
Data Structures and Algorithms

Indian Institute of Information Technology Allahabad

Binary Search Tree

Dr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in      Web: https://profile.iiita.ac.in/srdubey/ 

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/


DISCLAIMER

The content (text, image, and graphics) used in this slide are 

adopted from many sources for academic purposes. Broadly, the 

sources have been given due credit appropriately. However, 

there is a chance of missing out some original primary sources. 

The authors of this material do not claim any copyright of such 

material. 
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•Binary search trees
• They are better when they’re balanced.

this will lead us to…

• Self-Balancing Binary Search Trees 
• AVL Tree
• 2-3 Tree
• Red-Black trees.

Tree

3
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for storing objects like          (aka, nodes with keys)  

• (Sorted) arrays:

• (Sorted) linked lists:

• Some basic operations:
• INSERT, DELETE, SEARCH

42 871 3 5HEAD

42 871 3 5

5

Some data structures
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•O(n) INSERT/DELETE:
• First, find the relevant element (time O(log(n)) as below), and 

then move a bunch elements in the array:

•O(log(n)) SEARCH:

42 871 3 5

421 3

42 871 3 5

eg, Binary search to see if 3 is in A.

8754.5 eg, insert 4.5

Sorted Arrays



•O(1) INSERT:

•O(n) SEARCH/DELETE:

45 827 3 1

45 827 3 1HEAD

6

45 825 3 1HEAD

eg, insert 6

eg, search for 1 (and then you could delete it by manipulating pointers).

UNSorted linked lists
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Sorted Arrays Linked Lists
Binary Search 

Trees*

Search O(log(n))        O(n) O(log(n))

Delete O(n) O(n) O(log(n))

Insert O(n) O(1) O(log(n))

Motivation for Binary Search Trees
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Motivation for Binary Search Trees



42 8

7

1

3

5
This node 
is the root

This is a node.  
It has a key (7).

These nodes 
are leaves.

The left child of           is3 2

The right child of          is3 4

Both children of         are NIL.
(Not usually drawn).

1

For today all keys are distinct.

Each node has at most two children.

NILNIL

Each node has a pointer to its left 
child, right child, and parent.

The parent of         is3 5

is a descendant of 2 5

The height of this tree is 3.  (Max 

number of edges from the root to a leaf). 11
11

Binary tree terminology



• Rooted tree where every vertex has no more than ‘k’ children

• Full k-ary if every internal vertex has exactly ‘k’ children (i.e., 
except leaf/external vertices).

• k=2 gives a binary tree

• k=3 gives a ternary tree

Definition: k-ary trees
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Example: 3-ary tree

32 17

25

1

4

15

10

8 20 30

18 28
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A node is represented 
by a structure storing

◼ Element

◼ Parent node pointer

◼ Left child node pointer

◼ Right child node pointer

Node structure 
implement the Position 
ADT B

DA

C E

 

   

B

A D

C E



14
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Linked Structure for Binary Trees
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• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

15
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Binary Search Trees
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• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

Binary Search Trees
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• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

Binary Search Trees
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5
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• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

Binary Search Trees



42 8

7

1

3

5 Q: Is this the only binary 
search tree I could possibly 

build with these values?

A: No.  I made choices 
about which nodes to 

choose when.  Any 
choices would have 

been fine.
19
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• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

Binary Search Trees
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1

3

5

42 8

7

1

3

5

Binary Search Tree
NOT a Binary 
Search Tree

Which of these is a BST?

20
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• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

Binary Search Trees



•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal( x.left )
• print( x.key )
• inOrderTraversal( x.right )      

42

73

5

21
21

Aside: In-Order Traversal of BSTs
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NIL NIL
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•Output all the elements in sorted order!
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•Output all the elements in sorted order!
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• print( x.key )
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Aside: In-Order Traversal of BSTs
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•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal( x.left )
• print( x.key )
• inOrderTraversal( x.right )      

Aside: In-Order Traversal of BSTs



42

73

5

2 3 4 5 7 Sorted!• Runs in time O(n).
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•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal( x.left )
• print( x.key )
• inOrderTraversal( x.right )      

Aside: In-Order Traversal of BSTs



Fast SEARCH/INSERT/DELETE

Can we do these?

