
Data Structures and Algorithms

Indian Institute of Information Technology Allahabad

Binary Search Tree

Dr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

•Binary search trees
• They are better when they’re balanced.

this will lead us to…

• Self-Balancing Binary Search Trees
• AVL Tree
• 2-3 Tree
• Red-Black trees.

Tree

3
3

for storing objects like (aka, nodes with keys)

• (Sorted) arrays:

• (Sorted) linked lists:

• Some basic operations:
• INSERT, DELETE, SEARCH

42 871 3 5HEAD

42 871 3 5

5

Some data structures

4
4

•O(n) INSERT/DELETE:
• First, find the relevant element (time O(log(n)) as below), and

then move a bunch elements in the array:

•O(log(n)) SEARCH:

42 871 3 5

421 3

42 871 3 5

eg, Binary search to see if 3 is in A.

8754.5 eg, insert 4.5

Sorted Arrays

•O(1) INSERT:

•O(n) SEARCH/DELETE:

45 827 3 1

45 827 3 1HEAD

6

45 825 3 1HEAD

eg, insert 6

eg, search for 1 (and then you could delete it by manipulating pointers).

UNSorted linked lists

6
6

Sorted Arrays Linked Lists
Binary Search

Trees*

Search O(log(n)) O(n) O(log(n))

Delete O(n) O(n) O(log(n))

Insert O(n) O(1) O(log(n))

Motivation for Binary Search Trees

7
7

Sorted Arrays Linked Lists
Binary Search

Trees*

Search O(log(n)) O(n) O(log(n))

Delete O(n) O(n) O(log(n))

Insert O(n) O(1) O(log(n))

8
8

Motivation for Binary Search Trees

Sorted Arrays Linked Lists
Binary Search

Trees*

Search O(log(n)) O(n) O(log(n))

Delete O(n) O(n) O(log(n))

Insert O(n) O(1) O(log(n))

9
9

Motivation for Binary Search Trees

Sorted Arrays Linked Lists
Binary Search

Trees*

Search O(log(n)) O(n) O(log(n))

Delete O(n) O(n) O(log(n))

Insert O(n) O(1) O(log(n))

10
10

Motivation for Binary Search Trees

42 8

7

1

3

5
This node
is the root

This is a node.
It has a key (7).

These nodes
are leaves.

The left child of is3 2

The right child of is3 4

Both children of are NIL.
(Not usually drawn).

1

For today all keys are distinct.

Each node has at most two children.

NILNIL

Each node has a pointer to its left
child, right child, and parent.

The parent of is3 5

is a descendant of 2 5

The height of this tree is 3. (Max

number of edges from the root to a leaf). 11
11

Binary tree terminology

• Rooted tree where every vertex has no more than ‘k’ children

• Full k-ary if every internal vertex has exactly ‘k’ children (i.e.,
except leaf/external vertices).

• k=2 gives a binary tree

• k=3 gives a ternary tree

Definition: k-ary trees

12
12

Example: 3-ary tree

32 17

25

1

4

15

10

8 20 30

18 28

13
13

A node is represented
by a structure storing

◼ Element

◼ Parent node pointer

◼ Left child node pointer

◼ Right child node pointer

Node structure
implement the Position
ADT B

DA

C E

 

   

B

A D

C E



14
14

Linked Structure for Binary Trees

4

2

8 7

1

3
5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

15
15

Binary Search Trees

4

2

8 7

1

3
5

16
16

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

Binary Search Trees

4
2

8

7

1

3 5

17
17

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

Binary Search Trees

42 8

7
1

3

5

18
18

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

Binary Search Trees

42 8

7

1

3

5 Q: Is this the only binary
search tree I could possibly

build with these values?

A: No. I made choices
about which nodes to

choose when. Any
choices would have

been fine.
19
19

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

Binary Search Trees

42 8

7

1

3

5

42 8

7

1

3

5

Binary Search Tree
NOT a Binary
Search Tree

Which of these is a BST?

20
20

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

Binary Search Trees

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

21
21

Aside: In-Order Traversal of BSTs

42

73

5

22
22

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

42

73

5

NIL NIL

23
23

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

42

73

5

NIL NIL

24
24

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

42

73

5

2

NIL NIL

25
25

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

42

73

5

2

NIL NIL

26
26

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

42

73

5

2

NIL NIL

27
27

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

42

73

5

2 3
28
28

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

42

73

5

2 3 4
29
29

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

42

73

5

2 3 4
30
30

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

42

73

5

2 3 4 5
31
31

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

42

73

5

2 3 4 5 7
32
32

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

42

73

5

2 3 4 5 7 Sorted!• Runs in time O(n).
33
33

•Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

Fast SEARCH/INSERT/DELETE

Can we do these?

