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DISCLAIMER

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly,

the sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.
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This Class

• Shortest Paths
• BFS

• What if the graphs are weighted?

• Single Source
• Dijkstra!

• Bellman-Ford! 

• All Source
• Floyd-Warshall
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Shortest path from BH5 to CC2?
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Shortest path from BH5 to CC2?

Run BFS …

We should go to CC3 

and then back to CC2 !!!
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Shortest path from BH5 to CC2?

Run BFS …
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We should go to CC3 

and then back to CC2 !!!

What if we

label the 

edges by 

walking time ?



Shortest path from BH5 to CC2?

Run BFS …
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That doesn’t make sense if we

label the edges by walking time.
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We should go to CC3 

and then back to CC2 !!!



weighted 

graph

w(u,v) = weight 

of edge between 

u and v.

For now, edge 

weights are non-

negative.

Shortest path from BH5 to CC2?
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If we pay attention to the 

weights, we should go to the 

Admin, then LT, then CC2.

Shortest path from BH5 to CC2?
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graph

w(u,v) = weight 

of edge between 

u and v.

For now, edge 
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Shortest path problem

• What is the shortest path between u and v in a 
weighted graph?

• the cost of a path is the sum of the weights along that path

t
s

3 20
2

This path from s 

to t has cost 25.
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Shortest path problem

• What is the shortest path between u and v in a 
weighted graph?

• the cost of a path is the sum of the weights along that path

• The shortest path is the one with the minimum cost.

t
s

3 20
2

This path from s 

to t has cost 25.
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Shortest path problem

• What is the shortest path between u and v in a 
weighted graph?

• the cost of a path is the sum of the weights along that path

• The shortest path is the one with the minimum cost.

t
s

3

1

20
2

This path from s 

to t has cost 25.

1
12 This path is shorter, 

it has cost 5.
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Shortest path problem

• What is the shortest path between u and v in a 
weighted graph?

• the cost of a path is the sum of the weights along that path

• The shortest path is the one with the minimum cost.

• The distance d(u,v) between two vertices u and v is the cost of 
the shortest path between u and v.

t
s

3

1

20
2

This path from s 

to t has cost 25.

1
12 This path is shorter, 

it has cost 5.
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Shortest paths

This is the shortest 

path from BH5 to 

CC2.

It has cost 6.
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Shortest paths
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This is the shortest 

path from BH5 to 

CC2.

It has cost 6.



Shortest paths
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This is the shortest 

path from BH5 to 

CC2.
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Warm-up

• A sub-path of a shortest path is also a shortest path.

s
x t
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• A sub-path of a shortest path is also a shortest path.

• Say this is a shortest path from s to t.

s
x t

Warm-up
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• A sub-path of a shortest path is also a shortest path.

• Say this is a shortest path from s to t.

• Claim: this is a shortest path from s to x.

s
x t

Warm-up
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• A sub-path of a shortest path is also a shortest path.

• Say this is a shortest path from s to t.

• Claim: this is a shortest path from s to x.
• Suppose not, this one is a shorter path from s to x.

s
x t

Warm-up
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• A sub-path of a shortest path is also a shortest path.

• Say this is a shortest path from s to t.

• Claim: this is a shortest path from s to x.
• Suppose not, this one is a shorter path from s to x.

• But then that gives an even shorter path from s to t!

s
x t

Warm-up
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• A sub-path of a shortest path is also a shortest path.

• Say this is a shortest path from s to t.

• Claim: this is a shortest path from s to x.
• Suppose not, this one is a shorter path from s to x.

• But then that gives an even shorter path from s to t!

s
x t

Warm-up
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Single-source shortest-path problem

• I want to know the shortest path from one vertex 
(BH5) to all other vertices.
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Single-source shortest-path problem

• I want to know the shortest path from one vertex 
(BH5) to all other vertices.

Destination Cost To get there

Admin 1 Admin

LT 2 Admin-LT

Peepal Gaon 10 Peepal Gaon

ATM 17 ATM

CC2 6 Admin-LT-CC2

Hospital 10 Hospital

CC3 23 Admin-CC3
26



Example

• “what is the 
shortest path from 
IIITA to [anywhere 
else]” 

• Edge weights have 
something to do 
with time, money, 
hassle.
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Example
• Network routing

• I send information 
over the internet, 
from my 
computer to all 
over the world.

