Indian Institute of Information Technology Allahabad

Data Structures and Algorithms

Minimum Spanning Trees

Dr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in
Web: https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are adopted from many sources for academic purposes. Broadly, the sources have been given due credit appropriately. However, there is a chance of missing out some original primary sources. The authors of this material do not claim any copyright of such material.

THE GREEDY PARADIGM

Commit to choices one-at-a-time, never look back, and hope for the best.

Greedy doesn't always work.
And when it does, it's not always easy to see \& prove why it works.

A STRATEGY FOR GREEDY PROOFS

Prove that after each choice, you're not ruling out success. (i.e. you're not ruling out finding an optimal solution)

- INDUCTIVE HYPOTHESIS: After greedy choice t, you haven't ruled out success
- BASE CASE: Success is possible before you make any choices
- INDUCTIVE STEP: If you haven't ruled out success after choice t, then show that you won't rule out success after choice t+1 (there's an optimal solution that's consistent with the choices we've made so far)
- CONCLUSION: If you reach the end of the algorithm and haven't ruled out success then you must have succeeded.

WHAT WE'LL COVER TODAY

- Applications of the greedy algorithm design paradigm to Minimum Spanning Trees
- Prim's algorithm
- Kruskal's algorithm

MINIMUM SPANNING TREES

What are minimum spanning trees (MSTs)?

TREES IN GRAPHS

Let's go over some terminology that we'll be using today.
A tree is an undirected, acyclic, connected graph.
Which of these graphs are trees?

TREES IN GRAPHS

Let's go over some terminology that we'll be using today.

A tree is an undirected, acyclic, connected graph.

Which of these graphs are trees?

SPANNING TREES

A spanning tree is a tree that connects all of the vertices in the graph
Which of these graphs are spanning trees?

SPANNING TREES

A spanning tree is a tree that connects all of the vertices

Which of these graphs are spanning trees?

Not a tree

Doesn't connect all vertices

Not a tree

Not a tree

Doesn't connect all vertices

MINIMUM SPANNING TREES (MSTs)

For the remainder of today, we're going to work with undirected, weighted, connected graphs.
The cost of a spanning tree is the sum of the weights on the edges.
An MST of a graph is a spanning tree of the graph with minimum cost.

MINIMUM SPANNING TREES (MSTs)

For the remainder of today, we're going to work with undirected, weighted, connected graphs.
The cost of a spanning tree is the sum of the weights on the edges.
An MST of a graph is a spanning tree of the graph with minimum cost.

Note: A graph may have multiple spanning trees. It may also have multiple MSTs (if 2 different spanning trees have the same exact cost)

MINIMUM SPANNING TREES (MSTs)

For the remainder of today, we're going to work with undirected, weighted, connected graphs.
The cost of a spanning tree is the sum of the weights on the edges.
An MST of a graph is a spanning tree of the graph with minimum cost.

Note: A graph may have multiple spanning trees. It may also have multiple MSTs (if 2 different spanning trees have the same exact cost)

MINIMUM SPANNING TREES (MSTs)

For the remainder of today, we're going to work with undirected, weighted, connected graphs.
The cost of a spanning tree is the sum of the weights on the edges.
An MST of a graph is a spanning tree of the graph with minimum cost.

Note: A graph may have multiple spanning trees. It may also have multiple MSTs (if 2 different spanning trees have the same exact cost)

This spanning tree has a cost of 37 .

This is an MST of this graph, since there is no other spanning tree with smaller cost.

MINIMUM SPANNING TREES (MSTs)

The task for today:
Given an undirected, weighted, and connected graph G, find the minimum spanning tree (as a subset of the G's edges)

We would return this MST. Sometimes, there may be more than one MST as well, so return any MST of G.

