v)$

By induction, $d[v] \geq d(s, v)$

$$
\begin{aligned}
& d[v]=d[u]+w(u, v) \\
& \geq d(s, u)+w(u, v) \geq d(s, v) \\
& \text { using induction again for } \mathrm{d}[u]
\end{aligned}
$$

Claim 1
 $\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

- Inductive hypothesis.
- After t iterations of Dijkstra, $d[v] \geq d(s, v)$ for all v.
- Base case:
- At step $0, \mathrm{~d}(\mathrm{~s}, \mathrm{~s})=0$, and $d(s, v) \leq \infty$
- Inductive step: say hypothesis holds for t .
- At step t+1:
- Pick u; for each neighbor v:

So the inductive hypothesis holds for t+1, and Claim 1 follows.

By induction, $d[v] \geq d(s, v)$

$$
\begin{aligned}
d[v]= & d[u]+w(u, v) \\
& \geq d(s, u)+w(u, v) \geq d(s, v)
\end{aligned}
$$

$$
\text { using induction again for } \mathrm{d}[\mathrm{u}]
$$

Claim 2
When a vertex u is marked sure, $d[u]=d(s, u)$

Claim 2
When a vertex u is marked sure, $\mathrm{d}[\mathrm{u}]=\mathrm{d}(\mathrm{s}, \mathrm{u})$

- Inductive Hypothesis:
- When we mark the $t^{\text {th }}$ vertex v as sure, $d[v]=d(s, v)$.

Claim 2
 When a vertex u is marked sure, $d[u]=d(s, u)$

- Inductive Hypothesis:
- When we mark the $t^{\text {th }}$ vertex v as sure, $d[v]=d(s, v)$.
- Base case:
- The first vertex marked sure is s , and $\mathrm{d}[\mathrm{s}]=\mathrm{d}(\mathrm{s}, \mathrm{s})=0$.

Claim 2
 When a vertex u is marked sure, $d[u]=d(s, u)$

- Inductive Hypothesis:
- When we mark the $t^{\text {th }}$ vertex v as sure, $d[v]=d(s, v)$.
- Base case:
- The first vertex marked sure is s, and $\mathrm{d}[\mathrm{s}]=\mathrm{d}(\mathrm{s}, \mathrm{s})=0$.
- Inductive step:
- Suppose that we are about to add u to the sure list.
- That is, we picked u in the first line here:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(\mathrm{u}, \mathrm{v}))$
- Mark u as sure.
- Repeat

Claim 2
 When a vertex u is marked sure, $d[u]=d(s, u)$

- Inductive Hypothesis:
- When we mark the $t^{\text {th }}$ vertex v as sure, $d[v]=d(s, v)$.
- Base case:
- The first vertex marked sure is s , and $\mathrm{d}[\mathrm{s}]=\mathrm{d}(\mathrm{s}, \mathrm{s})=0$.
- Inductive step:
- Suppose that we are about to add u to the sure list.
- That is, we picked u in the first line here:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- Update all u's neighbors v :

```
- d[v]}\leftarrow\operatorname{min}(\textrm{d}[\textrm{v}],\textrm{d}[\textrm{u}] + edgeWeight(u,v)
```

- Mark u as sure.
- Repeat
- Assume by induction that every valready marked sure has $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$.
- Want to show that $\mathrm{d}[\mathrm{u}]=\mathrm{d}(\mathrm{s}, \mathrm{u})$.

Intuition

When a vertex u is marked sure, $d[u]=d(s, u)$

Intuition

When a vertex u is marked sure, $d[u]=d(s, u)$

- The first path that lifts \mathbf{u} off the ground is the shortest one.

Intuition

When a vertex u is marked sure, $d[u]=d(s, u)$

- The first path that lifts \mathbf{u} off the ground is the shortest one.
- But we should actually prove it.

Claim 2

Inductive step

- Want to show that u is good.
- Consider a true shortest path from s to u:

Claim 2
 Inductive step

Temporary definition:

$$
\mathrm{v} \text { is "good" means that } \mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{~s}, \mathrm{v})
$$

means good
"by way of contradiction"

- Want to show that u is good. BWOC, suppose u isn't good.

Claim 2
 Inductive step

Temporary definition:

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$

means good

- Want to show that u is good. BWOC, suppose u isn't good.
- Say z is the good vertex before u.

Claim 2

Inductive step

Temporary definition:

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$

- Want to show that u is good. BWOC, suppose u isn't good.

$$
d[z]=d(s, z) \leq d(s, u) \leq d[u]
$$

Claim 2

Inductive step

Temporary definition:

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$

- Want to show that u is good. BWOC, suppose u isn't good.

$$
d[z]=d(s, z) \leq d(s, u) \leq d[u]
$$

Subpaths of shortest paths are shortest paths.