• Each path has a 
cost which 
depends on link 
length, traffic, 
other costs, etc.. 

• How should we 
send packets?
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Back to this example
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Dijkstra’s algorithm

• Finds shortest paths from 
BH5 to everywhere else.
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BH5

CC2CC3Admin
LT

Dijkstra 
intuition

All vertices are on ground initially.
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YOINK!

Dijkstra 
intuition

BH5

CC2CC3Admin
LT
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BH5

CC2CC3Admin
LT

YOINK!

A vertex is done when it’s not on 

the ground anymore.

Dijkstra 
intuition
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Dijkstra 
intuition
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Dijkstra 
intuition BH5
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Dijkstra 
intuition BH5

CC2

Admin

LT

YOINK!

1

1

CC3

4 22

This creates a 

tree!

The shortest 

paths are the 

lengths along this 

tree.
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How do we actually implement this?
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How do we actually implement this?
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How do we actually implement this?

• Without string and gravity?
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Dijkstra by example BH5
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Dijkstra by example BH5
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I’m not sure yet



Dijkstra by example
How far is a node from BH5?
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I’m not sure yet

I’m sure



Dijkstra by example BH5
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Dijkstra by example BH5
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I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

Initialize d[v] = ∞
for all non-starting vertices v, 

and d[BH5] = 0 

• Pick the not-sure node u with the smallest 

estimate d[u].



Dijkstra by example BH5
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I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].



Dijkstra by example BH5
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Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))



Dijkstra by example BH5
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Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.



Dijkstra by example BH5
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Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.



Dijkstra by example BH5
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Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Dijkstra by example BH5
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Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Dijkstra by example BH5
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Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

∞

How far is a node from BH5?

1

2

23
54

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Dijkstra by example BH5
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estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Dijkstra by example BH5
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• Pick the not-sure node u with the smallest 
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• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Dijkstra by example BH5
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Current node u
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I’m sure

x
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estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Dijkstra by example BH5
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Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Dijkstra by example BH5

CC2

CC3

Admin

1

1

4

25

20

22

LT

0

How far is a node from BH5?

1

2

23

6

59

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Dijkstra by example BH5
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Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Dijkstra by example BH5
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Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).



Dijkstra by example BH5
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• After all nodes are sure, say 

that d(BH5, v) = d[v] for all v 62

Current node u

I’m not sure yet

I’m sure

x
x = d[v] is my best over-

estimate for dist(BH5,v).

• Pick the not-sure node u with the smallest 

estimate d[u].

• Update all u’s neighbors v:

• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Dijkstra’s algorithm

• Set all vertices to not-sure

• d[v] = ∞ for all v in V

• d[s] = 0

• While there are not-sure nodes:

• Pick the not-sure node u with the smallest estimate 

d[u].

• For v in u.neighbors:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Now d(s, v) = d[v]

Lots of implementation details left un-explained.  

We’ll get to that!

Dijkstra(G,s):
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As usual

• Does it work?

• Is it fast?
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As usual

• Does it work?
• Yes.

• Is it fast?
• Depends on how you implement it.
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As usual

• Does it work?
• Yes.

• Is it fast?
• Depends on how you implement it.
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Why does this work?
• Theorem:  

• Suppose we run Dijkstra on G =(V,E), starting from s. 
• At the end of the algorithm, the estimate d[v] is the actual distance 

d(s,v).

• Proof outline:
• Claim 1: For all v, d[v] ≥ d(s,v).
• Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.
• When v is marked sure, d[v] = d(s,v). 
• d[v] ≥ d(s,v) and never increases, so after v is sure, d[v] stops changing.
• This implies that at any time after v is marked  sure, d[v] = d(s,v). 
• All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Let’s rename “BH5” to 

“s”, our starting vertex.
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Why does this work?
• Theorem:  

• Suppose we run Dijkstra on G =(V,E), starting from s. 
• At the end of the algorithm, the estimate d[v] is the actual distance 

d(s,v).

