Indian Institute of Information Technology Allahabad

Data Structures and Algorithms

Graphs

Dr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are adopted from many sources for academic purposes. Broadly, the sources have been given due credit appropriately. However, there is a chance of missing out some original primary sources. The authors of this material do not claim any copyright of such material.

Graphs

Graphs

Graph of the internet
(in 1999...it's a lot bigger now...)

Graphs

Graphs

Game of Thrones
 Character Interaction Network

Graphs

$\underset{\text { route map }}{\text { AIR INDIA }}$

Graphs

Immigration flows

Graphs

Potato trade

World trade in fresh potatoes, flows over 0.1 m US\$ average 2005-2009

Graphs

Graphs

Graphical models

Graphs

What eats what in the Atlantic ocean?

Graphs

Neural connections in the brain

Graphs

- There are a lot of graphs.
- We want to answer questions about them.
- Efficient routing?
- Community detection/clustering?
- Signing up for classes without violating pre-req constraints
- How to distribute fish in tanks so that none of them will fight.

Undirected Graphs

Undirected Graphs

- Has vertices and edges
- V is the set of vertices
- E is the set of edges
- Formally, a graph is $\mathrm{G}=(\mathrm{V}, \mathrm{E})$

Undirected Graphs

- Has vertices and edges
- V is the set of vertices
- E is the set of edges
- Formally, a graph is $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Example
- $\mathrm{V}=\{1,2,3,4\}$

- $E=\{\{1,3\},\{2,4\},\{3,4\},\{2,3\}\}$

Undirected Graphs

- Has vertices and edges
- V is the set of vertices
- E is the set of edges
- Formally, a graph is $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Example
- $\mathrm{V}=\{1,2,3,4\}$

- $E=\{\{1,3\},\{2,4\},\{3,4\},\{2,3\}\}$
- The degree of vertex 4 is 2 .
- There are 2 edges coming out.
- Vertex 4's neighbors are 2 and 3

Directed Graphs

Directed Graphs

- Has vertices and edges
- V is the set of vertices
- E is the set of DIRECTED edges
- Formally, a graph is $G=(V, E)$

Directed Graphs

- Has vertices and edges
- V is the set of vertices
- E is the set of DIRECTED edges
- Formally, a graph is $G=(V, E)$
- Example
- $\mathrm{V}=\{1,2,3,4\}$

- $E=\{(1,3),(2,4),(3,4),(4,3),(3,2)\}$

Directed Graphs

- Has vertices and edges
- V is the set of vertices
- E is the set of DIRECTED edges
- Formally, a graph is $G=(V, E)$
- Example
- $\mathrm{V}=\{1,2,3,4\}$

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E})
$$

- $E=\{(1,3),(2,4),(3,4),(4,3),(3,2)\}$
- The in-degree of vertex 4 is 2 .
- The out-degree of vertex 4 is 1 .
- Vertex 4's incoming neighbors are 2,3
- Vertex 4's outgoing neighbor is 3.

How do we represent graphs?

How do we represent graphs?

- Option 1: adjacency matrix.

How do we represent graphs?

- Option 1: adjacency matrix.

How do we represent graphs?

- Option 1: adjacency matrix.
$\sim\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$

How do we represent graphs?

- Option 1: adjacency matrix.

$$
\sim\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
\sim & 0 & 1 & 0 \\
\sim \\
\sim & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

How do we represent graphs?

- Option 1: adjacency matrix.

$$
\left.\right]
$$

How do we represent graphs?

- Option 1: adjacency matrix.

How do we represent graphs?

- Option 2: adjacency lists.

How do we represent graphs?

- Option 2: adjacency lists.

How do we represent graphs?

- Option 2: adjacency lists.

How do we represent graphs?

- Option 2: adjacency lists.

In either case

- Vertices can store other information
- Attributes (name, IP address, ...)
- helper info for algorithms that we will perform on the graph

In either case

- Vertices can store other information
- Attributes (name, IP address, ...)
- helper info for algorithms that we will perform on the graph
- Want to be able to do the following operations:
- Edge Membership: Is edge e in E?
- Neighbor Query: What are the neighbors of vertex v?

Trade-offs

Say there are n vertices and m edges.
$\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$

Edge membership Is $e=\{v, w\}$ in E ?

Neighbor query
Give me v's neighbors.

Space
requirements

Trade-offs

Say there are n vertices and m edges.

Edge membership Is $e=\{v, w\}$ in E ?
$\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$

Neighbor query
Give me v's neighbors.

Space
requirements

Trade-offs

Say there are n vertices and m edges.
$\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$

Edge membership
Is $e=\{v, w\}$ in E ?
O(1)

O(deg(v)) or O(deg(w))

Neighbor query
Give me v's neighbors.

Space
requirements

Trade-offs

Say there are n vertices and m edges.
$\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$

Edge membership
Is $e=\{v, w\}$ in E ?
O(1)
O(deg(v)) or O(deg(w))

Neighbor query
Give me v's neighbors.
$\mathrm{O}(\mathrm{n})$

Space
requirements

Trade-offs

Say there are n vertices and m edges.
$\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$

Edge membership
Is $e=\{v, w\}$ in E ?

O(1)

O(deg(v)) or
O(deg(w))

Neighbor query
Give me v's neighbors.
$\mathrm{O}(\mathrm{n})$
O(deg(v))

Space
requirements

Trade-offs

Say there are n vertices and m edges.
$\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$

Edge membership
Is $e=\{v, w\}$ in E ?

O(1)
 O(deg(v)) or
 O(deg(w))
 $\mathrm{O}(\mathrm{n})$
 O(deg(v))

Neighbor query
Give me v's neighbors.

Space
requirements
$O\left(n^{2}\right)$

Trade-offs

Say there are n vertices and m edges.
$\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$

Edge membership
Is $e=\{v, w\}$ in E ?

O(1)

Neighbor query
Give me v's neighbors.
$\mathrm{O}(\mathrm{n})$

Space
requirements

O(deg(v)) or
O(deg(w))

O(deg(v))

$\mathrm{O}(\mathrm{n}+\mathrm{m})$

Trade-offs

Generally better
for sparse graphs

Say there are n vertices and m edges.
$\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$

Edge membership
Is $\mathrm{e}=\{\mathrm{v}, \mathrm{w}\}$ in E ?

O(1)

O(deg(v)) or
O(deg(w))

Neighbor query
Give me v's neighbors.
$\mathrm{O}(\mathrm{n})$
O(deg(v))

Space
requirements
$\mathrm{O}(\mathrm{n}+\mathrm{m})$

Trade-offs

Generally better
for sparse graphs

Say there are n vertices and m edges.	$\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$	
Edge membership Is $e=\{v, w\}$ in E ?	$O(1)$	$\begin{aligned} & \mathrm{O}(\operatorname{deg}(\mathrm{v})) \text { or } \\ & \mathrm{O}(\operatorname{deg}(w)) \end{aligned}$
Neighbor query Give me v's neighbors.	$O(n)$	O(deg(V))
Space requirements	$O\left(n^{2}\right)$	$\mathrm{O}(\mathrm{n}+\mathrm{m})$ We'll assume this representation for the rest of the class

Acknowledgement

- Stanford University

Thank You

