
Data Structures and Algorithms

Indian Institute of Information Technology Allahabad

Stacks

Dr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

•Abstract Data Types (ADTs)

• Stacks

•Application to the analysis
of a time series

•Growable stacks

Stacks

3

•ADT is mathematically specified entity that defined a
set of its instances, with:

• a specific interface – a collection of signatures of
operations that can be invoked on an instance.

• a set of axioms (preconditions and postconditions)
that define the semantics of the operations (i.e.,
what the operations do to instances of the ADT,
but now how)

Abstract Data Types (ADTs)

4

•Why do we need to talk about ADTs in a DS course?

• They serve as specification of requirements for the
building blocks of solutions to algorithmic problems

•Provides a language to talk on a higher level of
abstraction

•ADTs encapsulate data structures and algorithms that
implement them

• Separate the issues of correctness and efficiency

Abstract Data Types (ADTs)

5

•We will deal with ADTs, instances of which are sets of
some type of elements.

•Operations are provided that change the set.

•We call such class of ADTs dynamic sets

Example – Dynamic Sets

6

•An example dynamic set ADT

•Methods:

•New():ADT

• Insert(S:ADT, v:element):ADT

•Delete(S:ADT, v:element):ADT

• IsIn(S:ADT, v:element):boolean

• Insert and Delete – manipulation operations

• IsIn – Access method

Dynamic Sets

7

•Axioms that define the methods:

• IsIn(New(), v) = false

• IsIn(Insert(S, v), v) = true

• IsIn(Insert(S, u), v) = IsIn(S, v), if u ≠ v

• IsIn(Delete(S, v), v) = false

• IsIn(Delete(S, u), v) = IsIn(S, v), if u ≠ v

Dynamic Sets

8

• There are lots of formalized and standard ADTs.

• In this course we are going to learn a lot of different
standard ADTs.
• stacks,
•queues,
• trees
• ...

Abstract Data Types (ADTs)

9

•A stack is a container of objects that are inserted and
removed according to the last-in-first-out (LIFO)
principle.

•Objects can be inserted at any time, but only the last
(the most-recently inserted) object can be removed.

• Inserting an item is known as “pushing” onto the stack.
“Popping” off the stack is synonymous with removing an
item.

Stacks

10

•A PEZ ® dispenser is an analogy:

Stacks

11

•A PEZ ® dispenser is an analogy:

•Other examples:

Stacks

12

•A stack is an ADT that supports four main methods:

•new():ADT – Creates a new stack

•push(S:ADT, o:element):ADT – Inserts object o onto
top of stack S

•pop(S:ADT):ADT – Removes the top object of stack S;
if the stack is empty an error occurs, so take care.

• top(S:ADT):element – Returns the top object of the
stack, without removing it; if the stack is empty an
error occurs, so take care.

Stacks

13

• The following support methods should also be defined:

• size(S:ADT):integer - Returns the number of objects in stack
S

• isEmpty(S:ADT):boolean - Return a boolean indicating if
stack S is empty.

•Axioms

• pop(push(S, v)) = S

• top(push(S, v)) = v

Stacks

14

• Create a stack using an array by specifying a maximum size N
for our stack.

• The stack consists of an N-element array S and an integer
variable t, the index of the top element in array S.

• Array indices start at 0, so we initialize t to -1.

Array-Based Stack

15

• The array implementation is simple and efficient (methods
performed in O(1)).

• There is an upper bound, N, on the size of the stack. The
arbitrary value N may be too small for a given application, or a
waste of memory.

• Stack Empty case is required to be dealt.

• Stack Full is particular to this implementation.

Array-Based Stack

16

• The span si of a stock’s price on a certain day i is the maximum
number of consecutive days (up to the current day) the price of
the stock has been less than or equal to its price on day i.

Application: Time Series

17

Algorithm computeSpans1(P):
for i = 0 to n-1 do

k = 0; done = false
repeat

if P[i-k] <= P[i] then k = k+1
else done = true

Until (k == i) or done
S[i] = k

return S

An Inefficient Algorithm

Input P -> Stock
price in an array
Output S -> Span in
an array

18

Algorithm computeSpans1(P):
for i = 0 to n-1 do

k = 0; done = false
repeat

if P[i-k] <= P[i] then k = k+1
else done = true

Until (k == i) or done
S[i] = k

return S

The running time of this algorithm is O(n2). Why?