• Proof outline:
• Claim 1: For all v, d[v] ≥ d(s,v).
• Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.
• When v is marked sure, d[v] = d(s,v). 
• d[v] ≥ d(s,v) and never increases, so after v is sure, d[v] stops changing.
• This implies that at any time after v is marked  sure, d[v] = d(s,v). 
• All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Let’s rename “BH5” to 

“s”, our starting vertex.
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Why does this work?
• Theorem:  

• Suppose we run Dijkstra on G =(V,E), starting from s. 
• At the end of the algorithm, the estimate d[v] is the actual distance 

d(s,v).

• Proof outline:
• Claim 1: For all v, d[v] ≥ d(s,v).
• Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.
• When v is marked sure, d[v] = d(s,v). 
• d[v] ≥ d(s,v) and never increases, so after v is sure, d[v] stops changing.
• This implies that at any time after v is marked  sure, d[v] = d(s,v). 
• All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Claim 2

Claim 1 + def of algorithm

Let’s rename “BH5” to 

“s”, our starting vertex.
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Why does this work?
• Theorem:  

• Suppose we run Dijkstra on G =(V,E), starting from s. 
• At the end of the algorithm, the estimate d[v] is the actual distance 

d(s,v).

• Proof outline:
• Claim 1: For all v, d[v] ≥ d(s,v).
• Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.
• When v is marked sure, d[v] = d(s,v). 
• d[v] ≥ d(s,v) and never increases, so after v is sure, d[v] stops changing.
• This implies that at any time after v is marked  sure, d[v] = d(s,v). 
• All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Claim 2

Claim 1 + def of algorithm

Let’s rename “BH5” to 

“s”, our starting vertex.

70
Next let’s prove the claims!



Claim 1
d[v] ≥ d(s,v) for all v.
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Intuition!
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Claim 1
d[v] ≥ d(s,v) for all v.

• Every time we update d[v], we have a path in mind:

Informally:

Intuition!
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6
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Claim 1
d[v] ≥ d(s,v) for all v.

• Every time we update d[v], we have a path in mind:

Informally:

Intuition!

d[v] ← min( d[v] , d[u] + edgeWeight(u,v) )
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Claim 1
d[v] ≥ d(s,v) for all v.

• Every time we update d[v], we have a path in mind:

Informally:

Intuition!

d[v] ← min( d[v] , d[u] + edgeWeight(u,v) )

Whatever path we had 

in mind before The shortest path to u, and then 

the edge from u to v.
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Claim 1
d[v] ≥ d(s,v) for all v.

• Every time we update d[v], we have a path in mind:

• d[v] = length of the path we have in mind  

≥ length of shortest path 

= d(s,v)

Informally:

Intuition!

d[v] ← min( d[v] , d[u] + edgeWeight(u,v) )

Whatever path we had 

in mind before The shortest path to u, and then 

the edge from u to v.
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Claim 1
d[v] ≥ d(s,v) for all v.

• Every time we update d[v], we have a path in mind:

• d[v] = length of the path we have in mind  

≥ length of shortest path 

= d(s,v)

Informally:

Formally:

• We should prove this by induction.

Intuition!

d[v] ← min( d[v] , d[u] + edgeWeight(u,v) )

Whatever path we had 

in mind before The shortest path to u, and then 

the edge from u to v.
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Claim 1
d[v] ≥ d(s,v) for all v.

• Inductive hypothesis.
• After t iterations of Dijkstra, 

d[v] ≥ d(s,v) for all v.
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Claim 1
d[v] ≥ d(s,v) for all v.

• Inductive hypothesis.
• After t iterations of Dijkstra, 

d[v] ≥ d(s,v) for all v.

• Base case:
• At step 0, d s, s = 0, and 𝑑 𝑠, 𝑣 ≤ ∞
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Claim 1
d[v] ≥ d(s,v) for all v.

• Inductive hypothesis.
• After t iterations of Dijkstra, 

d[v] ≥ d(s,v) for all v.

• Base case:
• At step 0, d s, s = 0, and 𝑑 𝑠, 𝑣 ≤ ∞

• Inductive step:  say hypothesis holds for t.