APPLICATIONS OF MSTs

Network design

Find the most cost-effective way to connect cities with roads/water/electricity/phone

Cluster analysis

Find clusters in a dataset (one of the algorithms we'll see can be modified slightly to basically do this)

Image processing

Image segmentation, which finds connected regions in the image with minimal differences

Useful primitive

Finding an MST is often useful as a subroutine or approximation for more advanced graph algorithms

MINIMUM SPANNING TREES (MSTs)

Before we move on with the lecture... why don't you give this a try? Brainstorm some greedy algorithms to find an MST!

A BRIEF ASIDE: CUTS \& "LIGHT" EDGES

What are cuts in graphs? And what can they tell us about MSTs?

CUTS IN GRAPHS

A cut is a partition of the vertices into two nonempty parts.

CUTS IN GRAPHS

A cut is a partition of the vertices into two nonempty parts.

CUTS IN GRAPHS

A cut is a partition of the vertices into two nonempty parts.

CUTS IN GRAPHS

A cut is a partition of the vertices into two nonempty parts.
We say a cut respects a set of edges S if no edges in S cross the cut

CUTS IN GRAPHS

A cut is a partition of the vertices into two nonempty parts.
We say a cut respects a set of edges S if no edges in S cross the cut

This cut
respects this orange set of edges!

CUTS IN GRAPHS

A cut is a partition of the vertices into two nonempty parts.
An edge is light if it has the smallest weight of any edge crossing the cut

This cut
respects this orange set of edges!

AN IMPORTANT LEMMA

LEMMA: Consider a cut that respects a set of edges S.
Suppose there exists an MST T* containing S. Let (u, v) be a light edge crossing this cut. Then, there exists an MST containing $S \mathbf{U}\{(u, v)\}$.

AN IMPORTANT LEMMA

LEMMA: Consider a cut that respects a set of edges S.
Suppose there exists an MST T* containing S. Let (u, v) be a light edge crossing this cut. Then, there exists an MST containing $S \mathbf{U}\{(u, v)\}$.

Before we prove this, why is this lemma important?

This is exactly the kind of statement we want for a greedy algorithm: If we haven't ruled out the possibility of success so far, then adding a light edge still won't rule out success!

We'll see how this can translate to an algorithm later... let's prove this first!

PROOF OF LEMMA

LEMMA: Consider a cut that respects a set of edges S.
Suppose there exists an MST T* containing S. Let (u, v) be a light edge crossing this cut.
Then, there exists an MST containing $S \mathbf{U}\{(u, v)\}$.

Suppose (u, v) is not in T^{*}.

If it is, then trivially, T^{*} is an MST containing $S \cup\{(u, v)\}$.
Adding (u, v) to T^{*} will make a cycle.
Since T^{*} is an MST, we know that there must be an edge in T^{*} crossing the cut (in order to connect nodes on opposite sides of the cut).
Call this edge (x, y).
If we replace (x, y) with (u, v) in T^{*}, we end up with an MST T. Why is T still an MST? Well, since T^{*} was a tree, and we also delete (x, y), then T must also be a tree (no cycles). Since (u, v) is light, then T has at most the cost of T^{*}, so T is also optimal.
Thus, there exists an MST (T) containing $S \mathbf{U}\{(u, v)\}$

AN IMPORTANT LEMMA

LEMMA: Consider a cut that respects a set of edges S.
Suppose there exists an MST T* containing S. Let (u, v) be a light edge crossing this cut. Then, there exists an MST containing $S \cup\{(u, v)\}$.

We'll see two famous MST algorithms which each have their own way of greedily claiming the next light edge.
We'll keep this lemma in mind when working out the proofs of correctness for each of the algorithms!

PRIM'S ALGORITHM

Greedily add the closest vertex!

PRIM'S ALGORITHM:THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

First, we can initialize our tree to contain a single arbitrary node in G (doesn't matter which node)

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

PRIM'S ALGORITHM:THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Our tree just grew by one! Now repeat until we reach all the nodes.

