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DISCLAIMER

The content (text, image, and graphics) used in this slide are 

adopted from many sources for academic purposes. Broadly, the 

sources have been given due credit appropriately. However, 

there is a chance of missing out some original primary sources. 

The authors of this material do not claim any copyright of such 

material. 
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A priority queue stores a 
collection of entries

Each entry is a pair
(key, value)

Main methods of the 
Priority Queue ADT

◼ insert(k, x)
inserts an entry with key 
k and value x

◼ removeMin()
removes and returns the 
entry with smallest key

Priority Queue ADT
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A priority queue stores a 
collection of entries

Each entry is a pair
(key, value)

Main methods of the 
Priority Queue ADT

◼ insert(k, x)
inserts an entry with key 
k and value x

◼ removeMin()
removes and returns the 
entry with smallest key

Additional methods

◼ min()
returns, but does not 
remove, an entry with 
smallest key

◼ size(), isEmpty()

Applications:

◼ Standby flyers

◼ Auctions

◼ Stock market

Priority Queue ADT
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Implementation with an 
unsorted list

Performance:
◼ insert takes O(1) time since 

we can insert the item at 
the beginning or end of the 
sequence

◼ removeMin and min take 
O(n) time since we have to 
traverse the entire 
sequence to find the 
smallest key 

4 5 2 3 1

Implementing Priority Queue with Linked Lists
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Implementation with an 
unsorted list

Performance:
◼ insert takes O(1) time since 

we can insert the item at 
the beginning or end of the 
sequence

◼ removeMin and min take 
O(n) time since we have to 
traverse the entire 
sequence to find the 
smallest key 

Implementation with a 
sorted list

Performance:
◼ insert takes O(n) time since 

we have to find the place 
where to insert the item

◼ removeMin and min take 
O(1) time, since the smallest 
key is at the beginning

4 5 2 3 1 1 2 3 4 5

Implementing Priority Queue with Linked Lists
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Can we do better?

Yes, using Heaps ,
which are built using Trees :
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•Array can be viewed as a nearly complete binary tree.
• Physically – linear array.
• Logically – binary tree, filled on all levels (except lowest.)

•Map from array elements to tree nodes and vice versa
• Root – A[1]
• Left[i] – A[2i]
• Right[i] – A[2i+1]
• Parent[i] – A[i/2]

• heap-size[A]  length[A]

Heap Data Structure
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•Array can be viewed as a nearly complete binary tree.
• Physically – linear array.
• Logically – binary tree, filled on all levels (except lowest.)

•Map from array elements to tree nodes and vice versa
• Root – A[1]
• Left[i] – A[2i]
• Right[i] – A[2i+1]
• Parent[i] – A[i/2]

• length[A] – number of elements in array A.
•heap-size[A] – number of elements in heap stored in A.

• heap-size[A]  length[A]

Heap Data Structure

9



• Max-Heap
• For every node excluding the root, 

value is at most that of its parent: A[parent[i]]  A[i]

• Largest element is stored at the root.

• In any subtree, no values are larger than the value 
stored at subtree root.

• Min-Heap
• For every node excluding the root, 

value is at least that of its parent: A[parent[i]]  A[i]

• Smallest element is stored at the root.

• In any subtree, no values are smaller than the value 
stored at subtree root

Heap Property (Max and Min)
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26 24 20 18 17 19 13 12 14 11

1      2     3      4      5     6     7     8     9    10

26

24 20

18 17 19 13

12 14 11

Max-heap as an
array.

Max-heap as a 
binary tree.

Last row filled from left to right.

Heaps – Example 
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• Height of a node in a tree:  the number of edges on 
the longest simple downward path from the node 
to a leaf.

• Height of a tree: the height of the root.

• Height of a heap: log n 

• Basic operations on a heap run in O(log n) time

Height
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• Combines the better attributes of merge sort and insertion sort.

• Like merge sort, but unlike insertion sort, running time is O(n lg n).

• Like insertion sort, but unlike merge sort, sorts in place.

• Introduces an algorithm design technique

• Create data structure (heap) to manage information during the 
execution of an algorithm.

• The heap has other applications beside sorting.

• Priority Queues

Heapsort

13



• Use max-heaps for sorting.

• The array representation of max-heap is not sorted.

• Steps in sorting
• Convert the given array of size n to a max-heap (BuildMaxHeap)
• Swap the first and last elements of the array.

• Now, the largest element is in the last position – where it belongs.

• That leaves n – 1 elements to be placed in their appropriate 
locations.

• However, the array of first n – 1 elements is no longer a max-heap.

• Float the element at the root down one of its subtrees so that the 
array remains a max-heap (MaxHeapify)

• Repeat step 2 until the array is sorted.