• At step t+1:
• Pick u; for each neighbor v:

• d[v] ← min( d[v] , d[u] + w(u,v) )

By induction, 

𝑑[𝑣] ≥ 𝑑 𝑠, 𝑣

≥ 𝑑(𝑠, 𝑣)

d 𝑣 = 𝑑[𝑢] + 𝑤 𝑢, 𝑣
≥ 𝑑(𝑠, 𝑢) + 𝑤 𝑢, 𝑣 ≥ d(s,v)

using induction again for d[u]

BH5

CC2

CC3

Admin

1

1

4
25

20

22

LT

0

2

23

1

u

v

79

6



Claim 1
d[v] ≥ d(s,v) for all v.

• Inductive hypothesis.
• After t iterations of Dijkstra, 

d[v] ≥ d(s,v) for all v.

• Base case:
• At step 0, d s, s = 0, and 𝑑 𝑠, 𝑣 ≤ ∞

• Inductive step:  say hypothesis holds for t.

• At step t+1:
• Pick u; for each neighbor v:

• d[v] ← min( d[v] , d[u] + w(u,v) )

By induction, 

𝑑[𝑣] ≥ 𝑑 𝑠, 𝑣

≥ 𝑑(𝑠, 𝑣)

d 𝑣 = 𝑑[𝑢] + 𝑤 𝑢, 𝑣
≥ 𝑑(𝑠, 𝑢) + 𝑤 𝑢, 𝑣 ≥ d(s,v)

using induction again for d[u]
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6

So the inductive 

hypothesis holds for 

t+1, and Claim 1 

follows.



Claim 2
When a vertex u is marked sure, d[u] = d(s,u)

• Inductive Hypothesis: 
• When we mark the t’th vertex v as sure, d[v] = d(s,v).

• Base case:
• The first vertex marked sure is s, and d[s] = d(s,s) = 0.

• Inductive step:
• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:  

• Assume by induction that every v already marked sure has 
d[v] = d(s,v).

• Want to show that d[u] = d(s,u). 81



Claim 2
When a vertex u is marked sure, d[u] = d(s,u)
• Inductive Hypothesis: 

• When we mark the tth vertex v as sure, d[v] = d(s,v).

• Base case:
• The first vertex marked sure is s, and d[s] = d(s,s) = 0.

• Inductive step:
• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:  

• Assume by induction that every v already marked sure has d[v] = d(s,v).
• Want to show that d[u] = d(s,u).

82

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Claim 2
When a vertex u is marked sure, d[u] = d(s,u)
• Inductive Hypothesis: 

• When we mark the tth vertex v as sure, d[v] = d(s,v).

• Base case:
• The first vertex marked sure is s, and d[s] = d(s,s) = 0.

• Inductive step:
• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:  

• Assume by induction that every v already marked sure has d[v] = d(s,v).
• Want to show that d[u] = d(s,u).

83

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Claim 2
When a vertex u is marked sure, d[u] = d(s,u)
• Inductive Hypothesis: 

• When we mark the tth vertex v as sure, d[v] = d(s,v).

• Base case:
• The first vertex marked sure is s, and d[s] = d(s,s) = 0.

• Inductive step:
• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:  

• Assume by induction that every v already marked sure has d[v] = d(s,v).
• Want to show that d[u] = d(s,u).

84

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Claim 2
When a vertex u is marked sure, d[u] = d(s,u)
• Inductive Hypothesis: 

• When we mark the tth vertex v as sure, d[v] = d(s,v).

• Base case:
• The first vertex marked sure is s, and d[s] = d(s,s) = 0.

• Inductive step:
• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:  

• Assume by induction that every v already marked sure has d[v] = d(s,v).
• Want to show that d[u] = d(s,u).

85

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat



Intuition
When a vertex u is marked sure, d[u] = d(s,u)

u
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Intuition
When a vertex u is marked sure, d[u] = d(s,u)
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• The first path that lifts u off 
the ground is the shortest one.



Intuition
When a vertex u is marked sure, d[u] = d(s,u)

• The first path that lifts u off 
the ground is the shortest one.

• But we should actually prove 
it.
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Claim 2
Inductive step

• Want to show that u is good.

• Consider a true shortest path from s to u:

u
s

True shortest path.