PRIM'S ALGORITHM:THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Consider the edges coming out of the "frontier" of our growing tree.

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight (if there's a tie, choose any)

PRIM'S ALGORITHM:THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Consider the edges coming out of the "frontier" of our growing tree.

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Consider the edges coming out of the "frontier" of our growing tree.

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Consider the edges coming out of the "frontier" of our growing tree.

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Consider the edges coming out of the "frontier" of our growing tree.

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

PRIM'S ALGORITHM:THE IDEA

Greedy choice:
Grow a single tree, \& greedily add the shortest edge that could grow our tree

Consider the edges coming out of the "frontier" of our growing tree.

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Consider the edges coming out of the "frontier" of our growing tree.

PRIM'S ALGORITHM: THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

PRIM'S ALGORITHM:THE IDEA

Greedy choice:

Grow a single tree, \& greedily add the shortest edge that could grow our tree

And we're done! This is our MST. (with weight 37)

PRIM'S ALGORITHM: SLOW VERSION

```
NAIVE_PRIM(G = (V,E), s):
    MST = {}
    visited = {s}
    while len(visited) < n:
    find the lightest edge (x,v) in E s.t.
            - x in visited
            - v not in visited
        MST.add((x,v))
        visited.add(v)
    return MST
```

If we manually find the lightest edge each iteration, it could be O (m) time per iteration..

(Naive) Runtime: O(nm)

PRIM'S ALGORITHM: SLOW VERSION

NAIVE_PRIM (G = (V, E), s):

How should we actually implement this?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)

Update their estimates, and now A is officially done.

Time to choose the lightest edge on the frontier (i.e. the edge whose endpoint has the lowest distance stored)

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)
B is the closest node to the growing tree.

Since we recorded how to get to the tree from B, we know which edge to add.

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)

I is the closest node to the growing tree.

Since we recorded how to get to the tree from I, we know which edge to add.

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

1) the distance from itself to the growing spanning tree using one edge
2) how to get to there (the closest neighbor that's reached by the tree already)

PRIM'S ALGORITHM: PSEUDOCODE

```
PRIM(G = (V,E), s):
    M(G = (V,E), S): 
    visited = {s}
    for all v besides s: d[v] = \infty and k[v] = NULL
    for each neighbor v of s: d[v] = w(s,v) and k[v] = s
    while len(visited) < n:
        x = unvisited vertex v with smallest d[v] value
        MST.add((K[x], x))
        for each unreached neighbor v of }x\mathrm{ :
            d[v] = min(w(x,v), d[v])
            if d[v] was updated: k[v] = x
        visited.add(x)
    return MST
```


Runtime (using RB-Tree): O(m $\log \mathrm{n}$)

PRIM'S ALGORITHM: PSEUDOCODE

```
PRIM(G = (V,E), s):
```



```
    visited = {s}
    for all v besides s: d[v] = \infty and k[v] = NULL
    for each neighbor v of s: d[v] = w(s,v) and k[v] = s
    while len(visited) < n:
        x = unvisited vertex v with smallest d[v] value
        MST.add((K[x], x))
        for each unreached neighbor v of }x\mathrm{ :
            d[v] = min(w(x,v), d[v])
            if d[v] was updated: k[v] = x
        visited.add(x)
    return MST
Runtime (using Fibonacci Heap): \(\mathrm{O}(\mathrm{m}+\mathrm{n} \log \mathrm{n}\) )
```


PRIM'S ALGORITHM: CORRECTNESS

Let's follow our framework from before:

Prove that after each choice, you're not ruling out success. (i.e. you're not ruling out finding an optimal solution)

- INDUCTIVE HYPOTHESIS: After greedy choice t, you haven't ruled out success
- BASE CASE: Success is possible before you make any choices
- INDUCTIVE STEP: If you haven't ruled out success after choice t, then show that you won't rule out success after choice $t+1$ (let's elaborate on this!)
- CONCLUSION: If you reach the end of the algorithm and haven't ruled out success then you must have succeeded