- If $d[z]=d[u]$, then \mathbf{u} is good.

Claim 2

Inductive step

Temporary definition:

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$

- Want to show that u is good. BWOC, suppose u isn't good.

$$
d[z]=d(s, z) \leq d(s, u) \leq d[u]
$$

Subpaths of shortest paths are shortest
paths.

- If $d[z]=d[u]$, then \mathbf{u} is good. But \mathbf{u} is not good!

Claim 2

Inductive step

Temporary definition:

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$

- Want to show that u is good. BWOC, suppose u isn't good.

$$
d[Z]=d(S, Z) \leq d(s, u) \leq d[u]
$$

- If $d[z]=d[u]$, then \mathbf{u} is good. But \mathbf{u} is not good!
- So $d[z]<d[u]$, so z is sure. We chose uso that d[u] was
smallest of the unsure vertices.

Claim 2

Inductive step

Temporary definition:

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$

- Want to show that u is good. BWOC, suppose u isn't good.

$$
d[Z]=d(S, Z) \leq d(s, u) \leq d[u]
$$

- If $d[z]=d[u]$, then \mathbf{u} is good. But \mathbf{u} is not good!
- So $d[z]<d[u]$, so z is sure. We chose uso that d[u] was smallest of the unsure vertices.

Temporary definition:

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u :

$$
d[u] \leftarrow \min \{d[u], d[z]+w(z, u)\}
$$

Claim 2

Inductive step

Temporary definition:

v is "good" means that $d[v]=d(s, v)$
means good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u :
- $d[u] \leq d[z]+w(z, u)$ def of update $d[u] \leftarrow \min \{d[u], d[z]+w(z, u)\}$

That is, the
value of $d[z]$
when z was
marked

Claim 2

Inductive step

Temporary definition:

 v is "good" means that $d[v]=d(s, v)$means good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u :

That is, the
value of $d[z]$
when z was
marked

Claim 2

Inductive step

Temporary definition:

 v is "good" means that $d[v]=d(s, v)$means good
means not good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u :
$\begin{aligned} \bullet d[u] & \leq d[z]+w(z, u) \quad \text { def of update } d[u] \leftarrow \min \{d[u], d[z]+ \\ & =d(s, z)+w(z, u) \quad \begin{array}{l}\text { By induction when } z \text { was added to } \\ \text { the sure list it had } \mathrm{d}(\mathrm{s}, \mathrm{z})=\mathrm{d}[\mathrm{z}]\end{array}\end{aligned}$
$\begin{aligned} & \text { That is, the } \\ & \text { value of } d[z]\end{aligned}=d(s, u)$ sub-paths of shortest paths are shortest paths
when z was
marked

Claim 2

Inductive step

Temporary definition:

 v is "good" means that $d[v]=d(s, v)$means good
means not good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u :
$\begin{aligned} & \cdot d[u] \leq d[z]+w(z, u) \quad \text { def of update } d[u] \leftarrow \min \{d[u], d[z]+w(z, u)\} \\ &=d(s, z)+w(z, u) \begin{array}{l}\text { By induction when } z \text { was added to } \\ \text { the sure list it had } d(s, z)=d[z]\end{array}\end{aligned}$
$\begin{gathered}\text { That is, the } \\ \text { value of } \mathrm{d}[z]\end{gathered}=d(s, u)$ sub-paths of shortest paths are shortest paths
$\underset{\text { marked }}{\text { when } z \text { was }} \leq d[u]$ Claim 1

Claim 2

Inductive step

Temporary definition:

 v is "good" means that $d[v]=d(s, v)$means good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u :

$\begin{aligned} & \text { That is, the } \\ & \text { value of } \mathrm{d}[z]\end{aligned}=d(s, u)$ sub-paths of shortest paths are shortest paths
$\underset{\text { mhen } z \text { was }}{\text { marked }} \leq d[u]$ Claim $1 \quad$ So $\mathrm{d}(\mathrm{s}, u)=\mathrm{d}[u]$ and so u is good.

Claim 2

Inductive step

Temporary definition:

 v is "good" means that $d[v]=d(s, v)$means good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u :

$\begin{aligned} & \text { That is, the } \\ & \text { value of } \mathrm{d}[z]\end{aligned}=d(s, u)$ sub-paths of shortest paths are shortest paths

Claim 2

Inductive step

Temporary definition:

 v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$means good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u :

$\begin{aligned} & \text { That is, the } \\ & \text { value of } \mathrm{d}[z]\end{aligned}=d(s, u)$ sub-paths of shortest paths are shortest paths

Back to this slide

Claim 2

When a vertex u is marked sure, $d[u]=d(s, u)$

- Inductive Hypothesis:
- When we mark the $t^{\text {th }}$ vertex v as sure, $d[v]=d(s, v)$.
- Base case:
- The first vertex marked sure is s , and $\mathrm{d}[\mathrm{s}]=\mathrm{d}(\mathrm{s}, \mathrm{s})=0$.
- Inductive step:
- Suppose that we are about to add u to the sure list.
- That is, we picked u in the first line here:
- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(\mathrm{u}, \mathrm{v}))$
- Mark u as sure.
- Repeat
- Assume by induction that every valready marked sure has $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$.
- Want to show that $\mathrm{d}[\mathrm{u}]=\mathrm{d}(\mathrm{s}, \mathrm{u})$.