Temporary definition:

v is “good” means that d[v] = d(s,v)

The vertices in between may 

or may not be sure. 89



Claim 2
Inductive step

• Want to show that u is good.

u
s

True shortest path.

means good means not good

“by way of contradiction”

u

BWOC, suppose u isn’t good.

90

Temporary definition:

v is “good” means that d[v] = d(s,v)

The vertices in between may 

or may not be sure.



Claim 2
Inductive step

• Want to show that u is good.

• Say z is the good vertex before u.

u
s

True shortest path.

means good means not good

“by way of contradiction”

u

BWOC, suppose u isn’t good.

Z

91

Temporary definition:

v is “good” means that d[v] = d(s,v)

The vertices in between may 

or may not be sure.



Claim 2
Inductive step

• Want to show that u is good.

u
s

r

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of shortest 

paths are shortest 

paths.

BWOC, suppose u isn’t good.

Claim 1

t

Z

92

Temporary definition:

v is “good” means that d[v] = d(s,v)



Claim 2
Inductive step

• Want to show that u is good.

u
s

r

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of shortest 

paths are shortest 

paths.

Claim 1

• If 𝑑 𝑧 = 𝑑 𝑢 , then u is good.

BWOC, suppose u isn’t good.

t

Z

93

Temporary definition:

v is “good” means that d[v] = d(s,v)



Claim 2
Inductive step

• Want to show that u is good.

u
s

r

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of shortest 

paths are shortest 

paths.

Claim 1

• If 𝑑 𝑧 = 𝑑 𝑢 , then u is good.

BWOC, suppose u isn’t good.

t

Z

94

Temporary definition:

v is “good” means that d[v] = d(s,v)

But u is not good!



Claim 2
Inductive step

• Want to show that u is good.

u
s

r

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of shortest 

paths are shortest 

paths.

Claim 1

• If 𝑑 𝑧 = 𝑑 𝑢 , then u is good.

• So 𝑑 𝑧 < 𝑑 𝑢 , so z is sure. We chose u so that d[u] was 

smallest of the unsure vertices.

BWOC, suppose u isn’t good.

t

Z
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Temporary definition:

v is “good” means that d[v] = d(s,v)

But u is not good!



Claim 2
Inductive step

• Want to show that u is good.

u
s

r

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of shortest 

paths are shortest 

paths.

Claim 1

• If 𝑑 𝑧 = 𝑑 𝑢 , then u is good.

• So 𝑑 𝑧 < 𝑑 𝑢 , so z is sure.

BWOC, suppose u isn’t good.

z

t
96

Temporary definition:

v is “good” means that d[v] = d(s,v)

We chose u so that d[u] was 

smallest of the unsure vertices.

But u is not good!



Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

means good means not good

u
s

r

BWOC, suppose u isn’t good.

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

z

t
97

Temporary definition:

v is “good” means that d[v] = d(s,v)



Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

means good means not good

def of update

u
s

r

BWOC, suppose u isn’t good.

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

That is, the 

value of d[z] 

when z was 

marked 

sure…

z

t
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Temporary definition:

v is “good” means that d[v] = d(s,v)



Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑢)

means good means not good

def of update

u
s

r

BWOC, suppose u isn’t good.

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

By induction when z was added to 

the sure list it had d(s,z) = d[z]
That is, the 

value of d[z] 

when z was 

marked 

sure…

z

t
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Temporary definition:

v is “good” means that d[v] = d(s,v)



Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑢)

= 𝑑 𝑠, 𝑢

means good means not good

def of update

u
s

r

sub-paths of shortest paths are shortest paths

BWOC, suppose u isn’t good.

z

t
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Temporary definition:

v is “good” means that d[v] = d(s,v)

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

By induction when z was added to 

the sure list it had d(s,z) = d[z]
That is, the 

value of d[z] 

when z was 

marked 

sure…



Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑢)

= 𝑑 𝑠, 𝑢

≤ 𝑑[𝑢]

means good means not good

def of update

u
s

r

Claim 1

BWOC, suppose u isn’t good.

z

t
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Temporary definition:

v is “good” means that d[v] = d(s,v)

sub-paths of shortest paths are shortest paths

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

By induction when z was added to 

the sure list it had d(s,z) = d[z]
That is, the 

value of d[z] 

when z was 

marked 

sure…



Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑢)

= 𝑑 𝑠, 𝑢

≤ 𝑑[𝑢]

means good means not good

def of update

u
s

r

So d(s, 𝑢) = d[𝑢]  and so 𝑢 is good.