PRIM'S ALGORITHM: CORRECTNESS

Let's follow our framework from before:
Prove that after each choice, you're not ruling out success. (i.e. you're not ruling out finding an optimal solution)

Our greedy choice in Prim's: choosing the lightest edge on our frontier "Not ruling out success": there's still an MST that extends our current set of edges

- CONCLUSION: If you reach the end of the algorithm and haven't ruled out success then you must have succeeded

REMEMBER OUR LEMMA

LEMMA: Consider a cut that respects a set of edges S.
Suppose there exists an MST T* containing S. Let (u, v) be a light edge crossing this cut. Then, there exists an MST containing $S \mathbf{U}\{(u, v)\}$.

PRIM'S ALGORITHM: CORRECTNESS

Inductive Step (sketch): Suppose we've already chosen a set S of k edges, and there's an MST T* consistent with those choices. Then, Prim's chooses the lightest edge on the frontier, so we need to show there's an MST consistent with this new set of edges.

PRIM'S ALGORITHM: CORRECTNESS

Inductive Step (sketch): Suppose we've already chosen a set S of k edges, and there's an MST T* consistent with those choices. Then, Prim's chooses the lightest edge on the frontier, so we need to show there's an MST consistent with this new set of edges.

Suppose our choices S so far don't rule out success. This means there is an MST T* that contains S.

PRIM'S ALGORITHM: CORRECTNESS

Inductive Step (sketch): Suppose we've already chosen a set S of k edges, and there's an MST T* consistent with those choices. Then, Prim's chooses the lightest edge on the frontier, so we need to show there's an MST consistent with this new set of edges.

Suppose our choices S so far don't rule out success. This means there is an MST T* that contains S.
Consider the cut \{visited, unvisited\}.
This cut respects the set of edges S .

PRIM'S ALGORITHM: CORRECTNESS

Inductive Step (sketch): Suppose we've already chosen a set S of k edges, and there's an MST T* consistent with those choices. Then, Prim's chooses the lightest edge on the frontier, so we need to show there's an MST consistent with this new set of edges.

Suppose our choices S so far don't rule out success.
This means there is an MST T^{\star} that contains S.
Consider the cut \{visited, unvisited\}.
This cut respects the set of edges S .
The next edge we add is a light edge on this cut.
This is the smallest weight edge that crosses the cut, i.e. the frontier of our growing tree.

PRIM'S ALGORITHM: CORRECTNESS

Inductive Step (sketch): Suppose we've already chosen a set S of k edges, and there's an MST T* consistent with those choices. Then, Prim's chooses the lightest edge on the frontier, so we need to show there's an MST consistent with this new set of edges.

Suppose our choices S so far don't rule out success.
This means there is an MST T* that contains S.
Consider the cut \{visited, unvisited\}.
This cut respects the set of edges S .
The next edge we add is a light edge on this cut.
This is the smallest weight edge that crosses the cut, i.e. the frontier of our growing tree.
By our Lemma, once we add this light edge, there is still an MST that is consistent with our new set of edges. Thus, we haven't ruled out success!

PRIM'S ALGORITHM: CORRECTNESS

INDUCTIVE HYPOTHESIS

After adding the $t^{\text {th }}$ edge, there is an MST that contains the edges added so far.

BASE CASE

After adding the $0^{\text {th }}$ edge, there exists an MST with the edges added so far.

INDUCTIVE STEP (weak induction)

If the inductive hypothesis holds for t (i.e. the edge choices so far are safe), then it holds for $t+1$, as there is still an MST that contains these $t+1$ edges. We proved this by considering the cut between visited \& unvisited nodes (i.e. the "frontier) and invoking our Lemma from earlier in class.

CONCLUSION

After adding the $(n-1)^{\text {st }}$ edge, there exists an MST containing the edges added so far. A tree containing n-1 edges is already a spanning tree, so the tree we have must be a minimum spanning tree.

