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DISCLAIMER

The content (text, image, and graphics) used in this slide are 

adopted from many sources for academic purposes. Broadly, the 

sources have been given due credit appropriately. However, 

there is a chance of missing out some original primary sources. 

The authors of this material do not claim any copyright of such 

material. 
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● An algorithm that incorporates randomness as part of its 

operation.

● Basically, we’ll make random choices during the algorithm:

○ Sometimes, we’ll just hope that our algorithm is fast! 

○ Other times, we’ll just hope that it works!

● Let’s formalize this...

What is a Randomized Algorithm?
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LAS VEGAS 

ALGORITHMS 

Guarantees correctness!

But the runtime is a random variable. 
(i.e. there’s a chance the runtime could take awhile)

Las Vegas vs. Monte Carlo
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MONTE CARLO 

ALGORITHMS

Correctness is a random variable.
(i.e. there’s a chance the output is wrong)

But the runtime is guaranteed! 

LAS VEGAS 

ALGORITHMS 

Guarantees correctness!

But the runtime is a random variable. 
(i.e. there’s a chance the runtime could take awhile)

Las Vegas vs. Monte Carlo
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We’ll focus on these 

algorithms today
(BogoSort, QuickSort)

You’ll see some 

examples of these later 

in the DAA course!

MONTE CARLO 

ALGORITHMS

Correctness is a random variable.
(i.e. there’s a chance the output is wrong)

But the runtime is guaranteed! 

LAS VEGAS 

ALGORITHMS 

Guarantees correctness!

But the runtime is a random variable. 
(i.e. there’s a chance the runtime could take awhile)

Las Vegas vs. Monte Carlo
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Scenario 1

1. You publish your 
algorithm.

2. Bad guy picks the input.

3. You run your randomized 
algorithm.

Scenario 2

1. You publish your 
algorithm.

2. Bad guy picks the input.

3. Bad guy chooses the 
randomness (fixes the 
dice) and runs your 
algorithm.

• In Scenario 1, the running time is a random variable.

• It makes sense to talk about expected running time.

• In Scenario 2, the running time is not random.

• We call this the worst-case running time of the randomized algorithm.

How do we measure the runtime of a 
randomized algorithm?
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Scenario 1

1. You publish your 
algorithm.

2. Bad guy picks the input.

3. You run your randomized 
algorithm.

Scenario 2

1. You publish your 
algorithm.

2. Bad guy picks the input.

3. Bad guy chooses the 
randomness (fixes the 
dice) and runs your 
algorithm.

• In Scenario 1, the running time is a random variable.

• It makes sense to talk about expected running time.

• In Scenario 2, the running time is not random.

• We call this the worst-case running time of the randomized algorithm.

How do we measure the runtime of a 
randomized algorithm?
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in both cases, we are 

still thinking about the 

WORST-CASE INPUT

Don’t get confused!!! 
Even with randomized algorithms, we are still considering the WORST CASE 

INPUT, regardless of whether we’re computing expected or worst-case 

runtime.

Expected runtime IS NOT  runtime when given an expected input! We are 

taking the expectation over the random choices that our algorithm would 

make, NOT  an expectation over the distribution of possible inputs.



X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and 

0 with probability 99/100.

a. What is the expected value        ?

Quick Probability Exercise
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X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and 

0 with probability 99/100.

a. What is the expected value        ?

Quick Probability Exercise
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X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and 

0 with probability 99/100.

a. What is the expected value        ?

b. Suppose you draw n independent random variables X1, X2, …, Xn, 

distributed like X. What is the expected value                     ?

Quick Probability Exercise
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X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and 

0 with probability 99/100.

a. What is the expected value        ?

b. