Indian Institute of Information Technology Allahabad

Data Structures and Algorithms

Quick Sort (Randomized Algorithm)

Dr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are adopted from many sources for academic purposes. Broadly, the sources have been given due credit appropriately. However, there is a chance of missing out some original primary sources. The authors of this material do not claim any copyright of such material.

What is a Randomized Algorithm?

- An algorithm that incorporates randomness as part of its operation.
- Basically, we'll make random choices during the algorithm:
- Sometimes, we'll just hope that our algorithm is fast!
- Other times, we'll just hope that it works!
- Let's formalize this...

Las Vegas vs. Monte Carlo

LAS VEGAS
 ALGORITHMS

Guarantees correctness!
But the runtime is a random variable.
(i.e. there's a chance the runtime could take awhile)

Las Vegas vs. Monte Carlo

LAS VEGAS
 ALGORITHMS

Guarantees correctness!
But the runtime is a random variable.
(i.e. there's a chance the runtime could take awhile)

MONTE CARLO ALGORITHMS

Correctness is a random variable. (i.e. there's a chance the output is wrong)

But the runtime is guaranteed!

Las Vegas vs. Monte Carlo

LAS VEGAS
 ALGORITHMS

Guarantees correctness!
But the runtime is a random variable.
(i.e. there's a chance the runtime could take awhile)

We'll focus on these algorithms today (BogoSort, QuickSort)

MONTE CARLO ALGORITHMS

Correctness is a random variable. (i.e. there's a chance the output is wrong)

But the runtime is guaranteed!

You'll see some examples of these later in the DAA course!

How do we measure the runtime of a randomized algorithm?

Scenario 1

1. You publish your algorithm.
2. Bad guy picks the input.
3. You run your randomized algorithm.

Scenario 2

1. You publish your algorithm.
2. Bad guy picks the input.
3. Bad guy chooses the randomness (fixes the dice) and runs your algorithm.

- In Scenario 1, the running time is a random variable.
- It makes sense to talk about expected running time.
- In Scenario 2, the running time is not random.
- We call this the worst-case running time of the randomized algorithm.

How do we mea in both cases, we areme of a randomized alg still thinking about the WORST-CASE INPUT
 Scenario 1
 Scenario 2

Don’t get confused!!!

Even with randomized algorithms, we are still considering the WORST CASE INPUT, regardless of whether we're computing expected or worst-case runtime.

Expected runtime IS NOT runtime when given an expected input! We are taking the expectation over the random choices that our algorithm would make, NOT an expectation over the distribution of possible inputs.

- In scenario 2, tne running time is not ranaom.
- We call this the worst-case running time of the randomized algorithm.

Quick Probability Exercise

\mathbf{X} is a Bernoulli/indicator random variable which is $\mathbf{1}$ with probability $1 / 100$ and 0 with probability 99/100.
a. What is the expected value $\mathbb{E}[X]$?

Quick Probability Exercise

\mathbf{X} is a Bernoulli/indicator random variable which is $\mathbf{1}$ with probability $1 / 100$ and 0 with probability 99/100.
a. What is the expected value $\mathbb{E}[X] ? \mathbb{E}[X]=1\left(\frac{1}{100}\right)+0\left(\frac{99}{100}\right)=\frac{1}{100}$

Quick Probability Exercise

\mathbf{X} is a Bernoulli/indicator random variable which is $\mathbf{1}$ with probability $1 / 100$ and 0 with probability 99/100.
a. What is the expected value $\mathbb{E}[X] ? \mathbb{E}[X]=1\left(\frac{1}{100}\right)+0\left(\frac{99}{100}\right)=\frac{1}{100}$
b. Suppose you draw n independent random variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$, distributed like X . What is the expected value $\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]$?

Quick Probability Exercise

\mathbf{X} is a Bernoulli/indicator random variable which is $\mathbf{1}$ with probability $1 / 100$ and 0 with probability 99/100.
a. What is the expected value $\mathbb{E}[X] ? \mathbb{E}[X]=1\left(\frac{1}{100}\right)+0\left(\frac{99}{100}\right)=\frac{1}{100}$
b. Suppose you draw n independent random variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$, distributed like X . What is the expected value $\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]$?

By linearity of expectation: $\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{n}{100}$

Quick Probability Exercise

\mathbf{X} is a Bernoulli/indicator random variable which is $\mathbf{1}$ with probability $1 / 100$ and 0 with probability 99/100.
a. What is the expected value $\mathbb{E}[X] ? \mathbb{E}[X]=1\left(\frac{1}{100}\right)+0\left(\frac{99}{100}\right)=\frac{1}{100}$
b. Suppose you draw n independent random variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$, distributed like X . What is the expected value $\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]$?
By linearity of expectation: $\quad \mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{n}{100}$
c. Suppose you draw independent random variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$, and you stop when you see the first " 1 ". Let N be the last index that you draw. What is the expected value of N ?

Quick Probability Exercise

\mathbf{X} is a Bernoulli/indicator random variable which is $\mathbf{1}$ with probability $1 / 100$ and 0 with probability 99/100.
a. What is the expected value $\mathbb{E}[X] ? \mathbb{E}[X]=1\left(\frac{1}{100}\right)+0\left(\frac{99}{100}\right)=\frac{1}{100}$
b. Suppose you draw n independent random variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$, distributed like X . What is the expected value $\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]$?

By linearity of expectation: $\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{n}{100}$
c. Suppose you draw independent random variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{\mathrm{n}}$, and you stop when you see the first " 1 ". Let N be the last index that you draw. What is the expected value of N ?
N is a geometric random variable.
We can use the formula:

$$
\mathbb{E}[N]=\frac{1}{p}=\frac{1}{1 / 100}=100
$$

Geometric Random Variable

- If \mathbf{N} represents "number of trials/attempts", and \mathbf{p} is the probability of "success" on each trial, then:

$$
\mathbb{E}[N]=\frac{1}{p}
$$

On the first trial we either succeed with probability p, or fail with probability (1-p). If we fail the remaining mean number of trials until a success is identical to the original mean. This follows from the fact that all trials are independent. From this we get:

$$
\begin{aligned}
\mathbb{E}[N] & =1(p)+(1+\mathbb{E}[N])(1-p) \\
& =p+(1-p)+(1-p) \mathbb{E}[N] \\
& =1+(1-p) \mathbb{E}[N]
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[N](1-(1-p)) & =1 \\
\mathbb{E}[N](p) & =1 \\
\mathbb{E}[N] & =\frac{1}{p}
\end{aligned}
$$

Bogo Sort

A bit silly, but a great pedagogical tool!

Bogo Sort

BOGOSORT(A):
while True:
A.shuffle()
sorted = True
for i in $[0, \ldots, \mathrm{n}-2]$:
if $A[i]>A[i+1]$:
sorted $=$ False
if sorted:
return A

This randomly permutes A (assume it takes
$\mathrm{O}(\mathrm{n})$ time)

Bogo Sort: Expected Runtime

BOGOSORT(A):
while True:
A.shuffle()
sorted = True
for i in $[0, \ldots, \mathrm{n}-2]$:
if $A[i]>A[i+1]$:
sorted $=$ False
if sorted:
return A

What is the expected number of iterations?

Bogo Sort: Expected Runtime

BOGOSORT(A):

while True:
A.shuffle()
sorted = True
for i in [0,...,n-2]:
if $A[i]>A[i+1]$:
sorted $=$ False
if sorted:
return A

What is the expected number of iterations?
Let $\mathbf{X}_{\mathbf{i}}$ be a Bernoulli/Indicator variable, where

- $X_{i}=1$ if A is sorted on iteration i
- $X_{i}=0$ otherwise

Bogo Sort: Expected Runtime

BOGOSORT(A):
while True:
A.shuffle()
sorted = True
for i in [0,...,n-2]:
if $A[i]>A[i+1]$:
sorted $=$ False
if sorted:
return A

What is the expected number of iterations?
Let $\mathbf{X}_{\mathbf{i}}$ be a Bernoulli/Indicator variable, where

- $X_{i}=\mathbf{1}$ if A is sorted on iteration i
- $X_{i}=0$ otherwise

Probability that $X_{i}=1(A$ is sorted $)=1 / n$!
since there are n ! possible orderings of A and only one is sorted (assume A has distinct

$$
\text { elements } \Rightarrow E\left[X_{i}\right]=1 / n!
$$

Bogo Sort: Expected Runtime

BOGOSORT(A):
while True:
A.shuffle()
sorted = True
for i in $[0, \ldots, \mathrm{n}-2]$:
if $A[i]>A[i+1]$:
sorted $=$ False
if sorted:
return A

What is the expected number of iterations?
Let $\mathbf{X}_{\mathbf{i}}$ be a Bernoulli/Indicator variable, where

- $X_{i}=1$ if A is sorted on iteration i
- $X_{i}=0$ otherwise

Probability that $X_{i}=1(A$ is sorted $)=1 / n$!
since there are n ! possible orderings of A and only one is sorted (assume A has distinct

$$
\text { elements) } \Rightarrow E\left[X_{i}\right]=1 / n!
$$

E[\# of iterations/trials] = 1/(prob. of success on each trial)

$$
=1 /(1 / n!)=n!
$$

Bogo Sort: Expected Runtime

BOGOSORT(A):

while True:
A.shuffle()
sorted = True
for i in [0,...,n-2]:
if $A[i]>A[i+1]$:
sorted = False
if sorted:
return A

E[runtime on a list of length n]
= E[(\# of iterations) * (time per iteration)]
= (time per iteration) * E[\# of iterations]
$=O(n)$ * E \# of iterations]
$=O(n)$ * $n!$)
= O(n * n!)
= REALLY REALLY BIG

Bogo Sort: Worst-Case Runtime

BOGOSORT(A):
while True:
A.shuffle()
sorted = True
for i in $[0, \ldots, \mathrm{n}-2]$:
if $A[i]>A[i+1]$:
sorted $=$ False
if sorted:
return A

Bogo Sort: Worst-Case Runtime

BOGOSORT(A):

while True:
A.shuffle()

Worst-case runtime =

sorted = True
for i in $[0, \ldots, n-2]$:
if $A[i]>A[i+1]$:
sorted $=$ False
if sorted:
return A

This is as if the "bad guy" chooses all the randomness in the algorithm, so each shuffle could be unlucky... forever...

What have we learned?

EXPECTED RUNNING TIME

1. You publish your randomized algorithm
2. Bad guy picks an input
3. You get to roll the dice (leave it up to randomness)

WORST-CASE RUNNING TIME

1. You publish your randomized algorithm
2. Bad guy picks an input
3. Bad guy "rolls" the dice (will choose the randomness in the worst way possible)

What have we learned?

EXPECTED RUNNING TIME

WORST-CASE RUNNING TIME

1. You publish your randomized algorithm
2. Bad guy picks an input
3. You get to roll the dice (leave it up to randomness)
4. You publish your randomized algorithm
5. Bad guy picks an input
6. Bad guy "rolls" the dice (will choose the randomness in the worst way possible)

Don't use BogoSort.

Quick Sort

A much better randomized algorithm

Quick Sort Overview

EXPECTED RUNNING TIME
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
WORST-CASE RUNNING TIME
$\mathrm{O}\left(\mathrm{n}^{2}\right)$

Quick Sort Overview

EXPECTED RUNNING TIME

$\mathrm{O}(\mathrm{n} \log \mathrm{n})$

WORST-CASE RUNNING TIME
$\mathrm{O}\left(\mathrm{n}^{2}\right)$

In practice, it works great! It's competitive with MergeSort (\& often better in some contexts!), and it runs in place (no need for lots of additional memory)

Quick Sort: The Idea

Let's use DIVIDE-and-CONQUER again!

Select a pivot at random

Partition around it

Recursively sort L and R!

Quick Sort: The Idea

Select a pivot

Pick this pivot uniformly at random!

Quick Sort: The Idea

Pick this pivot uniformly at random!

Partition around pivot: L has elements less than pivot, and \mathbf{R} has elements greater than pivot.

Quick Sort: The Idea

Select a pivot

Partition around pivot: L has elements less than pivot, and \mathbf{R} has elements greater than pivot.

Recurse!

Quick Sort: Pseudo-Code

QUICKSORT(A):

if $\operatorname{len}(\mathrm{A})<=1$:
return
pivot $=$ random.choice (A)
PARTITION A into:
L (less than pivot) and
R (greater than pivot)
Replace A with [L, pivot, R]
QUICKSORT(L)
QUICKSORT(R)

Quick Sort: Recurrence Relation

QUICKSORT(A):
if $\operatorname{len}(\mathrm{A})<=1$:
return
pivot $=$ random.choice (A) PARTITION A into:

L (less than pivot) and R (greater than pivot)
Replace A with [L, pivot, R] QUICKSORT(L)
QUICKSORT(R)

Recurrence Relation for QUICKSORT

$$
\begin{gathered}
T(n)=T(|L|)+T(|R|)+O(n) \\
T(0)=T(1)=O(1)
\end{gathered}
$$

Quick Sort: Ideal Runtime?

QUICKSORT(A):
if $\operatorname{len}(\mathrm{A})<=1$:
return
pivot $=$ random.choice (A) PARTITION A into:

L (less than pivot) and R (greater than pivot)
Replace A with [L, pivot, R] QUICKSORT(L) QUICKSORT(R)

Recurrence Relation for QUICKSORT

$$
\begin{gathered}
\mathrm{T}(\mathrm{n})=\mathrm{T}(| | L \mid)+\mathrm{T}(|\mathrm{R}|)+\mathrm{O}(\mathrm{n}) \\
\mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)
\end{gathered}
$$

Ideal Runtime?

Quick Sort: Ideal Runtime?

QUICKSORT(A):
if $\operatorname{len}(\mathrm{A})<=1$:
return
pivot $=$ random.choice (A)
PARTITION A into:
L (less than pivot) and R (greater than pivot)
Replace A with [L, pivot, R] QUICKSORT(L) QUICKSORT(R)

Recurrence Relation

 for QUICKSORT$$
\begin{gathered}
\mathrm{T}(\mathrm{n})=\mathrm{T}(| | L \mid)+\mathrm{T}(|\mathrm{R}|)+\mathrm{O}(\mathrm{n}) \\
\mathrm{T}(0)=T(1)=O(1)
\end{gathered}
$$

In an ideal world, the pivot would split the array exactly in half, and we'd get:

$$
T(n)=T(n / 2)+T(n / 2)+O(n)
$$

Quick Sort: Ideal Runtime?

QUICKSORT(A):
if $\operatorname{len}(\mathrm{A})<=1$:

Recurrence Relation for QUICKSORT
pivot $=$ randc PARTITION

L (less th:
R (greate
Replace A w QUICKSORT(L) QUICKSORT(R)

In an ideal world:

$$
T(n)=2 \cdot T(n / 2)+O(n)
$$

$$
T(n)=O(n \log n)
$$

$+\mathrm{T}(|\mathrm{R}|)+\mathrm{O}(\mathrm{n})$
(1) $=\mathrm{O}(1)$

I, the pivot would xactly in half, and we'd get:

$$
T(n)=T(n / 2)+T(n / 2)+O(n)
$$

Quick Sort: Worst-Case Runtime?

QUICKSORT(A):
if $\operatorname{len}(\mathrm{A})<=1$:
return
pivot $=$ random.choice (A) PARTITION A into:
L (less than pivot) and R (greater than pivot)
Replace A with [L, pivot, R] QUICKSORT(L) QUICKSORT(R)

Recurrence Relation for QUICKSORT

$$
\begin{gathered}
T(n)=T(|L|)+T(|R|)+O(n) \\
T(0)=T(1)=O(1)
\end{gathered}
$$

Worst-Case Runtime?

Quick Sort: Worst-Case Runtime?

QUICKSORT(A):
if $\operatorname{len}(\mathrm{A})<=1$:
return
pivot $=$ random.choice (A)
PARTITION A into:
L (less than pivot) and R (greater than pivot)
Replace A with [L, pivot, R] QUICKSORT(L) QUICKSORT(R)

Recurrence Relation for QUICKSORT

$$
\begin{gathered}
T(n)=T(|L|)+T(|R|)+O(n) \\
T(0)=T(1)=O(1)
\end{gathered}
$$

With the unluckiest randomness, the pivot would be either $\min (\mathrm{A})$ or max(A):

$$
T(n)=T(0)+T(n-1)+O(n)
$$

Quick Sort: Worst-Case Runtime?

QUICKSORT(A):
if $\operatorname{len}(\mathrm{A})<=1$:

Recurrence Relation for QUICKSORT
return
pivot $=$ ra PARTITIC

L (less

$$
T(n)=T(n-1)+O(n)
$$

R (gre
Replace
With the worst "randomness"

$$
\begin{aligned}
& \Gamma(|R|)+O(n) \\
& I=O(1)
\end{aligned}
$$

$$
T(n)=O\left(n^{2}\right)
$$

randomness, either $\min (A)$ or max(A):

$$
T(n)=T(0)+T(n-1)+O(n)
$$

Quick Sort: Expected Runtime

$O(n \log n)$

- In order to prove this expected runtime:
- Lets compute
- How many times are any two items compared, in expectation?

How Many Comparisons?

$$
\begin{array}{l|l|l|l|l|l|l|l|}
\hline 3 & 2 & 7 & 6 & 1 & 5 & 4 & 8 \\
\hline
\end{array}
$$

How Many Comparisons?

> Everything is compared to 5 once in this first step... and then never again with 5 .

How Many Comparisons?

Everything is compared to 5 once in this first step... and then never again with 5.

How Many Comparisons?

Everything is compared to 5 once in this first step... and then never again with 5.

How Many Comparisons?

Everything is compared to 5 once in this first step... and then never again with 5.

Only 1, 3, \& 4 are compared to 2.

And only $7 \& 8$ are compared with 6.
No comparisons ever happen between two numbers on opposite sides of 5 .

How Many Comparisons?

Everything is compared to 5 once in this first step... and then never again with 5.

Only 1, 3, \& 4 are compared to 2.

And only 7 \& 8 are compared with 6.
No comparisons ever happen between two numbers on opposite sides of 5.

How Many Comparisons?

Each pair of elements is compared either $\mathbf{0}$ or $\mathbf{1}$ times.
Let $\mathbf{X}_{\mathrm{a}, \mathrm{b}}$ be a Bernoulli/indicator random variable such that:

$$
\begin{aligned}
& \mathbf{x}_{\mathrm{a}, \mathrm{~b}}=\mathbf{1} \text { if } \mathrm{a} \text { and } \mathrm{b} \text { are compared } \\
& \mathbf{x}_{\mathrm{a}, \mathrm{~b}}=\mathbf{0} \quad \text { otherwise }
\end{aligned}
$$

How Many Comparisons?

Each pair of elements is compared either $\mathbf{0}$ or $\mathbf{1}$ times.
Let $\mathbf{X}_{\mathrm{a}, \mathrm{b}}$ be a Bernoulli/indicator random variable such that:

$$
\begin{aligned}
& \mathbf{x}_{\mathrm{a}, \mathrm{~b}}=\mathbf{1} \text { if } \mathrm{a} \text { and } \mathrm{b} \text { are compared } \\
& \mathbf{x}_{\mathrm{a}, \mathrm{~b}}=\mathbf{0} \text { otherwise }
\end{aligned}
$$

In our example, $\mathbf{X}_{2,5}$ took on the value $\mathbf{1}$ since $\mathbf{2}$ and $\mathbf{5}$ were compared.
On the other hand, $\mathbf{X}_{3,7}$ took on the value $\mathbf{0}$ since $\mathbf{3}$ and $\mathbf{7}$ are not compared.

How Many Comparisons?

Each pair of elements is compared either $\mathbf{0}$ or $\mathbf{1}$ times.
Let $\mathbf{X}_{\mathrm{a}, \mathrm{b}}$ be a Bernoulli/indicator random variable such that:

$$
\begin{aligned}
& \mathbf{x}_{\mathrm{a}, \mathrm{~b}}=\mathbf{1} \text { if } \mathbf{a} \text { and } \mathbf{b} \text { are compared } \\
& \mathbf{x}_{\mathrm{a}, \mathrm{~b}}=\mathbf{0} \text { otherwise }
\end{aligned}
$$

In our example, $\mathbf{X}_{2,5}$ took on the value $\mathbf{1}$ since $\mathbf{2}$ and $\mathbf{5}$ were compared.
On the other hand, $\mathbf{X}_{3,7}$ took on the value $\mathbf{0}$ since $\mathbf{3}$ and $\mathbf{7}$ are not compared.
Total number of comparisons $=$

$$
\mathbb{E}\left[\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} X_{a, b}\right]
$$

How Many Comparisons?

Each pair of elements is compared either $\mathbf{0}$ or $\mathbf{1}$ times.
Let $\mathrm{X}_{\mathrm{a}, \mathrm{b}}$ be a Bernoulli/indicator random variable such that:

$$
\begin{aligned}
& \mathbf{x}_{\mathrm{a}, \mathrm{~b}}=\mathbf{1} \text { if } \mathbf{a} \text { and } \mathbf{b} \text { are compared } \\
& \mathbf{x}_{\mathrm{a}, \mathrm{~b}}=\mathbf{0} \text { otherwise }
\end{aligned}
$$

In our example, $\mathbf{X}_{2,5}$ took on the value $\mathbf{1}$ since $\mathbf{2}$ and $\mathbf{5}$ were compared.
On the other hand, $\mathbf{X}_{3,7}$ took on the value $\mathbf{0}$ since $\mathbf{3}$ and $\mathbf{7}$ are not compared.
Total number of comparisons $=$

$$
\mathbb{E}\left[\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} X_{a, b}\right] \underset{\substack{\text { by linearity of } \\ \text { expectation! }}}{n} \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}\left[X_{a, b}\right]
$$

How Many Comparisons?

Each pair of elements is compared either $\mathbf{0}$ or $\mathbf{1}$ times.
Let $\mathbf{X}_{\mathrm{a}, \mathrm{b}}$ be a Bernoulli/indicator random variable such that:

$$
\begin{aligned}
& \mathbf{x}_{\mathrm{a}, \mathrm{~b}}=\mathbf{1} \text { if } \mathbf{a} \text { and } \mathbf{b} \text { are compared } \\
& \mathbf{x}_{\mathrm{a}, \mathrm{~b}}=\mathbf{0} \text { otherwise }
\end{aligned}
$$

In our example, $\mathbf{X}_{2,5}$ took on the value $\mathbf{1}$ since $\mathbf{2}$ and $\mathbf{5}$ were compared.
On the other hand, $\mathbf{X}_{3,7}$ took on the value $\mathbf{0}$ since $\mathbf{3}$ and $\mathbf{7}$ are not compared.
Total number of comparisons $=$
We need to

$$
\mathbb{E}\left[\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} X_{a, b}\right] \underset{\substack{\text { by linearity of } \\ \text { expectation! }}}{=} \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}\left[X_{a, b}\right]
$$

How Many Comparisons?

So, what's $\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{b}}\right]$?

How Many Comparisons?

So, what's $\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{b}}\right]$?

$$
E\left[X_{a, b}\right]=1 \cdot P\left(X_{a, b}=1\right)+0 \cdot P\left(X_{a, b}=0\right)=P\left(X_{a, b}=1\right)
$$

How Many Comparisons?

So, what's $\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{b}}\right]$?
$E\left[X_{a, b}\right]=1 \cdot P\left(X_{a, b}=1\right)+0 \cdot P\left(X_{a, b}=0\right)=P\left(X_{a, b}=1\right)$
So, what's $P\left(X_{a, b}=1\right)$?

How Many Comparisons?

So, what's $\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{b}}\right]$?
$E\left[X_{a, b}\right]=1 \cdot P\left(X_{a, b}=1\right)+0 \cdot P\left(X_{a, b}=0\right)=P\left(X_{a, b}=1\right)$
So, what's $\mathrm{P}\left(\mathrm{X}_{\mathrm{a}, \mathrm{b}}=1\right)$?
It's the probability that \mathbf{a} and \mathbf{b} are compared. Consider this example:

3	2	7	6	1	5	4	8

$\mathbf{P}\left(X_{3,7}=1\right)$ is the probability that $\mathbf{3}$ and $\mathbf{7}$ are compared.

