
Data Structures and Algorithms

Indian Institute of Information Technology Allahabad

Heap Sort and Priority Queue

Dr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

A priority queue stores a
collection of entries

Each entry is a pair
(key, value)

Main methods of the
Priority Queue ADT

◼ insert(k, x)
inserts an entry with key
k and value x

◼ removeMin()
removes and returns the
entry with smallest key

Priority Queue ADT

3

A priority queue stores a
collection of entries

Each entry is a pair
(key, value)

Main methods of the
Priority Queue ADT

◼ insert(k, x)
inserts an entry with key
k and value x

◼ removeMin()
removes and returns the
entry with smallest key

Additional methods

◼ min()
returns, but does not
remove, an entry with
smallest key

◼ size(), isEmpty()

Applications:

◼ Standby flyers

◼ Auctions

◼ Stock market

Priority Queue ADT

4

Implementation with an
unsorted list

Performance:
◼ insert takes O(1) time since

we can insert the item at
the beginning or end of the
sequence

◼ removeMin and min take
O(n) time since we have to
traverse the entire
sequence to find the
smallest key

4 5 2 3 1

Implementing Priority Queue with Linked Lists

5

Implementation with an
unsorted list

Performance:
◼ insert takes O(1) time since

we can insert the item at
the beginning or end of the
sequence

◼ removeMin and min take
O(n) time since we have to
traverse the entire
sequence to find the
smallest key

Implementation with a
sorted list

Performance:
◼ insert takes O(n) time since

we have to find the place
where to insert the item

◼ removeMin and min take
O(1) time, since the smallest
key is at the beginning

4 5 2 3 1 1 2 3 4 5

Implementing Priority Queue with Linked Lists

6

A

B DC

G HE F

I J K

Can we do better?

Yes, using Heaps ,
which are built using Trees :

7

•Array can be viewed as a nearly complete binary tree.
• Physically – linear array.
• Logically – binary tree, filled on all levels (except lowest.)

•Map from array elements to tree nodes and vice versa
• Root – A[1]
• Left[i] – A[2i]
• Right[i] – A[2i+1]
• Parent[i] – A[i/2]

• heap-size[A]  length[A]

Heap Data Structure

8

•Array can be viewed as a nearly complete binary tree.
• Physically – linear array.
• Logically – binary tree, filled on all levels (except lowest.)

•Map from array elements to tree nodes and vice versa
• Root – A[1]
• Left[i] – A[2i]
• Right[i] – A[2i+1]
• Parent[i] – A[i/2]

• length[A] – number of elements in array A.
•heap-size[A] – number of elements in heap stored in A.

• heap-size[A]  length[A]

Heap Data Structure

9

• Max-Heap
• For every node excluding the root,

value is at most that of its parent: A[parent[i]]  A[i]

• Largest element is stored at the root.

• In any subtree, no values are larger than the value
stored at subtree root.

• Min-Heap
• For every node excluding the root,

value is at least that of its parent: A[parent[i]]  A[i]

• Smallest element is stored at the root.

• In any subtree, no values are smaller than the value
stored at subtree root

Heap Property (Max and Min)

10

26 24 20 18 17 19 13 12 14 11

1 2 3 4 5 6 7 8 9 10

26

24 20

18 17 19 13

12 14 11

Max-heap as an
array.

Max-heap as a
binary tree.

Last row filled from left to right.

Heaps – Example

11

• Height of a node in a tree: the number of edges on
the longest simple downward path from the node
to a leaf.

• Height of a tree: the height of the root.

• Height of a heap: log n 

• Basic operations on a heap run in O(log n) time

Height

12

• Combines the better attributes of merge sort and insertion sort.

• Like merge sort, but unlike insertion sort, running time is O(n lg n).

• Like insertion sort, but unlike merge sort, sorts in place.

• Introduces an algorithm design technique

• Create data structure (heap) to manage information during the
execution of an algorithm.

• The heap has other applications beside sorting.

• Priority Queues

Heapsort

13

• Use max-heaps for sorting.

• The array representation of max-heap is not sorted.

• Steps in sorting
• Convert the given array of size n to a max-heap (BuildMaxHeap)
• Swap the first and last elements of the array.

• Now, the largest element is in the last position – where it belongs.

• That leaves n – 1 elements to be placed in their appropriate
locations.

• However, the array of first n – 1 elements is no longer a max-heap.

• Float the element at the root down one of its subtrees so that the
array remains a max-heap (MaxHeapify)

• Repeat step 2 until the array is sorted.

Heaps in Sorting

14

• Height = log n i.e., floor(log n)

• No. of leaves = n/2 i.e., ceil(log n)

• No. of nodes of height h  n/2h+1

Heap Characteristics

15

• Suppose two subtrees are max-heaps,
but the root violates the max-heap
property.

• Fix the offending node by exchanging the value at the
node with the larger of the values at its children.

• May lead to the subtree at the child not being a heap.

• Recursively fix the children until all of them satisfy the
max-heap property.