34
34

Back to the goal

definition by example

42 8

7

1

3

5
EXAMPLE: Search for 4.

EXAMPLE: Search for 4.5
• It turns out it will be convenient

to return 4 in this case
• (that is, return the last node

before we went off the tree)

Write pseudocode
(or actual code) to

implement this!How long does this take?

O(length of longest path) = O(height) 35
35

SEARCH in a Binary Search Tree

42 8

7

1

3

5

EXAMPLE: Insert 4.5

4.5

• INSERT(key):
• x = SEARCH(key)
• Insert a new node with

desired key at x…

x = 4

36
36

INSERT in a Binary Search Tree

42 8

7

1

3

5

EXAMPLE: Insert 4.5

4.5

• INSERT(key):
• x = SEARCH(key)
• if key > x.key:

• Make a new node with the
correct key, and put it as the
right child of x.

• if key < x.key:
• Make a new node with the

correct key, and put it as the
left child of x.

• if x.key == key:
• return

x = 4

37
37

INSERT in a Binary Search Tree

42 8

7

1

3

5

EXAMPLE: Delete 2

• DELETE(key):
• x = SEARCH(key)
• if x.key == key:

• ….delete x….

x = 2

38
38

DELETE in a Binary Search Tree

several cases (by example)
say we want to delete 3

This triangle
is a cartoon
for a subtree

3

Case 1: if 3 is a leaf,
 just delete it.

2

3

Case 2: if 3 has just one child,
move that up.

5 5

2

55

Write pseudocode for all of these!

39
39

DELETE in a Binary Search Tree

42

3

5

3.1

2

5

Case 3: if 3 has two children,
replace 3 with it’s immediate successor.
(aka, next biggest thing after 3)

• Does this maintain the BST
property?
• Yes.

• How do we find the
immediate successor?
• SEARCH for 3 in the subtree

under 3.right

• How do we remove it when
we find it?
• If [3.1] has 0 or 1 children, do

one of the previous cases.

• What if [3.1] has two
children?
• It doesn’t. (can not have two

children)

4

3.1

40
40

DELETE in a Binary Search Tree

• SEARCH is the big one.
• Everything else just calls SEARCH and then does some small

O(1)-time operation.

42 8

73

5

6

Time = O(height of tree)

Trees have
depth O(log(n)).

Done!

How long does search take?

Wait a
second…

41
41

How long do these operations take?

4

2

8

7

3

5

6

• This is a valid binary search tree.

• The version with n nodes has
depth n, not O(log(n)).

42
42

Search might take time O(n)

•Goal: Fast SEARCH/INSERT/DELETE

•All these things take time O(height)

•And the height might be big!!! 

• Idea 0:
• Keep track of how deep the tree is getting.
• If it gets too tall, re-do everything from scratch.

• At least Ω(n) every so often….

• Turns out that’s not a great idea. Instead we turn to…

How often is “every so
often” in the worst case?
It’s actually pretty often!

43
43

What to do?

Self-Balancing
Binary Search Trees

44
44

• Maintain Binary Search Tree (BST) property, while moving
stuff around.

BA

CY

XYOINK!

CLAIM:
this still has BST property.

No matter what lives underneath
A,B,C, this takes time O(1). (Why?)

BA

C

Y

X

B

A

C

Y

X

B fell
down.

N
o

te: A
, B

, C
, X

, Y are variab
le n

am
es, n

o
t th

e
co

n
ten

ts o
f th

e n
o

d
e

s.

45
45

Idea 1: Rotations

4

2

8

7

3

6

5

YOINK!

42 8

73

6

5

46
46

This seems helpful

• Whenever something seems unbalanced, do rotations until
it’s okay again.

This is pretty vague.

What do we mean by
“seems unbalanced”?

What’s “okay”?

47
47

Strategy?

•Maintaining perfect balance is too hard.

• Instead, come up with some proxy for balance:
• If the tree satisfies [SOME PROPERTY], then it’s pretty balanced.
• We can maintain [SOME PROPERTY] using rotations.

There are actually several ways to
do this, but we’ll see:
1. AVL Tree (In this course)
2. Multiway-Search Tree (2-4 Tree)
3. Red-Black Tree

48
48

Idea 2: have some proxy for balance

•Begin a brief foray into data structures!

•Binary search trees
• They are better when they’re balanced.

this will lead us to…

• Self-Balancing Binary Search Trees
• AVL Tree
• Multiway-Search Tree
• Red-Black Tree

49
49

Recap

• Stanford University

50

Acknowledgement

Thank You

51

	Slide 1
	Slide 2
	Slide 3
	Slide 4: for storing objects like (aka, nodes with keys)
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: definition by example
	Slide 36
	Slide 37
	Slide 38
	Slide 39: several cases (by example) say we want to delete 3
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Self-Balancing Binary Search Trees
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Thank You