How Many Comparisons?

So, what's $\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{b}}\right]$?
$E\left[X_{a, b}\right]=1 \cdot P\left(X_{a, b}=1\right)+0 \cdot P\left(X_{a, b}=0\right)=P\left(X_{a, b}=1\right)$
So, what's $\mathrm{P}\left(\mathrm{X}_{\mathrm{a}, \mathrm{b}}=1\right)$?
It's the probability that \mathbf{a} and \mathbf{b} are compared. Consider this example:

3	2	7	6	1	5	4	8

| 3 | 2 | 7 | 6 | 1 | 5 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $P\left(X_{3,7}=1\right)$ is the probability that $\mathbf{3}$ and $\mathbf{7}$ are compared.

This is exactly the probability that either 3 or 7 is first picked to be a pivot out of the highlighted entries.

How Many Comparisons?

So, what's $\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{b}}\right]$?

$E\left[X_{a, b}\right]=1 \cdot P\left(X_{a, b}=1\right)+0 \cdot P\left(X_{a, b}=0\right)=P\left(X_{a, b}=1\right)$
So, what's $\mathrm{P}\left(\mathrm{X}_{\mathrm{a}, \mathrm{b}}=1\right)$?
It's the probability that \mathbf{a} and \mathbf{b} are compared. Consider this example:

3	2	7	6	1	5	4

How Many Comparisons?

So, what's $\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{b}}\right]$?

How Many Comparisons?

So, what's $\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{b}}\right]$?

Quick Sort Expected Runtime

Total number of comparisons =

$$
\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}\left[X_{a, b}\right]
$$

Quick Sort Expected Runtime

Total number of comparisons =

$$
\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}\left[X_{a, b}\right]=\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \frac{2}{b-a+1} \quad \begin{aligned}
& \text { We just computed } \\
& \mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{~b}}\right]=\mathrm{P}\left(\mathrm{X}_{\mathrm{a}, \mathrm{~b},}=1\right)
\end{aligned}
$$

Quick Sort Expected Runtime

Total number of

$$
\begin{array}{rll}
\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}\left[X_{a, b}\right] & =\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \frac{2}{b-a+1} \quad \begin{array}{ll}
\text { We just computed } \\
\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{~b}}\right]=\mathrm{P}\left(\mathrm{X}_{\mathrm{a}, \mathrm{~b},}=1\right)
\end{array} \\
& =\sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} \frac{2}{c+1} \quad \begin{array}{l}
\text { Introduce } \mathrm{c}=\mathrm{b}-\mathrm{a} \text { to } \\
\text { make notation nicer }
\end{array}
\end{array}
$$

Quick Sort Expected Runtime

Total number of

$$
\begin{array}{rll}
\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}\left[X_{a, b}\right] & =\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \frac{2}{b-a+1} \quad \begin{array}{l}
\text { We just computed } \\
\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{~b}}\right]=\mathrm{P}\left(\mathrm{X}_{\mathrm{a}, \mathrm{~b},}=1\right)
\end{array} \\
& =\sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} \frac{2}{c+1} \quad \begin{array}{l}
\text { Introduce } \mathrm{c}=\mathrm{b}-\mathrm{a} \text { to } \\
\text { make notation nicer }
\end{array} \\
& \leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} \frac{2}{c+1} \quad \begin{array}{l}
\text { Increase summation limits to } \\
\text { make them nicer (hence the } \leq)
\end{array}
\end{array}
$$

Quick Sort Expected Runtime

Total number of comparisons =

$$
\begin{aligned}
\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}\left[X_{a, b}\right] & =\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \frac{2}{b-a+1} \quad \begin{array}{l}
\text { We just computed } \\
\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{~b}}\right]=\mathrm{P}\left(\mathrm{X}_{\mathrm{a}, \mathrm{~b},}=1\right)
\end{array} \\
& =\sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} \frac{2}{c+1} \quad \begin{array}{l}
\text { Introduce } \mathrm{c}=\mathrm{b}-\mathrm{a} \text { to } \\
\text { make notation nicer }
\end{array} \\
& \leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} \frac{2}{c+1} \quad \begin{array}{l}
\text { Increase summation limits to } \\
\text { make them nicer (hence the } \leq)
\end{array} \\
& =2 n \sum_{c=1}^{n-1} \frac{1}{c+1} \quad \begin{array}{l}
\text { Nothing in the summation } \\
\text { depends on a, so pull } 2 \text { out }
\end{array}
\end{aligned}
$$