Maintaining the heap property

16

26

14 20

24 17 19 13

12 18 11

14

14

2424

14

14

1818

14

MaxHeapify(A, 2)

MaxHeapify – Example

17

MaxHeapify(A, i)

1. l = left(i)

2. r = right(i)

3. if l  heap-size[A] and A[l] > A[i]

4. then largest = l

5. else largest = i

6. if r  heap-size[A] and A[r] > A[largest]

7. then largest = r

8. if largest  i

9. then exchange A[i]  A[largest]

10. MaxHeapify(A, largest)

Assumption:
Left(i) and Right(i)
are max-heaps.

Procedure MaxHeapify

18

MaxHeapify(A, i)

1. l = left(i)

2. r = right(i)

3. if l  heap-size[A] and A[l] > A[i]

4. then largest = l

5. else largest = i

6. if r  heap-size[A] and A[r] > A[largest]

7. then largest = r

8. if largest  i

9. then exchange A[i]  A[largest]

10. MaxHeapify(A, largest)

Procedure MaxHeapify

19

Time to fix node i and
its children = (1)

Time to fix the subtree
rooted at one of i’s
children = T(size of
subree at largest)

PLUS

• MaxHeapify takes O(h) where h is the height of the node
where MaxHeapify is applied

• Alternately, T(n) = O(log n) in worst case

Running Time for MaxHeapify(A, n)

20

•Use MaxHeapify to convert an array A into a max-heap.

•How?

Building a heap

21

•Use MaxHeapify to convert an array A into a max-heap.

•How?

•Call MaxHeapify on each element in a bottom-up
manner.

BuildMaxHeap(A)

1. heap-size[A] = length[A]

2. for i = length[A]/2 downto 1

3. do MaxHeapify(A, i)

Building a heap

22

24 21 23 22 36 29 30 34 28 27

Input Array:

24

21 23

22 36 29 30

34 28 27

Initial Heap:
(not max-heap)

BuildMaxHeap – Example

23

24

21 23

22 36 29 30

34 28 27

MaxHeapify(10/2 = 5)

3636

MaxHeapify(4)

2234

22

MaxHeapify(3)

2330

23

MaxHeapify(2)
2136

21

MaxHeapify(1)

2436

2434

2428

24

21

21

27

24

BuildMaxHeap – Example

• Loop Invariant: At the start of each iteration of the for loop, each
node i+1, i+2, …, n is the root of a max-heap.

Correctness of BuildMaxHeap

25

• Loop Invariant: At the start of each iteration of the for loop, each
node i+1, i+2, …, n is the root of a max-heap.

• Initialization:

• Before first iteration i = n/2
• Nodes n/2+1, n/2+2, …, n are leaves and hence roots of max-

heaps.

Correctness of BuildMaxHeap

26

• Loop Invariant: At the start of each iteration of the for loop, each
node i+1, i+2, …, n is the root of a max-heap.

• Initialization:

• Before first iteration i = n/2
• Nodes n/2+1, n/2+2, …, n are leaves and hence roots of max-

heaps.

• Maintenance:
• By Loop Invariant, subtrees at children of node i are max heaps.
• Hence, MaxHeapify(i) renders node i a max heap root (while

preserving the max heap root property of higher-numbered
nodes).

• Decrementing i reestablishes the loop invariant for the next
iteration.

Correctness of BuildMaxHeap

27

• Loose upper bound:

• Cost of a MaxHeapify call  No. of calls to MaxHeapify

• O(log n)  O(n) = O(nlog n)

• Tighter bound:

• Cost of a call to MaxHeapify at a node depends on the
height, h, of the node – O(h).

• Height of most nodes smaller than n.

• Height of nodes h ranges from 0 to log n.

• No. of nodes of height h is n/2h+1

Running Time of BuildMaxHeap

28

 

 









=












=

=
+

n

h
h

n

h
h

h
nO

hO
n

lg

0

lg

0
1

2

)(
2

Tighter Bound for T(BuildMaxHeap)

T(BuildMaxHeap)

Running Time of BuildMaxHeap

29

 

 









=












=

=
+

n

h
h

n

h
h

h
nO

hO
n

lg

0

lg

0
1

2

)(
2

 

2

)2/11(

2/1

(A.8)in 2/1,
2

2

2

0

lg

0

=

−
=

=




=

=

x
h

h

h
h

n

h
h

Tighter Bound for T(BuildMaxHeap)

T(BuildMaxHeap)

Running Time of BuildMaxHeap

30

 

 









=












=

=
+

n

h
h

n

h
h

h
nO

hO
n

lg

0

lg

0
1

2

)(
2

 

2

)2/11(

2/1

(A.8)in 2/1,
2

2

2

0

lg

0

=

−
=

=




=

=

x
h

h

h
h

n

h
h

 

)(

22 0

lg

0

nO

h
nO

h
nO

h
h

n

h
h

=









=











==

Tighter Bound for T(BuildMaxHeap)

T(BuildMaxHeap)

Running Time of BuildMaxHeap

31

 

 









=












=

=
+

n

h
h

n

h
h

h
nO

hO
n

lg

0

lg

0
1

2

)(
2

 

2

)2/11(

2/1

(A.8)in 2/1,
2

2

2

0

lg

0

=

−
=

=




=

=

x
h

h

h
h

n

h
h

 

)(

22 0

lg

0

nO

h
nO

h
nO

h
h

n

h
h

=









=











==

Tighter Bound for T(BuildMaxHeap)

T(BuildMaxHeap)

Can build a heap from an
unordered array in linear time

Running Time of BuildMaxHeap

32

• Sort by maintaining as yet unsorted elements as a max-heap.