Why does this work?

Now back to this slide

- Theorem:
- Run Dijkstra on $G=(V, E)$ starting from s.
- At the end of the algorithm, the estimate $d[v]$ is the actual distance $d(s, v)$.
- Proof outline:
- Claim 1: For all v, d[v] $\geq \mathrm{d}(\mathrm{s}, \mathrm{v})$.
- Claim 2: When a vertex is marked sure, $d[v]=d(s, v)$.
- Claims 1 and 2 imply the theorem.

As usual

- Does it work?
- Yes.
- Is it fast?
- Depends on how you implement it.

Running time?

Dijkstra(G,s):

- Set all vertices to not-sure
- $d[v]=\infty$ for all v in V
- d[s] = 0
- While there are not-sure nodes:
- Pick the not-sure node u with the smallest estimate $\mathrm{d}[\mathrm{u}]$.
- For v in u.neighbors:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight($u, v)$)
- Mark u as sure.
- Now dist(s, v) $=\mathrm{d}[\mathrm{v}]$

Running time?

Dijkstra(G,s):

- Set all vertices to not-sure
- $d[v]=\infty$ for all v in V
- $\mathrm{d}[\mathrm{s}]=0$
- While there are not-sure nodes:
- Pick the not-sure node u with the smallest estimate d[u].
- For v in u.neighbors:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight($u, v)$)
- Mark u as sure.
- Now dist(s, v) = d[v]
- n iterations (one per vertex)
- How long does one iteration take?

We need a data structure that:

Just the inner loop:

- Pick the not-sure node u with the smallest estimate $d[u]$.
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(\mathrm{u}, \mathrm{v}))$
- Mark u as sure.

We need a data structure that:

- Stores unsure vertices v

Just the inner loop:

- Pick the not-sure node u with the smallest estimate $d[u]$.
- Update all u's neighbors v :
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(\mathrm{u}, \mathrm{v}))$
- Mark u as sure.

We need a data structure that:

- Stores unsure vertices v
- Keeps track of d[v]

Just the inner loop:

- Pick the not-sure node u with the smallest estimate $d[u]$.
- Update all u's neighbors v:
- $\mathrm{d}[v] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[u]+$ edgeWeight $(u, v))$
- Mark u as sure.

We need a data structure that:

- Stores unsure vertices v
- Keeps track of d[v]
- Can find u with minimum $d[u]$
- findMin ()

Just the inner loop:

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[u]+$ edgeWeight $(u, v))$
- Mark u as sure.

We need a data structure that:

- Stores unsure vertices v
- Keeps track of d[v]
- Can find u with minimum $d[u]$
- findMin()
- Can remove that u
- removeMin (u)

Just the inner loop:

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[u]+$ edgeWeight $(u, v))$
- Mark u as sure.

We need a data structure that:

- Stores unsure vertices v
- Keeps track of d[v]
- Can find u with minimum $d[u]$
- findMin()
- Can remove that u
- removeMin(u)
- Can update (decrease) d[v]
- updateKey(v,d)

Just the inner loop:

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[u]+$ edgeWeight $(u, v))$
- Mark u as sure.

We need a data structure that:

- Stores unsure vertices v
- Keeps track of d[v]
- Can find u with minimum $d[u]$
- findMin()

Just the inner loop:

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(u, v))$
- Mark u as sure.
- Can remove that u
- removeMin (u)
- Can update (decrease) d[v]
- updateKey (v,d)

Total running time is big-oh of:
$\sum_{u \in V}\left(T(\right.$ findMin $)+\left(\sum_{v \in u \text { uneighbors }} T\right.$ (updateKey) $)+T($ (removeMin) $)$

We need a data structure that:

- Stores unsure vertices v
- Keeps track of d[v]
- Can find u with minimum $d[u]$
- findMin()

Just the inner loop:

- Pick the not-sure node u with the smallest estimate $d[u]$.
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(\mathrm{u}, \mathrm{v}))$
- Mark u as sure.
- Can remove that u
- removeMin (u)
- Can update (decrease) d[v]
- updateKey (v, d)