KRUSKAL'S ALGORITHM

Greedily add the cheapest edge!

KRUSKAL'S ALGORITHM: THE IDEA

Greedy choice:

Maintain a forest of trees, \& greedily add the cheapest edge to combine trees

KRUSKAL'S ALGORITHM: THE IDEA

Greedy choice:

Maintain a forest of trees, \& greedily add the cheapest edge to combine trees

Every node on its own starts as an individual tree in this forest

KRUSKAL'S ALGORITHM: THE IDEA

Greedy choice:

Maintain a forest of trees, \& greedily add the cheapest edge to combine trees

Choose the cheapest edge that would combine two trees
(i.e. that won't cause a cycle)

KRUSKAL'S ALGORITHM: THE IDEA

Greedy choice:

Maintain a forest of trees, \& greedily add the cheapest edge to combine trees

Choose the cheapest edge that would combine two trees
(i.e. that won't cause a cycle)

If there's a tie, choose one of the edges

KRUSKAL'S ALGORITHM: THE IDEA

Greedy choice:

Maintain a forest of trees, \& greedily add the cheapest edge to combine trees

Choose the cheapest edge that would combine two trees
(i.e. that won't cause a cycle)

KRUSKAL'S ALGORITHM: THE IDEA

Greedy choice:

Maintain a forest of trees, \& greedily add the cheapest edge to combine trees

Choose the cheapest edge that would combine two trees
(i.e. that won't cause a cycle)

KRUSKAL'S ALGORITHM: THE IDEA

Greedy choice:

Maintain a forest of trees, \& greedily add the cheapest edge to combine trees

Choose the cheapest edge that would combine two trees
(i.e. that won't cause a cycle)

KRUSKAL'S ALGORITHM: THE IDEA

Greedy choice:

Maintain a forest of trees, \& greedily add the cheapest edge to combine trees

Choose the cheapest edge that would combine two trees
(i.e. that won't cause a cycle)

KRUSKAL'S ALGORITHM: THE IDEA

Greedy choice:

Maintain a forest of trees, \& greedily add the cheapest edge to combine trees

Choose the cheapest edge that would combine two trees
(i.e. that won't cause a cycle)

KRUSKAL'S ALGORITHM: THE IDEA

Greedy choice:

Maintain a forest of trees, \& greedily add the cheapest edge to combine trees

Choose the cheapest edge that would combine two trees
(i.e. that won't cause a cycle)

KRUSKAL'S ALGORITHM: THE IDEA

Greedy choice:

Maintain a forest of trees, \& greedily add the cheapest edge to combine trees

We're done!
This is the MST.

KRUSKAL'S ALGORITHM: PSEUDOCODE

```
KRUSKAL_NOT_VERY_DETAILED(G = (V,E)):
E_SORTED = E sorted by weight in non-decreasing order
MST = {}
for v in V:
    put v in its own tree
for (u,v) in E_SORTED:
    if u's tree and v's tree are not the same:
        MST.add((u,v))
        merge u's tree with v's tree
    return MST
```


KRUSKAL'S ALGORITHM: PSEUDOCODE

```
KRUSKAL_NOT_VERY_DETAILED(G = (V,E)):
E_SORTED = E sorted by weight in non-decreasing order
MST = {}
for v in V:
    put v in its own tree
for (u,v) in E_SORTED:
    if u's tree and v's tree are not the same:
        MST.add((u,v))
        merge u's tree with v's tree
    return MST
```

To implement these lines, we'll use a Union-Find data structure, which supports 3 operations: MAKE_SET(x), $\operatorname{FIND}(x)$, and $\operatorname{UNION(~} x, y$)

KRUSKAL'S ALGORITHM: PSEUDOCODE

MAKE_SET (x): creates a set $\{x\}$ in $O(1)$ FIND (x): returns the set containing x in $O(1)$ $\operatorname{UNION}(x, y)$: merges the sets containing x and y in $O(1)$

To implement these lines, we'll use a Union-Find data structure, which supports 3 operations: MAKE_SET(x), FIND (x), and $\operatorname{UNION}(\mathrm{x}, \mathrm{y})$

KRUSKAL'S ALGORITHM: PSEUDOCODE

```
KRUSKAL(G = (V,E)):
    E_SORTED = E sorted by weight in non-decreasing order
    MST = {}
    for v in V:
        MAKE_SET(v)
    for (u,v) in E_SORTED:
    if FIND(u) != FIND(v):
        MST.add((u,v))
        UNION(u,v)
    return MST
```

Basically, the time to sort the edge
weights dominates the runtime.
$O(m \log m)=O(m \log n)$, since $m \leq n^{2}$

```
return MST
(With union-find data structure) Runtime \(=0(\mathrm{~m} \log \mathrm{n})\)
```


KRUSKAL'S ALGORITHM: PSEUDOCODE

```
KRUSKAL(G = (V,E)):
    E_SORTED = E sorted by weight in non-decreasing order
    MST = {}
    for v in V:
        MAKE_SET(v)
    for (u,v) in E_SORTED:
        if FIND(u) != FIND(v):
        MST.add((u,v))
        UNION(u,v)
    return MST
```

If the edge weights are of appropriate values and RadixSort
can be applied instead

```
return MST
(With union-find data structure \& RadixSort) Runtime \(=0(m)\)
```


KRUSKAL'S CORRECTNESS

Let's follow our framework from before:
Prove that after each choice, you're not ruling out success. (i.e. you're not ruling out finding an optimal solution)

- INDUCTIVE HYPOTHESIS: After greedy choice t, you haven't ruled out success
- BASE CASE: Success is possible before you make any choices
- INDUCTIVE STEP: If you haven't ruled out success after choice t, then show that you won't rule out success after choice $\mathrm{t}+1$ (let's elaborate on this!)
- CONCLUSION: If you reach the end of the algorithm and haven't ruled out success then you must have succeeded

KRUSKAL'S CORRECTNESS

Let's follow our framework from before:
Prove that after each choice, you're not ruling out success.
(i.e. you're not ruling out finding an optimal solution)

Our greedy choice: choosing the cheapest edge that combines two trees
"Not ruling out success": there's still an MST that extends our current set of edges

- CONCLUSION: If you reach the end of the algorithm and haven't ruled out success then you must have succeeded

REMEMBER OUR LEMMA

LEMMA: Consider a cut that respects a set of edges S.
Suppose there exists an MST T* containing S. Let (u, v) be a light edge crossing this cut. Then, there exists an MST containing $S \mathbf{U}\{(u, v)\}$.

KRUSKAL'S CORRECTNESS

Inductive Step (sketch): Suppose we've already chosen a set Sk edges, and there's an MST T* consistent with those choices. Then, Kruskal's adds the cheapest edge that would merge 2 trees, so we show there's still an MST consistent with this new set of edges.

KRUSKAL'S CORRECTNESS

Inductive Step (sketch): Suppose we've already chosen a set S k edges, and there's an MST T* consistent with those choices. Then, Kruskal's adds the cheapest edge that would merge 2 trees, so we show there's still an MST consistent with this new set of edges.

Suppose our choices S so far don't rule out success. This means there is an MST T* that contains S.

KRUSKAL'S CORRECTNESS

Inductive Step (sketch): Suppose we've already chosen a set S k edges, and there's an MST T* consistent with those choices. Then, Kruskal's adds the cheapest edge that would merge 2 trees, so we show there's still an MST consistent with this new set of edges.

Suppose our choices S so far don't rule out success. This means there is an MST T* that contains S.
The next edge we add will merge two trees, $\mathrm{T}_{1} \& \mathrm{~T}_{2}$
This edge is the cheapest edge that bridge two trees.