34
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Back to the goal



definition by example

42 8

7

1

3

5
EXAMPLE: Search for 4.

EXAMPLE: Search for 4.5
• It turns out it will be convenient 

to return 4 in this case
• (that is, return the last node 

before we went off the tree)

Write pseudocode 
(or actual code) to 

implement this!How long does this take?

O(length of longest path) = O(height) 35
35

SEARCH in a Binary Search Tree
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EXAMPLE: Insert 4.5

4.5

• INSERT(key):
• x = SEARCH(key)
• Insert a new node with 

desired key at x…

x = 4

36
36

INSERT in a Binary Search Tree
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EXAMPLE: Insert 4.5

4.5

• INSERT(key):
• x = SEARCH(key)
• if key > x.key:

• Make a new node with the 
correct key, and put it as the 
right child of x.

• if key < x.key:
• Make a new node with the 

correct key, and put it as the 
left child of x.

• if x.key == key:
• return

x = 4

37
37

INSERT in a Binary Search Tree
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EXAMPLE: Delete 2

• DELETE(key):
• x = SEARCH(key)
• if x.key == key:

• ….delete x….

x = 2

38
38

DELETE in a Binary Search Tree



several cases (by example) 
say we want to delete 3

This triangle 
is a cartoon 
for a subtree

3

Case 1:  if 3 is a leaf,
 just delete it.

2

3

Case 2:  if 3 has just one child, 
move that up.

5 5

2

55

Write pseudocode for all of these!

39
39

DELETE in a Binary Search Tree



42

3

5

3.1

2

5

Case 3:  if 3 has two children, 
replace 3 with it’s immediate successor.
(aka, next biggest thing after 3)

• Does this maintain the BST 
property?
• Yes.

• How do we find the 
immediate successor?
• SEARCH for 3 in the subtree 

under 3.right

• How do we remove it when 
we find it?
• If [3.1] has 0 or 1 children, do 

one of the previous cases.

• What if [3.1] has two 
children?
• It doesn’t. (can not have two 

children)

4

3.1

40
40

DELETE in a Binary Search Tree



• SEARCH is the big one.  
• Everything else just calls SEARCH and then does some small 

O(1)-time operation.

42 8

73

5

6

Time = O(height of tree)

Trees have 
depth O(log(n)).  

Done!

How long does search take?

Wait a 
second…

41
41

How long do these operations take?
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2

8

7

3

5

6

• This is a valid binary search tree.

• The version with n nodes has 
depth n, not O(log(n)).

42
42

Search might take time O(n)



•Goal: Fast SEARCH/INSERT/DELETE

•All these things take time O(height)

•And the height might be big!!! 

• Idea 0:
• Keep track of how deep the tree is getting.
• If it gets too tall, re-do everything from scratch.

• At least Ω(n) every so often….

• Turns out that’s not a great idea.  Instead we turn to…

How often is “every so 
often” in the worst case?  
It’s actually pretty often!

43
43

What to do?



Self-Balancing 
Binary Search Trees

44
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• Maintain Binary Search Tree (BST) property, while moving 
stuff around.

BA

CY

XYOINK!

CLAIM: 
this still has BST property.

No matter what lives underneath 
A,B,C, this takes time O(1).  (Why?)

BA

C

Y

X

B

A

C

Y

X

B fell 
down.

N
o

te: A
, B

, C
, X

, Y are variab
le n

am
es, n

o
t th

e 
co

n
ten

ts o
f th

e n
o

d
e

s.

45
45

Idea 1: Rotations
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2

8

7

3

6

5

YOINK!

42 8

73

6

5

46
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This seems helpful



• Whenever something seems unbalanced, do rotations until 
it’s okay again.

This is pretty vague.  

What do we mean by 
“seems unbalanced”?  

What’s “okay”?

47
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Strategy?



•Maintaining perfect balance is too hard.

• Instead, come up with some proxy for balance:
• If the tree satisfies [SOME PROPERTY], then it’s pretty balanced.
• We can maintain [SOME PROPERTY] using rotations.

There are actually several ways to 
do this, but we’ll see:
1. AVL Tree (In this course)
2. Multiway-Search Tree (2-4 Tree)
3. Red-Black Tree

48
48

Idea 2: have some proxy for balance



•Begin a brief foray into data structures!

•Binary search trees
• They are better when they’re balanced.

this will lead us to…

• Self-Balancing Binary Search Trees
• AVL Tree
• Multiway-Search Tree
• Red-Black Tree 

49
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Recap



• Stanford University
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