Heaps in Sorting
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• Height = log n i.e., floor(log n)

• No. of leaves    = n/2 i.e., ceil(log n) 

• No. of nodes of height h  n/2h+1

Heap Characteristics
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• Suppose two subtrees are max-heaps, 
but the root violates the max-heap 
property.

• Fix the offending node by exchanging the value at the 
node with the larger of the values at its children. 

• May lead to the subtree at the child not being a heap.

• Recursively fix the children until all of them satisfy the 
max-heap property.

Maintaining the heap property
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26

14 20

24 17 19 13

12 18 11

14

14

2424

14

14

1818

14

MaxHeapify(A, 2)

MaxHeapify – Example

17



MaxHeapify(A, i)

1.  l = left(i)

2.  r = right(i)

3.  if l  heap-size[A] and A[l] > A[i]

4.     then largest = l

5.     else largest = i

6.  if r  heap-size[A] and A[r] > A[largest]

7.     then largest = r

8.  if largest   i

9.     then exchange A[i]  A[largest]

10.             MaxHeapify(A, largest)

Assumption:
Left(i) and Right(i) 
are max-heaps.

Procedure MaxHeapify
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MaxHeapify(A, i)

1.  l = left(i)

2.  r = right(i)

3.  if l  heap-size[A] and A[l] > A[i]

4.     then largest = l

5.     else largest = i

6.  if r  heap-size[A] and A[r] > A[largest]

7.     then largest = r

8.  if largest   i

9.     then exchange A[i]  A[largest]

10.             MaxHeapify(A, largest)

Procedure MaxHeapify

19

Time to fix node i and 
its children = (1)

Time to fix the subtree 
rooted at one of i’s 
children = T(size of 
subree at largest)

PLUS



• MaxHeapify takes O(h) where h is the height of the node 
where MaxHeapify is applied

• Alternately, T(n) = O(log n) in worst case

Running Time for MaxHeapify(A, n)
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•Use MaxHeapify to convert an array A into a max-heap.

•How?

Building a heap
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•Use MaxHeapify to convert an array A into a max-heap.

•How?

•Call MaxHeapify on each element in a bottom-up 
manner.

BuildMaxHeap(A)

1.  heap-size[A] = length[A]

2.  for i = length[A]/2 downto 1

3.       do MaxHeapify(A, i)

Building a heap
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24 21 23 22 36 29 30 34 28 27

Input Array:

24

21 23

22 36 29 30

34 28 27

Initial Heap:
(not max-heap)

BuildMaxHeap – Example 
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24

21 23

22 36 29 30

34 28 27

MaxHeapify(10/2 = 5)

3636

MaxHeapify(4)

2234

22

MaxHeapify(3)

2330

23

MaxHeapify(2)
2136

21

MaxHeapify(1)

2436

2434

2428

24

21

21

27

24

BuildMaxHeap – Example 



• Loop Invariant: At the start of each iteration of the for loop, each 
node i+1, i+2, …, n is the root of a max-heap.

Correctness of BuildMaxHeap
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• Loop Invariant: At the start of each iteration of the for loop, each 
node i+1, i+2, …, n is the root of a max-heap.

• Initialization:

• Before first iteration i = n/2
• Nodes n/2+1, n/2+2, …, n are leaves and hence roots of max-

heaps.

Correctness of BuildMaxHeap
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• Loop Invariant: At the start of each iteration of the for loop, each 
node i+1, i+2, …, n is the root of a max-heap.

• Initialization:

• Before first iteration i = n/2
• Nodes n/2+1, n/2+2, …, n are leaves and hence roots of max-

heaps.

• Maintenance:
• By Loop Invariant, subtrees at children of node i are max heaps.
• Hence, MaxHeapify(i) renders node i a max heap root (while 

preserving the max heap root property of higher-numbered 
nodes).

• Decrementing i reestablishes the loop invariant for the next 
iteration.

Correctness of BuildMaxHeap
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• Loose upper bound:

• Cost of a MaxHeapify call  No. of calls to MaxHeapify

• O(log n)  O(n) = O(nlog n)

• Tighter bound:

• Cost of a call to MaxHeapify at a node depends on the 
height, h, of the node – O(h).

• Height of most nodes smaller than n.

• Height of nodes h ranges from 0 to log n.

• No. of nodes of height h is  n/2h+1

Running Time of BuildMaxHeap
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Can build a heap from an 
unordered array in linear time

Running Time of BuildMaxHeap
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• Sort by maintaining as yet unsorted elements as a max-heap.

• Start by building a max-heap on all elements in A.
• Maximum element is in the root, A[1].