An Inefficient Algorithm

Input P -> Stock
price in an array
Output S -> Span in
an array

19

• Si can be easily computed if we know the closest day preceding
i, on which the price is greater than the price on day i.

• If such a day exists, let’s call it h(i), otherwise, we
conventionally define h(i) = -1.

• In the fugure h(3)=2, h(5)=1
and h(6)=0.

• The span is now computed as
si = i - h(i)

A Stack Can Help

20

What are possible values of h(7)?

Can it be 1 or 3 or 4?

What to do with the Stack?

21

What are possible values of h(7)?

Can it be 1 or 3 or 4?

No, h(7) can only be 2 or 5 or 6

What to do with the Stack?

22

What are possible values of h(7)?

Can it be 1 or 3 or 4?

No, h(7) can only be 2 or 5 or 6

• We store indices 2,5,6 in the stack

• To determine h(7) we compare the price on day 7 with prices
on day 6, day 5, day 2 in that order.

What to do with the Stack?

23

What are possible values of h(7)?

Can it be 1 or 3 or 4?

No, h(7) can only be 2 or 5 or 6

• We store indices 2,5,6 in the stack

• To determine h(7) we compare the price on day 7 with prices
on day 6, day 5, day 2 in that order.

• The first price larger than the price on day 7 gives h(7)

• The stack should be updated to reflect the price of day 7

• It should now contains 2,5,7

What to do with the Stack?

24

Algorithm computeSpans2(P):
for i = 0 to n-1 do

k = 0; done = false
while not (D.isEmpty() or done) do

if P[i] >= P[D.top()] then D.pop()
else done = true

if D.isEmpty() then h=-1
else h=D.top()

S[i] = i-h
D.push(i)

return S

An Efficient Algorithm

Let D be an empty
stack

25

Algorithm computeSpans2(P):
for i = 0 to n-1 do

k = 0; done = false
while not (D.isEmpty() or done) do

if P[i] >= P[D.top()] then D.pop()
else done = true

if D.isEmpty() then h=-1
else h=D.top()

S[i] = i-h
D.push(i)

return S

An Efficient Algorithm

Let D be an empty
stack

The running time of this algorithm is O(n).
Why?

26

There are two strategy for
growable stack:
• Tight Strategy : Add a

constant amount to the old
stack (N+c)
• Growth Strategy : Double

the size of old stack (2N)

A Growable Array-Based Stack

Figure from geeksforgeeks
27

We can replace the array S with a larger one and continue
processing push operations.

Algorithm push(o):
if size()==N then A = new array if length f(N)
for i = 0 to N-1 do

A[i] = S[i]
S=A; t=t+1
S[t]=o

A Growable Array-Based Stack

28

To compare the two strategies, we use the following cost
model:
• A Regular Push Operation: Adds one element at top of stack.

It costs one unit.
• A Special Push Operation: Create a new stack (using array)

of size greater than old stack (according to one of the
strategy above, f(N)) and copy all N elements from old stack
and then push the new element to the new stack. It costs
f(N)+N+1 units

Tight vs. Growth Strategies: Comparison

29

Tight Strategy (c=4)

a

a b

a b c

a b c d

Start with an array of size 0. Cost of special push is 2N+5.

a b c d e

a b c d e f

a b c d e f g

a b c d e f g h

a b c d e f g h i

a b c d e f g h i j

a b c d e f g h i j k

a b c d e f g h i j k l

a b c d e f g h i j k l m

30

Tight Strategy (c=4)

a

a b

a b c

a b c d

Start with an array of size 0. Cost of special push is 2N+5.

 4+1
 1 Phase 1
 1
 1

a b c d e

a b c d e f

a b c d e f g

a b c d e f g h

a b c d e f g h i

a b c d e f g h i j

a b c d e f g h i j k

a b c d e f g h i j k l

a b c d e f g h i j k l m

31

Tight Strategy (c=4)

a

a b

a b c

a b c d

Start with an array of size 0. Cost of special push is 2N+5.

 4+1
 1 Phase 1
 1
 1

 8+4+1
 1 Phase 2
 1
 1

a b c d e

a b c d e f

a b c d e f g

a b c d e f g h

a b c d e f g h i

a b c d e f g h i j

a b c d e f g h i j k

a b c d e f g h i j k l

a b c d e f g h i j k l m

32

Tight Strategy (c=4)

a

a b

a b c

a b c d

Start with an array of size 0. Cost of special push is 2N+5.

