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DISCLAIMER

The content (text, image, and graphics) used in this slide are 

adopted from many sources for academic purposes. Broadly, the 

sources have been given due credit appropriately. However, 

there is a chance of missing out some original primary sources. 

The authors of this material do not claim any copyright of such 

material. 
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Queues
Linked Lists
Doubly Linked List
Double-Ended Queues
Circular List
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Queues and Linked Lists
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• A queue differs from a stack in that its insertion and removal 
routines follows the first-in-first-out (FIFO) principle.

• Elements may be inserted at any time, but only the element 
which has been in the queue the longest may be removed.

• Elements are inserted at the rear (enqueued) and removed 
from the front (dequeued)
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Queues

FrontRear



The queue supports following fundamental methods:
• New():ADT – Creates an empty queue
• Enqueue(S:ADT, o:element):ADT – Inserts o at the rear of the 

queue
• Dequeue(S:ADT):ADT – Removes the element from the front of 

the queue, an error occurs when queue is empty, so need to 
take care.

• Front(S:ADT):element – Returns front element without 
removing it, an error occurs when queue is empty, so need to 
take care.
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Queue Abstract Data Type (ADT)



These support methods should also be defined:

• Size(S:ADT):integer

• IsEmpty(S:ADT):Boolean
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Queue Abstract Data Type (ADT)



These support methods should also be defined:

• Size(S:ADT):integer

• IsEmpty(S:ADT):Boolean

Axioms:

• Front(Enqueue(New(), v)) = v

• Dequeue(Enqueue(New(), v)) = New()

• Front(Enqueue(Q, w)) = Front(Enqueue(Enqueue(Q, w),v))

• Dequeue(Enqueue(Enqueue(Q, w),v)) = 
Enqueue(Dequeue(Enqueue(Q, w)),v)
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Queue Abstract Data Type (ADT)



• Create a queue using an array in a circular fashion

• A maximum size N is specified, e.g. N = 1,000. 

• The queue consists of an N-element array Q and two integer 
variables:
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An Array-Based Queue

• f, index of the front 
element (head – for 
dequeue)

• r, index of the element 
after the rear one (tail – 
for enqueue)



• Create a queue using an array in a circular fashion

• A maximum size N is specified, e.g. N = 1,000. 

• The queue consists of an N-element array Q and two integer 
variables:
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An Array-Based Queue

• f, index of the front 
element (head – for 
dequeue)

• r, index of the element 
after the rear one (tail – 
for enqueue)

“wrapped around” configuration
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An Array-Based Queue

Questions: 
What does f==r mean?

“wrapped around” configuration
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An Array-Based Queue

Questions: 
What does f==r mean?

Empty

“wrapped around” configuration
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An Array-Based Queue

Questions: 
How do we compute the number of elements in the queue from 
f and r?

“wrapped around” configuration
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An Array-Based Queue

Questions: 
How do we compute the number of elements in the queue from 
f and r?

• if r > f, 
#elements = r – f

• if r < f,
• #elements = N – f + r

• if r == f,
• #elements = 0

“wrapped around” configuration
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An Array-Based Queue

Questions: 
How do we compute the number of elements in the queue from 
f and r?

• if r > f, 
#elements = r – f

• if r < f,
• #elements = N – f + r

• if r == f,
• #elements = 0

i.e., (N - f + r) mod N



Algorithm Size():
 return (N - f + r) mod N

Algorithm isEmpty():
 return (f == r)

Algorithm Front():
 if isEmpty() then
  print “Queue is Empty”
  return NULL
 return Q[f]

Algorithm Dequeue():
 if isEmpty() then
  print “Queue is Empty”; return NULL
 temp = Q[f]
 Q[f] = null
 f = (f + 1) mod N
 return temp

Algorithm Enqueue(o):
 if Size() == N - 1 then
  print “Queue is Full”; return
 Q[r] = o

r = (r + 1) mod N 15
15

An Array-Based Queue: Pseudo Code



• Nodes (data, pointers) connected in a chain by links

• The head of the list is the front of the queue, the tail of the 
list is the rear of the queue.  Why not the opposite?
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Implementing Queue with a Singly Linked List
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Queue: Removing at the Head (Dequeue)
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NULL
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Advance head reference

Inserting at the head is just as easy
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Queue: Inserting at the Tail (Enqueue)
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E NULL
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Queue: Inserting at the Tail (Enqueue)

A B C D

head

NULL

tail

Create a new node

Chain it and move the tail reference

How about removing at the tail?