• Move the maximum element to its correct final position.
• Exchange A[1] with A[n].

• Discard A[n] – it is now sorted. 
• Decrement heap-size[A].

• Restore the max-heap property on A[1..n–1].
• Call MaxHeapify(A, 1).

• Repeat until heap-size[A] is reduced to 2.

Heapsort
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HeapSort(A)

1.  Build-Max-Heap(A)

2.  for i = length[A] downto 2

3.       do exchange A[1]  A[i] 

4.              heap-size[A] = heap-size[A] – 1

5.              MaxHeapify(A, 1)

Heapsort(A)
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26

24 20

18 17 19 13

12 14 11

Heapsort  – Example 
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• In-place

• Not Stable

• Build-Max-Heap takes O(n)
and each of the n-1 calls to 
Max-Heapify takes time
O(log n).

• Therefore, T(n) = O(n log n)

HeapSort(A)

1.  Build-Max-Heap(A)

2.  for i = length[A] downto 2

3.       do exchange A[1]  A[i] 

4.              heap-size[A] = heap-size[A] – 1

5.              MaxHeapify(A, 1)

Algorithm Analysis
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• MaxHeapify O(log n)

• BuildMaxHeap O(n)

• HeapSort O(n log n)

Heap Procedures for Sorting
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• Popular & important application of heaps.

• Max and min priority queues.

• Maintains a dynamic set S of elements.

• Each set element has a key – an associated value.

• Goal is to support insertion and extraction efficiently.

Priority Queue

38



• Popular & important application of heaps.

• Max and min priority queues.

• Maintains a dynamic set S of elements.

• Each set element has a key – an associated value.

• Goal is to support insertion and extraction efficiently.

• Applications:
• Ready list of processes in operating systems by their 

priorities – the list is highly dynamic
• In event-driven simulators to maintain the list of events to 

be simulated in order of their time of occurrence.

Priority Queue
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• Operations on a max-priority queue:
• Insert(S, x) - inserts the element x into the set S

• S  S  {x}.
• Maximum(S) - returns the element of  S with the largest key.
• Extract-Max(S) - removes and returns the element of S with 

the largest key.
• Increase-Key(S, x, k) – increases the value of element x’s key 

to the new value k.

Basic Operations
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• Operations on a max-priority queue:
• Insert(S, x) - inserts the element x into the set S

• S  S  {x}.
• Maximum(S) - returns the element of  S with the largest key.
• Extract-Max(S) - removes and returns the element of S with 

the largest key.
• Increase-Key(S, x, k) – increases the value of element x’s key 

to the new value k.

• Min-priority queue supports Insert, Minimum, Extract-Min, and 
Decrease-Key.

• Heap gives a good compromise between fast insertion but slow 
extraction and vice versa.

Basic Operations
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•Max-Heap
• For every node excluding the root, 

value is at most that of its parent: A[parent[i]]  A[i]
• Largest element is stored at the root.
• In any subtree, no values are larger than the 

value stored at subtree root.

•Min-Heap
• For every node excluding the root, 

value is at least that of its parent: A[parent[i]]  A[i]
• Smallest element is stored at the root.
• In any subtree, no values are smaller than the 

value stored at subtree root

Heap Property (Max and Min)
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Heap-Extract-Max(A)

1.  if heap-size[A] < 1

2.     then error “heap underflow”

3.  max = A[1]

4.  A[1] = A[heap-size[A]]

5.  heap-size[A] = heap-size[A] - 1

6.  MaxHeapify(A, 1)

7.  return max

Running time : 
Dominated by the 
running time of 
MaxHeapify  
= O(log n)

Implements the Extract-Max operation.

Heap-Extract-Max(A)
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Heap-Insert(A, key)

1.  heap-size[A] = heap-size[A] + 1

2. i = heap-size[A]

4.  while i > 1 and A[Parent(i)] < key

5.       do A[i] = A[Parent(i)] 

6.              i = Parent(i)

7.  A[i] = key

Running time is O(log n)

 The path traced from the new leaf to the root has 
length O(log n)

Heap-Insert(A, key)
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Heap-Increase-Key(A, i, key)

1  If key < A[i]

2  then error “new key is smaller than the current key”

3  A[i] = key

4  while i > 1 and A[Parent[i]] < A[i]

5           do exchange A[i]  A[Parent[i]]

6                   i = Parent[i]

Heap-Insert(A, key)

1  heap-size[A] = heap-size[A] + 1

2  A[heap-size[A]] = –

3  Heap-Increase-Key(A, heap-size[A], key)

Heap-Increase-Key(A, i, key)
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Examples
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• University of North Carolina at Chapel Hill
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