 4+1
 1 Phase 1
 1
 1

 8+4+1
 1 Phase 2
 1
 1
 12+8+1
 1 Phase3
 1
 1

 16+12+1

a b c d e

a b c d e f

a b c d e f g

a b c d e f g h

a b c d e f g h i

a b c d e f g h i j

a b c d e f g h i j k

a b c d e f g h i j k l

a b c d e f g h i j k l m

33

Performance of the Tight Strategy

• In phase i the array has size c×i

34

Performance of the Tight Strategy

• In phase i the array has size c×i
• Total cost of phase i is:
• c×i is the cost of creating the array
• c×(i-1) is the cost of copying elements into new array
• c is the cost of c pushes

• Hence, the cost of phase i is 2ci.

35

Performance of the Tight Strategy

• In phase i the array has size c×i
• Total cost of phase i is:
• c×i is the cost of creating the array
• c×(i-1) is the cost of copying elements into new array
• c is the cost of c pushes

• Hence, the cost of phase i is 2ci.

• In each phase we do c pushes. Hence for n pushes, we need
n/c phases.

36

Performance of the Tight Strategy

• In phase i the array has size c×i
• Total cost of phase i is:
• c×i is the cost of creating the array
• c×(i-1) is the cost of copying elements into new array
• c is the cost of c pushes

• Hence, the cost of phase i is 2ci.

• In each phase we do c pushes. Hence for n pushes, we need
n/c phases.

• Total cost of these n/c phases is:
 = 2c(1+2+3+….+n/c) = O(n2/c)

37

Growth Strategy

a

Start with an array of size 0. Cost of special push is 3N+1.

 1+0+1 Phase 1

38

Growth Strategy

a

a b

Start with an array of size 0. Cost of special push is 3N+1.

 1+0+1 Phase 1

 2+1+1 Phase 2

39

Growth Strategy

a

a b

a b c

a b c d

Start with an array of size 0. Cost of special push is 3N+1.

 1+0+1 Phase 1

 2+1+1 Phase 2

 4+2+1 Phase 3
 1

40

Growth Strategy

a

a b

a b c

a b c d

Start with an array of size 0. Cost of special push is 3N+1.

 1+0+1 Phase 1

 2+1+1 Phase 2

 4+2+1 Phase 3
 1

 8+4+1 Phase 4
 1
 1
 1

a b c d e

a b c d e f

a b c d e f g

a b c d e f g h

41

Growth Strategy

a

a b

a b c

a b c d

Start with an array of size 0. Cost of special push is 3N+1.

 1+0+1 Phase 1

 2+1+1 Phase 2

 4+2+1 Phase 3
 1

 8+4+1 Phase 4
 1
 1
 1
 16+8+1 Phase 5
 1
 1
 1
 1
 1

a b c d e

a b c d e f

a b c d e f g

a b c d e f g h

a b c d e f g h i

a b c d e f g h i j

a b c d e f g h i j k

a b c d e f g h i j k l

a b c d e f g h i j k l m

a b c d e f g h i j k l m n 42

Performance of the Growth Strategy

• In phase i the array has size 2i

43

Performance of the Growth Strategy

• In phase i the array has size 2i

• Total cost of phase i is:
• 2i is the cost of creating the array
• 2i-1 is the cost of copying elements into new array
• 2i-1 is the cost of 2i-1 pushes done in this phase

• Hence, the cost of phase i is 2i+1.

44

Performance of the Growth Strategy

• In phase i the array has size 2i

• Total cost of phase i is:
• 2i is the cost of creating the array
• 2i-1 is the cost of copying elements into new array
• 2i-1 is the cost of 2i-1 pushes done in this phase

• Hence, the cost of phase i is 2i+1.

• If we do n pushes we will have log n phases.
• Total cost of n pushes is:

 = 2+4+8+….+2log n+1 = 4n-1

45

Performance of the Growth Strategy

• In phase i the array has size 2i

• Total cost of phase i is:
• 2i is the cost of creating the array
• 2i-1 is the cost of copying elements into new array
• 2i-1 is the cost of 2i-1 pushes done in this phase

• Hence, the cost of phase i is 2i+1.