Quick Sort Expected Runtime

Total number of comparisons =

$$
\begin{aligned}
\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}\left[X_{a, b}\right] & =\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \frac{2}{b-a+1} \quad \begin{array}{l}
\text { We just computed } \\
\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{~b}}\right]=\mathrm{P}\left(\mathrm{X}_{\mathrm{a}, \mathrm{~b},}=1\right)
\end{array} \\
& =\sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} \frac{2}{c+1} \quad \begin{array}{l}
\text { Introduce } \mathrm{c}=\mathrm{b}-\mathrm{a} \text { to } \\
\text { make notation nicer }
\end{array} \\
& \leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} \frac{2}{c+1} \quad \begin{array}{l}
\text { Increase summation limits } \mathrm{t} \\
\text { make them nicer (hence th }
\end{array} \\
& =2 n \sum_{c=1}^{n-1} \frac{1}{c+1} \quad \begin{array}{l}
\text { Nothing in the summation } \\
\text { depends on a, so pull } 2 \text { out }
\end{array} \\
& \leq 2 n \sum_{c=1}^{n-1} \frac{1}{c} \quad \begin{array}{l}
\text { decrease each denominator } \rightarrow \\
\text { we get the harmonic series! }
\end{array}
\end{aligned}
$$

Quick Sort Expected Runtime

Total number of comparisons =

$$
\begin{aligned}
\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}\left[X_{a, b}\right] & =\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \frac{2}{b-a+1} \quad \begin{array}{l}
\text { We just computed } \\
\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{~b}}\right]=\mathrm{P}\left(\mathrm{X}_{\mathrm{a}, \mathrm{~b},}=1\right)
\end{array} \\
& =\sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} \frac{2}{c+1} \quad \begin{array}{l}
\text { Introduce } \mathrm{c}=\mathrm{b}-\mathrm{a} \text { to } \\
\text { make notation nicer }
\end{array} \\
& \leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} \frac{2}{c+1} \quad \begin{array}{l}
\text { Increase summation limits to } \\
\text { make them nicer (hence the } \leq)
\end{array} \\
& =2 n \sum_{c=1}^{n-1} \frac{1}{c+1} \quad \begin{array}{l}
\text { Nothing in the summation } \\
\text { depends on a, so pull } 2 \text { out }
\end{array} \\
& \leq 2 n \sum_{c=1}^{n-1} \frac{1}{c} \quad \text { decrease each denominator } \rightarrow \\
& =O(n \log n)
\end{aligned}
$$

Quick Sort Expected Runtime

Total number of comparisons =

$$
\begin{array}{rll}
\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}\left[X_{a, b}\right] & =\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \frac{2}{b-a+1} \quad \begin{array}{l}
\text { We just computed } \\
\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{~b}}\right]=\mathrm{P}\left(\mathrm{X}_{\mathrm{a}, \mathrm{~b},}=1\right)
\end{array} \\
& =\sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} \frac{2}{c+1} \quad \begin{array}{l}
\text { Introduce } \mathrm{c}=\mathrm{b}-\mathrm{a} \text { to } \\
\text { make notation nicer }
\end{array}
\end{array}
$$

If E[\# comparisons] = O(n log n), does this mean $E[$ running time] is also $\mathrm{O}(\mathrm{n} \log \mathrm{n})$?
YES! Intuitively, the runtime is $\quad=2 n \sum_{c=1}^{n-1} \frac{1}{c+1}$ dominated by comparisons.

$$
\leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} \frac{2}{c+1}
$$

Increase summation limits to make them nicer (hence the \leq)

Nothing in the summation depends on a, so pull 2 out

$$
\begin{aligned}
& \leq 2 n \sum_{c=1}^{n-1} \frac{1}{c} \quad \begin{array}{l}
\text { decrease each denominator } \\
\text { we get the harmonic series! }
\end{array} \\
& =O(n \log n)
\end{aligned}
$$

Quick Sort

QUICKSORT(A):

if len(A) <= 1 :

return

pivot $=$ random.choice (A)
PARTITION A into:
L (less than pivot) and
R (greater than pivot)
Replace A with [L, pivot, R]
QUICKSORT(L)
QUICKSORT(R)

Worst case runtime: $O\left(n^{2}\right)$

Expected runtime: $\mathbf{O}(\mathrm{n} \log \mathrm{n})$

Quick Sort in Practice

How is it implemented? Do people use it?

Implementing Quick Sort

In practice, a more clever approach is used to implement PARTITION, so that the entire QuickSort algorithm can be implemented "in-place"
(i.e. via swaps, rather than constructing separate L or R subarrays)

An Example In-Place Partition

Choose pivot \& swap with last element so pivot is at the end.

An Example In-Place Partition

7|2|3|6| 1 | $5 \mid 418$

Choose pivot \& swap Initialize with last element so \Rightarrow and pivot is at the end.

An Example In-Place Partition

Choose pivot \& swap Initialize with last element so $\square \|$ and $\| \Rightarrow$ pivot is at the end.

Increment | until it sees something smaller than pivot, swap the things ahead of the bars \& increment both bars

An Example In-Place Partition

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|}
\hline 7 & 2 & 3 & 8 & 1 & 5
\end{array} 4 \text { 年 } \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 27 & 3 & 8 & 1 & 5 & 4 \\
\hline
\end{array}
\end{aligned}
$$

Choose pivot \& swap Initialize with last element so $\Rightarrow \|$ and $\| \Rightarrow$ pivot is at the end.

