
Data Structures and Algorithms

Indian Institute of Information Technology Allahabad

Queues and Lists

Dr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

Queues
Linked Lists
Doubly Linked List
Double-Ended Queues
Circular List

3
3

Queues and Linked Lists

A B C D

head

NULL

• A queue differs from a stack in that its insertion and removal
routines follows the first-in-first-out (FIFO) principle.

• Elements may be inserted at any time, but only the element
which has been in the queue the longest may be removed.

• Elements are inserted at the rear (enqueued) and removed
from the front (dequeued)

4
4

Queues

FrontRear

The queue supports following fundamental methods:
• New():ADT – Creates an empty queue
• Enqueue(S:ADT, o:element):ADT – Inserts o at the rear of the

queue
• Dequeue(S:ADT):ADT – Removes the element from the front of

the queue, an error occurs when queue is empty, so need to
take care.

• Front(S:ADT):element – Returns front element without
removing it, an error occurs when queue is empty, so need to
take care.

5
5

Queue Abstract Data Type (ADT)

These support methods should also be defined:

• Size(S:ADT):integer

• IsEmpty(S:ADT):Boolean

6
6

Queue Abstract Data Type (ADT)

These support methods should also be defined:

• Size(S:ADT):integer

• IsEmpty(S:ADT):Boolean

Axioms:

• Front(Enqueue(New(), v)) = v

• Dequeue(Enqueue(New(), v)) = New()

• Front(Enqueue(Q, w)) = Front(Enqueue(Enqueue(Q, w),v))

• Dequeue(Enqueue(Enqueue(Q, w),v)) =
Enqueue(Dequeue(Enqueue(Q, w)),v)

7
7

Queue Abstract Data Type (ADT)

• Create a queue using an array in a circular fashion

• A maximum size N is specified, e.g. N = 1,000.

• The queue consists of an N-element array Q and two integer
variables:

8
8

An Array-Based Queue

• f, index of the front
element (head – for
dequeue)

• r, index of the element
after the rear one (tail –
for enqueue)

• Create a queue using an array in a circular fashion

• A maximum size N is specified, e.g. N = 1,000.

• The queue consists of an N-element array Q and two integer
variables:

9
9

An Array-Based Queue

• f, index of the front
element (head – for
dequeue)

• r, index of the element
after the rear one (tail –
for enqueue)

“wrapped around” configuration

10
10

An Array-Based Queue

Questions:
What does f==r mean?

“wrapped around” configuration

11
11

An Array-Based Queue

Questions:
What does f==r mean?

Empty

“wrapped around” configuration

12
12

An Array-Based Queue

Questions:
How do we compute the number of elements in the queue from
f and r?

“wrapped around” configuration

13
13

An Array-Based Queue

Questions:
How do we compute the number of elements in the queue from
f and r?

• if r > f,
#elements = r – f

• if r < f,
• #elements = N – f + r

• if r == f,
• #elements = 0

“wrapped around” configuration

14
14

An Array-Based Queue

Questions:
How do we compute the number of elements in the queue from
f and r?

• if r > f,
#elements = r – f

• if r < f,
• #elements = N – f + r

• if r == f,
• #elements = 0

i.e., (N - f + r) mod N

Algorithm Size():
 return (N - f + r) mod N

Algorithm isEmpty():
 return (f == r)

Algorithm Front():
 if isEmpty() then
 print “Queue is Empty”
 return NULL
 return Q[f]

Algorithm Dequeue():
 if isEmpty() then
 print “Queue is Empty”; return NULL
 temp = Q[f]
 Q[f] = null
 f = (f + 1) mod N
 return temp

Algorithm Enqueue(o):
 if Size() == N - 1 then
 print “Queue is Full”; return
 Q[r] = o

r = (r + 1) mod N 15
15

An Array-Based Queue: Pseudo Code

• Nodes (data, pointers) connected in a chain by links

• The head of the list is the front of the queue, the tail of the
list is the rear of the queue. Why not the opposite?