• If we do n pushes we will have log n phases.
• Total cost of n pushes is:

 = 2+4+8+….+2log n+1 = 4n-1

• The growth strategy wins!
46

•Direct applications:
• Page-visited history in a Web browser

• Undo sequence in a text editor

• Chain of method calls in the Java Virtual Machine

• Validate XML

• Indirect applications:
• Auxiliary data structure for algorithms

• Component of other data structures

Applications of Stacks

47

• Infix: operators placed between operands:

A+B*C

• Postfix: operands appear before their operators:-

ABC*+

• There are no precedence rules to learn in postfix notation, and

parentheses are never needed

Infix and Postfix Notations

48

Infix Postfix

A + B A B +

A + B * C A B C * +

(A + B) * C A B + C *

A + B * C + D A B C * + D +

(A + B) * (C + D) A B + C D + *

A * B + C * D A B * C D * +

A + B * C → (A + (B * C)) → (A + (B C *)) → A B C * +

A + B * C + D → ((A + (B * C)) + D) → ((A + (B C*))+ D) →

((A B C *+) + D) → A B C * + D +

Infix to Postfix

49

• Use a stack for processing operators (push and pop operations).

• Scan the sequence of operators and operands from left to right

and perform one of the following:

• output the operand,

• push an operator of higher precedence,

• pop an operator and output, till the stack top contains operator

of a lower precedence and push the present operator.

Infix to Postfix Conversion

50

1. Print operands as they arrive.

2. If the stack is empty or contains a left parenthesis on top, push the incoming operator onto

the stack.

3. If the incoming symbol is a left parenthesis, push it on the stack.

4. If the incoming symbol is a right parenthesis, pop the stack and print the operators until

you see a left parenthesis. Discard the pair of parentheses.

5. If the incoming symbol has higher precedence than the top of the stack, push it on the

stack.

6. If the incoming symbol has equal precedence with the top of the stack, use association. If

the association is left to right, pop and print the top of the stack and then push the incoming

operator. If the association is right to left, push the incoming operator.

7. If the incoming symbol has lower precedence than the symbol on the top of the stack, pop

the stack and print the top operator. Then test the incoming operator against the new top of

stack.

8. At the end of the expression, pop and print all operators on the stack. (No parentheses

should remain.)

The algorithm steps

51

Requires operator precedence information

Operands:

Add to postfix expression.

Close parenthesis:

pop stack symbols until an open parenthesis appears.

Operators:

Pop all stack symbols until a symbol of lower precedence appears. Then push
the operator.

End of input:

Pop all remaining stack symbols and add to the expression.

Infix to Postfix Conversion

52

Current
symbol

Operator
Stack

Postfix string

1 A A

2 * * A

3 (* (A

4 B * (A B

5 + * (+ A B

6 C * (+ A B C

7 * * (+ * A B C

8 D * (+ * A B C D

9) * A B C D * +

10 + + A B C D * + *

11 E + A B C D * + * E

12 A B C D * + * E +

Expression:

A * (B + C * D) + E

becomes

A B C D * + * E +

Postfix notation is also

called as Reverse Polish

Notation (RPN)

Infix to Postfix Rules

53

Postfix Expression Evaluation

54

Postfix Expression Evaluation using Stack

55

1. Each leaf node contains a single operand

2. Each nonleaf node contains a single binary operator

3. The left and right subtrees of an operator node represent
subexpressions that must be evaluated before applying
the operator at the root of the subtree.

Binary Expression Tree

56

A Four-Level Binary Expression

57

• The levels of the nodes in the tree indicate their relative
precedence of evaluation (we do not need parentheses to indicate
precedence).

• Operations at higher levels of the tree are evaluated later
than those below them.

• The operation at the root is always the last operation
performed.

Levels Indicate Precedence

58

A Binary Expression Tree

What value does it have?

(4 + 2) * 3 = 18
59

Easy to generate the infix, prefix, postfix
expressions (how?)

60

Print left subtree first Print right subtree last

Inorder Traversal: (A + H) / (M - Y)

Print second

61

Print left subtree second Print right subtree last

Preorder Traversal: / + A H - M Y

Print first

62

Print left subtree first Print right subtree second

Postorder Traversal: A H + M Y - /

Print last

63

The infix, prefix, postfix expressions

Infix: ((8 - 5) * ((4 + 2) / 3))

Prefix: * - 8 5 / + 4 2 3

Postfix: 8 5 - 4 2 + 3 / * 64

• Insert new nodes, each time moving to the left until an
operand has been inserted.