KRUSKAL'S CORRECTNESS

Inductive Step (sketch): Suppose we've already chosen a set S k edges, and there's an MST T* consistent with those choices. Then, Kruskal's adds the cheapest edge that would merge 2 trees, so we show there's still an MST consistent with this new set of edges.

Suppose our choices S so far don't rule out success. This means there is an MST T^{\star} that contains S.
The next edge we add will merge two trees, $\mathrm{T}_{1} \& \mathrm{~T}_{2}$
This edge is the cheapest edge that bridge two trees.
Consider the cut $\left\{\mathrm{T}_{1}, \mathrm{~V}-\mathrm{T}_{1}\right\}$.
This cut respects S . Our new edge is lightfor the cut (it's the cheapest edge after all).

KRUSKAL'S CORRECTNESS

Inductive Step (sketch): Suppose we've already chosen a set Skedges, and there's an MST T* consistent with those choices. Then, Kruskal's adds the cheapest edge that would merge 2 trees, so we show there's still an MST consistent with this new set of edges.

Suppose our choices S so far don't rule out success. This means there is an MST T^{\star} that contains S.
The next edge we add will merge two trees, $\mathrm{T}_{1} \& \mathrm{~T}_{2}$
This edge is the cheapest edge that bridge two trees.
Consider the cut $\left\{\mathrm{T}_{1}, \mathrm{~V}-\mathrm{T}_{1}\right\}$.
This cut respects S . Our new edge is lightfor the cut (it's the cheapest edge after all).
By our Lemma, once we add this light edge, there is still an MST that is consistent with our new set of
 edges. Thus, we haven't ruled out success!

KRUSKAL'S CORRECTNESS

INDUCTIVE HYPOTHESIS

After adding the $t^{\text {th }}$ edge, there is an MST that contains the edges added so far.

BASE CASE

After adding the $0^{\text {th }}$ edge, there exists an MST with the edges added so far.

INDUCTIVE STEP (weak induction)

If the inductive hypothesis holds for t (i.e. the edge choices so far are safe), then it holds for $t+1$, as there is still an MST that contains these $t+1$ edges. We proved this by considering the cut between the tree living at one endpoint of our chosen edge \& all remaining vertices, \& invoking our favorite Lemma.

CONCLUSION

After adding the $(n-1)^{\text {st }}$ edge, there exists an MST containing the edges added so far. A tree containing n-1 edges is already a spanning tree, so the tree we have must be a minimum spanning tree.

PRIM'S vs. KRUSKAL'S

Prim's Algorithm

Grows a single tree by greedily adding the cheapest edge on the "frontier" of the growing tree.

Runtime (RB-tree): O(m $\log \mathrm{n})$
Runtime (Fibonacci Heap): $\mathrm{O}(\mathrm{m}+\mathrm{n} \log \mathrm{n})$
Prim's may be better on dense graphs (where m is $\sim n^{2}$) if you can't RadixSort edge weights

Kruskal's Algorithm

Maintains a forest and greedily chooses the cheapest edge that would be able to merge two trees

Runtime (union-find data struct.): O(m log n)
Runtime (union-find + radixSort) : O(m)
Kruskal's may be better on sparse graphs
if you can RadixSort edge weights

Both are greedy algorithms, with similar reasoning (that piggyback off of our lemma).
Optimal substructure: subgraphs generated by cuts - the way to make safe choices is to choose light edges crossing the cut.

CAN WE DO BETTER?

The algorithms are all
comparison-based!

Karger-Klein Tarjan (1995)

$\mathrm{O}(\mathrm{m})$ expected time randomized algorithm
$\mathrm{O}(\mathrm{m} \cdot \alpha(\mathrm{n}))$ time deterministic algorithm

Pettie-Ramachandran (2002)

Acknowledgement

- Stanford University

Thank You