E NULL

A B C D

head tail

E NULLE NULL



• A double-ended queue, or deque, supports insertion and 
deletion from the front and back. 

• The Deque supports following fundamental methods:
• insertFirst(S:ADT, o:element):ADT - Inserts e at the 

beginning of deque.
• insertLast(S:ADT, o:element):ADT - Inserts e at the end of 

deque.
• removeFirst(S:ADT):ADT - Removes the first element.
• removeLast(S:ADT):ADT - Removes the last element.
• first(S:ADT):element - Return the first element.
• last(S:ADT):element - Return the last element.
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Double-Ended Queue



With Singly Linked Lists

• Not a good idea
• As deletion at tail is costly
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Implementing Deques



With Singly Linked Lists

• Not a good idea
• As deletion at tail is costly

Solution: Use Doubly Linked List
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Implementing Deques



• Deletions at the tail of a singly linked list cannot be done in constant 

time.

• To implement a deque, we use a doubly linked list with special 

header and trailer nodes
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Implementing Deques with Doubly Linked Lists

• A node of a doubly linked list has a next and a prev link. 

• By using a doubly linked list, all the methods of a deque run in O(1) 

time.

A B C

header trailer



• When implementing a doubly linked lists, we add two special 
nodes to the ends of the lists: the header and trailer nodes. 
• The header node goes before the first list element. It has a valid 

next link but a null prev link.
• The trailer node goes after the last element. It has a valid prev 

reference but a null next reference.

NOTE: the header and trailer nodes are sentinel or “dummy” nodes 
because they do not store elements. Here’s a diagram of our doubly 
linked list:
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Implementing Deques with Doubly Linked Lists
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Here’s a visualization of the code for removeLast().
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Implementing Deques with Doubly Linked Lists

A B C

header trailer

D

lastsecond to last

A B C

header trailer

D

lastsecond to last



Here’s a visualization of the code for removeLast().
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Implementing Deques with Doubly Linked Lists

A B C

header trailer

D

lastsecond to last

A B C

header trailer

D

lastsecond to last
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Implementing Stacks and Queues with Deques

Implementing ADTs using implementations of other ADTs as building blocks



Stacks with Deques:
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Implementing Stacks and Queues with Deques

Implementing ADTs using implementations of other ADTs as building blocks

Stack Method Deque Implementation

size()
isEmpty()
top()
push(e)
pop()

size()
isEmpty()
last()
insertLast(e)
removeLast()



Stacks with Deques:

Queues with Deques:
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Implementing Stacks and Queues with Deques

Implementing ADTs using implementations of other ADTs as building blocks

Stack Method Deque Implementation

size()
isEmpty()
top()
push(e)
pop()

size()
isEmpty()
last()
insertLast(e)
removeLast()

Queue Method Deque Implementation

size()
isEmpty()
front()
enqueue(e)
dequeue()

size()
isEmpty()
first()
insertLast(e)
removeFirst()



• No end and no beginning of the list, only one pointer as an 
entry point

• Circular doubly linked list with a sentinel is an elegant 
implementation of a stack or a queue
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Circular Lists
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• Insertion a node F at head: create a new node, insert between 
A and B, copy A to this new node and replace A of head node 
with F.
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Circular Lists
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• Deleting the head node: copy node B to node A and delete 
original node B.
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Circular Lists
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• IIT Delhi
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Thank You
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