• Start by building a max-heap on all elements in A.
• Maximum element is in the root, A[1].

• Move the maximum element to its correct final position.
• Exchange A[1] with A[n].

• Discard A[n] – it is now sorted.
• Decrement heap-size[A].

• Restore the max-heap property on A[1..n–1].
• Call MaxHeapify(A, 1).

• Repeat until heap-size[A] is reduced to 2.

Heapsort

33

HeapSort(A)

1. Build-Max-Heap(A)

2. for i = length[A] downto 2

3. do exchange A[1]  A[i]

4. heap-size[A] = heap-size[A] – 1

5. MaxHeapify(A, 1)

Heapsort(A)

34

26

24 20

18 17 19 13

12 14 11

Heapsort – Example

35

26 24 20 18 17 19 13 12 14 11

1 2 3 4 5 6 7 8 9 10

• In-place

• Not Stable

• Build-Max-Heap takes O(n)
and each of the n-1 calls to
Max-Heapify takes time
O(log n).

• Therefore, T(n) = O(n log n)

HeapSort(A)

1. Build-Max-Heap(A)

2. for i = length[A] downto 2

3. do exchange A[1]  A[i]

4. heap-size[A] = heap-size[A] – 1

5. MaxHeapify(A, 1)

Algorithm Analysis

36

• MaxHeapify O(log n)

• BuildMaxHeap O(n)

• HeapSort O(n log n)

Heap Procedures for Sorting

37

• Popular & important application of heaps.

• Max and min priority queues.

• Maintains a dynamic set S of elements.

• Each set element has a key – an associated value.

• Goal is to support insertion and extraction efficiently.

Priority Queue

38

• Popular & important application of heaps.

• Max and min priority queues.

• Maintains a dynamic set S of elements.

• Each set element has a key – an associated value.

• Goal is to support insertion and extraction efficiently.

• Applications:
• Ready list of processes in operating systems by their

priorities – the list is highly dynamic
• In event-driven simulators to maintain the list of events to

be simulated in order of their time of occurrence.

Priority Queue

39

• Operations on a max-priority queue:
• Insert(S, x) - inserts the element x into the set S

• S  S  {x}.
• Maximum(S) - returns the element of S with the largest key.
• Extract-Max(S) - removes and returns the element of S with

the largest key.
• Increase-Key(S, x, k) – increases the value of element x’s key

to the new value k.

Basic Operations

40

• Operations on a max-priority queue:
• Insert(S, x) - inserts the element x into the set S

• S  S  {x}.
• Maximum(S) - returns the element of S with the largest key.
• Extract-Max(S) - removes and returns the element of S with

the largest key.
• Increase-Key(S, x, k) – increases the value of element x’s key

to the new value k.

• Min-priority queue supports Insert, Minimum, Extract-Min, and
Decrease-Key.

• Heap gives a good compromise between fast insertion but slow
extraction and vice versa.

Basic Operations

41

•Max-Heap
• For every node excluding the root,

value is at most that of its parent: A[parent[i]]  A[i]
• Largest element is stored at the root.
• In any subtree, no values are larger than the

value stored at subtree root.

•Min-Heap
• For every node excluding the root,

value is at least that of its parent: A[parent[i]]  A[i]
• Smallest element is stored at the root.
• In any subtree, no values are smaller than the

value stored at subtree root

Heap Property (Max and Min)

42

Heap-Extract-Max(A)

1. if heap-size[A] < 1

2. then error “heap underflow”

3. max = A[1]

4. A[1] = A[heap-size[A]]

5. heap-size[A] = heap-size[A] - 1

6. MaxHeapify(A, 1)

7. return max

Running time :
Dominated by the
running time of
MaxHeapify
= O(log n)

Implements the Extract-Max operation.

Heap-Extract-Max(A)

43

Heap-Insert(A, key)

1. heap-size[A] = heap-size[A] + 1

2. i = heap-size[A]

4. while i > 1 and A[Parent(i)] < key

5. do A[i] = A[Parent(i)]

6. i = Parent(i)

7. A[i] = key

Running time is O(log n)

 The path traced from the new leaf to the root has
length O(log n)

Heap-Insert(A, key)

44

Heap-Increase-Key(A, i, key)

1 If key < A[i]

2 then error “new key is smaller than the current key”

3 A[i] = key

4 while i > 1 and A[Parent[i]] < A[i]

5 do exchange A[i]  A[Parent[i]]

6 i = Parent[i]

Heap-Insert(A, key)

1 heap-size[A] = heap-size[A] + 1

2 A[heap-size[A]] = –

3 Heap-Increase-Key(A, heap-size[A], key)

Heap-Increase-Key(A, i, key)

45

Examples

46

• University of North Carolina at Chapel Hill

47

Acknowledgement

Thank You

48

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17:
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Thank You