16
16

Implementing Queue with a Singly Linked List

A B C D

head

NULL

tail

17
17

Queue: Removing at the Head (Dequeue)

A B C D

head

NULL

tail

Advance head reference

Inserting at the head is just as easy

B C D

head

NULL

tail

A

18
18

Queue: Inserting at the Tail (Enqueue)

A B C D

head

NULL

tail

Create a new node

E NULL

19
19

Queue: Inserting at the Tail (Enqueue)

A B C D

head

NULL

tail

Create a new node

Chain it and move the tail reference

How about removing at the tail?

E NULL

A B C D

head tail

E NULLE NULL

• A double-ended queue, or deque, supports insertion and
deletion from the front and back.

• The Deque supports following fundamental methods:
• insertFirst(S:ADT, o:element):ADT - Inserts e at the

beginning of deque.
• insertLast(S:ADT, o:element):ADT - Inserts e at the end of

deque.
• removeFirst(S:ADT):ADT - Removes the first element.
• removeLast(S:ADT):ADT - Removes the last element.
• first(S:ADT):element - Return the first element.
• last(S:ADT):element - Return the last element.

20
20

Double-Ended Queue

With Singly Linked Lists

• Not a good idea
• As deletion at tail is costly

21
21

Implementing Deques

With Singly Linked Lists

• Not a good idea
• As deletion at tail is costly

Solution: Use Doubly Linked List

22
22

Implementing Deques

• Deletions at the tail of a singly linked list cannot be done in constant

time.

• To implement a deque, we use a doubly linked list with special

header and trailer nodes

23
23

Implementing Deques with Doubly Linked Lists

• A node of a doubly linked list has a next and a prev link.

• By using a doubly linked list, all the methods of a deque run in O(1)

time.

A B C

header trailer

• When implementing a doubly linked lists, we add two special
nodes to the ends of the lists: the header and trailer nodes.
• The header node goes before the first list element. It has a valid

next link but a null prev link.
• The trailer node goes after the last element. It has a valid prev

reference but a null next reference.

NOTE: the header and trailer nodes are sentinel or “dummy” nodes
because they do not store elements. Here’s a diagram of our doubly
linked list:

24
24

Implementing Deques with Doubly Linked Lists

A B C

header trailer

Here’s a visualization of the code for removeLast().

25
25

Implementing Deques with Doubly Linked Lists

A B C

header trailer

D

lastsecond to last

A B C

header trailer

D

lastsecond to last

Here’s a visualization of the code for removeLast().

26
26

Implementing Deques with Doubly Linked Lists

A B C

header trailer

D

lastsecond to last

A B C

header trailer

D

lastsecond to last

A B C

header trailer

27
27

Implementing Stacks and Queues with Deques

Implementing ADTs using implementations of other ADTs as building blocks

Stacks with Deques:

28
28

Implementing Stacks and Queues with Deques

Implementing ADTs using implementations of other ADTs as building blocks

Stack Method Deque Implementation

size()
isEmpty()
top()
push(e)
pop()

size()
isEmpty()
last()
insertLast(e)
removeLast()

Stacks with Deques:

Queues with Deques:

29
29

Implementing Stacks and Queues with Deques

Implementing ADTs using implementations of other ADTs as building blocks

Stack Method Deque Implementation

size()
isEmpty()
top()
push(e)
pop()

size()
isEmpty()
last()
insertLast(e)
removeLast()

Queue Method Deque Implementation

size()
isEmpty()
front()
enqueue(e)
dequeue()

size()
isEmpty()
first()
insertLast(e)
removeFirst()

• No end and no beginning of the list, only one pointer as an
entry point

• Circular doubly linked list with a sentinel is an elegant
implementation of a stack or a queue

30
30

Circular Lists

A B C D

head

• Insertion a node F at head: create a new node, insert between
A and B, copy A to this new node and replace A of head node
with F.

31
31

Circular Lists

A B C D

head

• Deleting the head node: copy node B to node A and delete
original node B.

32
32

Circular Lists

A B C D

head

• IIT Delhi

33

Acknowledgement

Thank You

34

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Thank You