BWOC, suppose u isn’t good.

z

t
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Temporary definition:

v is “good” means that d[v] = d(s,v)

Claim 1

sub-paths of shortest paths are shortest paths

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

By induction when z was added to 

the sure list it had d(s,z) = d[z]
That is, the 

value of d[z] 

when z was 

marked 

sure…



Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑢)

= 𝑑 𝑠, 𝑢

≤ 𝑑[𝑢]

means good means not good

def of update

u
s

r

So d(s, 𝑢) = d[𝑢]  and so 𝑢 is good.

BWOC, suppose u isn’t good.

z

t
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Temporary definition:

v is “good” means that d[v] = d(s,v)

Claim 1

sub-paths of shortest paths are shortest paths

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

By induction when z was added to 

the sure list it had d(s,z) = d[z]
That is, the 

value of d[z] 

when z was 

marked 

sure…



Claim 2
Inductive step

• Want to show that u is good.

• If z is sure then we’ve already updated u:

• 𝑑 𝑢 ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑢

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑢)

= 𝑑 𝑠, 𝑢

≤ 𝑑[𝑢]

means good means not good

def of update

u
s

r

So d(s, 𝑢) = d[𝑢]  and so 𝑢 is good.

BWOC, suppose u isn’t good.

So u is good!

z

t
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Temporary definition:

v is “good” means that d[v] = d(s,v)

Claim 1

sub-paths of shortest paths are shortest paths

𝑑 𝑢 ← 𝑚𝑖𝑛{ 𝑑 𝑢 , 𝑑 𝑧 + 𝑤 𝑧, 𝑢 }

By induction when z was added to 

the sure list it had d(s,z) = d[z]
That is, the 

value of d[z] 

when z was 

marked 

sure…



Claim 2
When a vertex u is marked sure, d[u] = d(s,u)
• Inductive Hypothesis: 

• When we mark the tth vertex v as sure, d[v] = d(s,v).

• Base case:
• The first vertex marked sure is s, and d[s] = d(s,s) = 0.

• Inductive step:
• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:  

• Assume by induction that every v already marked sure has d[v] = d(s,v).
• Want to show that d[u] = d(s,u).

105

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

• Repeat

Conclusion: Claim 2 holds!



Why does this work?

• Theorem:  
• Run Dijkstra on G =(V,E) starting from s.

• At the end of the algorithm, the estimate d[v] is the actual distance d(s,v).

• Proof outline:
• Claim 1: For all v, d[v] ≥ d(s,v).

• Claim 2: When a vertex is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.

106



As usual

• Does it work?
• Yes.

• Is it fast?
• Depends on how you implement it.

107



Running time?
Dijkstra(G,s):

108

• Set all vertices to not-sure

• d[v] = ∞ for all v in V
• d[s] = 0

• While there are not-sure nodes:

• Pick the not-sure node u with the smallest estimate d[u].

• For v in u.neighbors:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v) )

• Mark u as sure.

• Now dist(s, v) = d[v]



Running time?

• n iterations (one per vertex)

• How long does one iteration take?

Depends on how we implement it…

• Set all vertices to not-sure

• d[v] = ∞ for all v in V
• d[s] = 0

• While there are not-sure nodes:

• Pick the not-sure node u with the smallest estimate d[u].

• For v in u.neighbors:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v) )

• Mark u as sure.

• Now dist(s, v) = d[v]

Dijkstra(G,s):

109



We need a data structure that:

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Just the inner loop:

110



We need a data structure that:

• Stores unsure vertices v
• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Just the inner loop:
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We need a data structure that:

• Stores unsure vertices v

• Keeps track of d[v]
• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Just the inner loop:
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We need a data structure that:

• Stores unsure vertices v

• Keeps track of d[v]

• Can find u with minimum d[u]  
• findMin()

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Just the inner loop:
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We need a data structure that:

• Stores unsure vertices v

• Keeps track of d[v]

• Can find u with minimum d[u]  
• findMin()

• Can remove that u 
• removeMin(u)

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Just the inner loop:
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We need a data structure that:

• Stores unsure vertices v

• Keeps track of d[v]

• Can find u with minimum d[u]  
• findMin()

• Can remove that u 
• removeMin(u)

• Can update (decrease) d[v] 
• updateKey(v,d)

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Just the inner loop:
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We need a data structure that:

• Stores unsure vertices v

• Keeps track of d[v]

• Can find u with minimum d[u]  
• findMin()

• Can remove that u 
• removeMin(u)

• Can update (decrease) d[v] 
• updateKey(v,d)

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.