Increment | until it sees something smaller than pivot, \Rightarrow swap the things ahead of the bars \& increment both bars

Repeat until the bar reaches the end, then swap the pivot into the right place.

An Example In-Place Partition

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 2 & 3 & 6 & 1 & 5 & 5 \\
\hline
\end{array}
$$

Choose pivot \& swap Initialize with last element so $\Rightarrow \|$ and $\| \Rightarrow$ pivot is at the end.

Increment | until it sees something smaller than pivot, \Rightarrow swap the things ahead of the bars \& increment both bars

Repeat until the |bar reaches the end, then swap the pivot into the right place.

An Example In-Place Partition

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 2 & 3 & 7 & 8 & 1 & 5 & 4 \\
\hline
\end{array}
$$

Choose pivot \& swap Initialize with last element so $\Rightarrow \|$ and $\| \Rightarrow$ pivot is at the end.

Increment | until it sees something smaller than pivot, \Rightarrow swap the things ahead of the bars \& increment both bars

Repeat until the \|bar reaches the end, then swap the pivot into the right place.

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l}
\hline 7 & 2 & 3 & 6 & 1 & 5 & 4 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 2 & 3 & 8 & 1 & 5 & 4 & 6 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 2 & 3 & 8 & 1 & 5 & 4 & 6 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|}
\hline 2 & 7 & 3 & 8 & 1 & 5 & 4 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|}
\hline 2 & 3 & 7 & 8 & 1 & 5 & 4 \\
\hline
\end{array}
\end{aligned}
$$

An Example In-Place Partition

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 2 & 3 & 6 & 1 & 5 & 4 \\
n & \\
\hline 7 & & & 4 & \\
\hline 7 & 2 & 3 & 8 & 1 & 5 & 4 \\
\hline
\end{array}
$$

Choose pivot \& swap Initialize with last element so \Rightarrow and $\| \Rightarrow$ pivot is at the end.

An Example In-Place Partition

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 2 & 3 & 6 & 1 & 5 & 4 \\
& \\
\hline 7 & & 4 & & \\
\hline 7 & 3 & 3 & 8 & 1 & 5 & 4 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \left.\begin{array}{l|l|l|l|l|l|}
\hline 2 & 3 & 1 & 8 & 7 & 5
\end{array} 4 \right\rvert\, 6 \\
& \begin{array}{l}
\hline 2|3| 1|5| 7|8| 4 \mid 6 \\
\hline
\end{array}
\end{aligned}
$$

Choose pivot \& swap Initialize with last element so \Rightarrow and $\| \Rightarrow$ pivot is at the end.

Increment | until it sees something smaller than pivot, \Rightarrow swap the things ahead of the bars \& increment both bars

Repeat until the \|bar reaches the end, then swap the pivot into the right place.

An Example In-Place Partition

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|}
\hline 27 & 3 & 8 & 1 & 5 & 4 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|}
\hline 2 \mid 37 & 7 & 1 & 5 & 4 & 6 \\
\hline
\end{array}
\end{aligned}
$$

Choose pivot \& swap Initialize with last element so \Rightarrow and $\| \Rightarrow$ pivot is at the end.

Increment | until it sees something smaller than pivot, \Rightarrow swap the things ahead of the bars \& increment both bars

Repeat until the \|bar reaches the end, then swap the pivot into the right place.

An Example In-Place Partition

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 2 & 3 & 6 & 1 & 5 & 4 \\
\hline
\end{array}
$$

Choose pivot \& swap Initialize with last element so \Rightarrow and $\| \Rightarrow$ pivot is at the end.

Increment | until it sees \quad Repeat until the ||bar something smaller than pivot, \Rightarrow swap the things ahead of the bars \& increment both bars
reaches the end, then swap the pivot into the right place.

Quick Sort vs. Merge Sort

		QuickSort (random pivot)	MergeSort (deterministic)
	Runtime	Worst-case: $\mathbf{O}\left(\mathbf{n}^{2}\right)$ Expected: $O(n \log n)$	Worst-case: O(n log n)
	Used by	Java (primitive types), C (qsort), Unix, gcc...	Java for objects, perl
	In-place? (i.e. with O(log n) extra memory)	Yes, pretty easily!	Easy if you sacrifice runtime (O (nlogn) MERGE runtime). Not so easy if you want to keep runtime \& stability.
	Stable?	No	Yes
$\stackrel{\square}{\circ}$	Other Pros	Good cache locality if implemented for arrays	Merge step is really efficient with linked lists

Recap

- Runtimes of randomized algorithms can be measured in two main ways:
- Expected runtime (you roll the dice)
- Worst-case runtime (the bad guy gets to fix the dice)
- QUICKSORT!
- Another DIVIDE and CONQUER sorting algorithm that employs randomness
- Elegant, structurally simple, and actually used in practice!

Acknowledgement

- Stanford University

Thank You