•Backtrack to the last operator, and put the next node to
its right.

•Continue in the same pattern.

Building a Binary Expression Tree from an
expression in prefix notation

65

t

t

PUSH

Push using Stack

66

t

t

POP

Pop using Stack

67

Stack using Linked List

t
PUSH OPERATION

68

Stack using Linked List

PUSH OPERATION

t POP OPERATION

t

69

• In the array implementation, we would:

• Declare an array of fixed size (which determines the maximum size of

the stack).

• Keep a variable which always points to the “top” of the stack.

• Contains the array index of the “top” element.

• In the linked list implementation, we would:

• Maintain the stack as a linked list.

• A pointer variable top points to the start of the list.

• The first element of the linked list is considered as the stack top.

Basic Idea

70

#define MAXSIZE 100

struct lifo
{
 int st[MAXSIZE];
 int t;
};
typedef struct lifo
 stack;
stack s;

Stack: Declaration

struct lifo
{
 int value;
 struct lifo *next;
};
typedef struct lifo
 stack;

stack *t;

ARRAY LINKED LIST

71

void new(stack *s)
{
 s->t = -1;

 /* s->t points to
 last element
 pushed in;
 initially -1 */
}

Stack: Creation

void new(stack **t)
{
 *t = NULL;

 /* top points to NULL,
 indicating empty
 stack */
}

ARRAY LINKED LIST

72

void push (stack *s, int element)

{

 if (s->t == (MAXSIZE-1))

 {

 printf (“\n Stack overflow”);

 exit(-1);

 }

 else

 {

 s->t++;

 s->st[s->t] = element;

 }

}

Stack: Pushing an element into stack

void push (stack **t, int element)

{

 stack *new;

 new = (stack *)malloc

 (sizeof(stack));

 if (new == NULL)

 {

 printf (“\n Stack is full”);

 exit(-1);

 }

 new->value = element;

 new->next = *t;

 *t = new;

}

ARRAY LINKED LIST
73

int pop (stack *s)

{

 if (s->t == -1)

 {

 printf(“\n Stack

 underflow”);

 exit(-1);

 }

 else

 {

 return (s->st[s->t--]);

 }

}

Stack: Popping an element from stack
int pop (stack **t)

{

 int tv; stack *p;

 if (*t == NULL)

 {

 printf(“\n Stack is empty”);

 exit(-1);

 }

 else

 {

 tv = (*t)->value;

 p = *t;

 *t = (*t)->next;

 free (p);

 return tv;

 }

}

ARRAY LINKED LIST
74

int top (stack *s)

{

 if (s->t == -1)

 {

 printf(“\n Stack

 underflow”);

 exit(-1);

 }

 else

 {

 return (s->st[s->t]);

 }

}

Stack: Return top element from stack

int top (stack **t)

{

 if (*t == NULL)

 {

 printf(“\n Stack is

 empty”);

 exit(-1);

 }

 else

 {

 return (*t)->value;

 }

}

ARRAY LINKED LIST
75

int isEmpty (stack *s)

{

 if (s->t == -1)

 return 1;

 else

 return (0);

}

Stack: Checking for stack empty

int isEmpty (stack *t)

{

 if (t == NULL)

 return (1);

 else

 return (0);

}

ARRAY LINKED LIST
76

#include <stdio.h>

#define MAXSIZE 100

struct lifo

{

 int st[MAXSIZE];

 int t;

};

typedef struct lifo stack;

main() {

 stack A, B;

 create(&A); create(&B);

 push(&A,10); push(&A,20); push(&A,30);

 push(&B,100); push(&B,5);

 printf (“%d %d”, pop(&A), pop(&B));

 push (&A, pop(&B));

 if (isempty(&B))

 printf (“\n B is empty”);

 return;

}

Stack using Array: Example

77

#include <stdio.h>

struct lifo

{

 int value;

 struct lifo *next;

};

typedef struct lifo stack;

main() {

 stack *A, *B;

 create(&A); create(&B);

 push(&A,10); push(&A,20); push(&A,30);

 push(&B,100); push(&B,5);

 printf (“%d %d”, pop(&A), pop(&B));

 push (&A, pop(&B));

 if (isempty(B))

 printf (“\n B is empty”);

 return;

}

Stack using Linked List: Example

78

• IIT Delhi

• IIT Kharagpur

79

Acknowledgement

Thank You

80

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Thank You