Total running time is big-oh of:

$$
\begin{aligned}
& \sum_{u \in V}\left(T(\text { findMin })+\left(\sum_{v \in u . n e i g h b o r s} T(\text { updateKey })\right)+T(\text { removeMin })\right) \\
& =\mathrm{n}(\mathrm{~T}(\text { findMin })+\mathrm{T}(\text { removeMin }))+\mathrm{mT} \text { (updateKey })
\end{aligned}
$$

If we use an array

If we use an array

- $T($ findMin $)=O(n)$
- T (removeMin) $=O(n)$
- T (updateKey) $=0(1)$

If we use an array

- $T($ find $M i n)=O(n)$
- T (removeMin) $=O(n)$
- T (updateKey) $=0(1)$
- Running time of Dijkstra

$$
\begin{aligned}
& =O(n(T(\text { findMin })+T(\text { removeMin }))+m T(\text { updateKey })) \\
& =O\left(n^{2}\right)+O(m) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

If we use a red-black tree

If we use a red-black tree

- $\mathrm{T}($ findMin $)=O(\log (\mathrm{n}))$
- $T($ removeMin $)=O(\log (n))$
- $\mathrm{T}($ updateKey $)=\mathrm{O}(\log (\mathrm{n}))$

If we use a red-black tree

- $\mathrm{T}($ findMin $)=O(\log (\mathrm{n}))$
- $T($ removeMin $)=O(\log (n))$
- $T($ updateKey $)=O(\log (n))$
- Running time of Dijkstra

$$
\begin{aligned}
& =O(n(T(\text { findMin })+T(\text { removeMin) })+m T(\text { updateKey })) \\
& =O(n \log (n))+O(m \log (n)) \\
& =O((n+m) \log (n))
\end{aligned}
$$

If we use a red-black tree

- $T($ findMin $)=O(\log (n))$
- $T($ removeMin $)=O(\log (n))$
- $\mathrm{T}($ updateKey $)=\mathrm{O}(\log (\mathrm{n}))$
- Running time of Dijkstra

$$
\begin{aligned}
& =O(n(T(\text { findMin })+T(\text { removeMin }))+m T(\text { updateKey })) \\
& =O(n \log (n))+O(m \log (n)) \\
& =O((n+m) \log (n))
\end{aligned}
$$

Better than an array if the graph is sparse! aka if m is much smaller than n^{2}

Heaps support these operations

- T(findMin)
- T(removeMin)
- T(updateKey)

- A heap is a tree-based data structure that has the property that every node has a smaller key than its children.

Many heap implementations

Nice chart on Wikipedia:

Operation	Binary ${ }^{[7]}$	Leftist	Binomial $^{[7]}$	Fibonacci ${ }^{[7][8]}$	Pairing $^{[9]}$	Brodal $^{[10][b]}$	Rank-pairing ${ }^{[12]}$	Strict Fibonacci ${ }^{[13]}$
find-min	$\Theta(1)$	$\Theta(1)$	$\Theta(\log n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
delete-min	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)^{[c]}$	$O(\log n)^{[c]}$	$O(\log n)$	$O(\log n)^{[c]}$	$O(\log n)$
insert	$O(\log n)$	$\Theta(\log n)$	$\Theta(1)^{[c]}$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
decrease-key	$\Theta(\log n)$	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)^{[c]}$	$O(\log n)^{[c][d]}$	$\Theta(1)$	$\Theta(1)^{[c]}$	$\Theta(1)$
merge	$\Theta(n)$	$\Theta(\log n)$	$O(\log n)^{[e]}$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$

Say we use a Fibonacci Heap

Say we use a Fibonacci Heap

- $T($ findMin $)=O(1)$
- $T($ removeMin $)=O(\log (n))$
- T (updateKey) $=0(1)$

Say we use a Fibonacci Heap

- $T($ findMin $)=O(1)$
- $T($ removeMin $)=O(\log (n))$
- T (updateKey) $=0(1)$
- Running time of Dijkstra

$$
\begin{aligned}
& =O(n(T(\text { findMin })+T(\text { removeMin }))+m T(u p d a t e K e y)) \\
& =O(n \log (n)+m)
\end{aligned}
$$

Dijkstra is used in practice

- eg, OSPF (Open Shortest Path First), a routing protocol for IP networks, uses Dijkstra.

> But there are some things it's not so good at.

Dijkstra Drawbacks

- Needs non-negative edge weights.
- If the weights change, we need to re-run the whole thing.
- in OSPF, a vertex broadcasts any changes to the network, and then every vertex re-runs Dijkstra's algorithm from scratch.

Summary

- BFS:
- (+) O(n+m)
- (-) only unweighted graphs
- Dijkstra's algorithm:
- (+) weighted graphs
- (+) $O(n \log (n)+m)$ if you implement it right.
- (-) no negative edge weights
- (-) very "centralized" (need to keep track of all the vertices to know which to update).

Acknowledgement

- Stanford University

Thank You