𝑢∈𝑉

𝑇 findMin + 

𝑣∈𝑢.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑇 updateKey + 𝑇(removeMin)

Total running time is big-oh of:

Just the inner loop:
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We need a data structure that:

• Stores unsure vertices v

• Keeps track of d[v]

• Can find u with minimum d[u]  
• findMin()

• Can remove that u 
• removeMin(u)

• Can update (decrease) d[v] 
• updateKey(v,d)

• Pick the not-sure node u with the smallest estimate d[u].

• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.


𝑢∈𝑉

𝑇 findMin + 

𝑣∈𝑢.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑇 updateKey + 𝑇(removeMin)

= n( T(findMin) + T(removeMin) ) + m T(updateKey)

Total running time is big-oh of:

Just the inner loop:
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If we use an array
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If we use an array

• T(findMin) = O(n)

• T(removeMin) = O(n)

• T(updateKey) = O(1)
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If we use an array

• T(findMin) = O(n)

• T(removeMin) = O(n)

• T(updateKey) = O(1)

• Running time of Dijkstra  
=O(n( T(findMin) + T(removeMin) ) + m T(updateKey))

=O(n2) + O(m)

=O(n2)
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If we use a red-black tree
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If we use a red-black tree

• T(findMin) = O(log(n))

• T(removeMin) = O(log(n))

• T(updateKey) = O(log(n))
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If we use a red-black tree

• T(findMin) = O(log(n))

• T(removeMin) = O(log(n))

• T(updateKey) = O(log(n))

• Running time of Dijkstra  
=O(n( T(findMin) + T(removeMin) ) + m T(updateKey))

=O(nlog(n)) + O(mlog(n))

=O((n + m)log(n))
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If we use a red-black tree

• T(findMin) = O(log(n))

• T(removeMin) = O(log(n))

• T(updateKey) = O(log(n))

• Running time of Dijkstra  
=O(n( T(findMin) + T(removeMin) ) + m T(updateKey))

=O(nlog(n)) + O(mlog(n))

=O((n + m)log(n))

Better than an array if the graph is sparse!
aka if m is much smaller than n2
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Heaps support these operations

• T(findMin) 

• T(removeMin)

• T(updateKey)

• A heap is a tree-based data structure that has 
the property that every node has a smaller key 
than its children.

104

3

0

2

56

125



Many heap implementations
Nice chart on Wikipedia:
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Say we use a Fibonacci Heap
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Say we use a Fibonacci Heap

• T(findMin) = O(1)

• T(removeMin) = O(log(n))

• T(updateKey) = O(1)
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Say we use a Fibonacci Heap

• T(findMin) = O(1)

• T(removeMin) = O(log(n))

• T(updateKey) = O(1)

• Running time of Dijkstra  
=O(n( T(findMin) + T(removeMin) ) + m T(updateKey))

=O(nlog(n) + m)
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Dijkstra is used in practice

• eg, OSPF (Open Shortest Path First), a routing protocol for IP 
networks, uses Dijkstra.

But there are 
some things it’s 
not so good at.
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Dijkstra Drawbacks

• Needs non-negative edge weights.

• If the weights change, we need to re-run the whole 
thing.

• in OSPF, a vertex broadcasts any changes to the network, 
and then every vertex re-runs Dijkstra’s algorithm from 
scratch.
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Summary

• BFS:
• (+) O(n+m)

• (-) only unweighted graphs

• Dijkstra’s algorithm:
• (+) weighted graphs

• (+) O(nlog(n) + m) if you implement it right.

• (-) no negative edge weights

• (-) very “centralized” (need to keep track of all the vertices 
to know which to update).
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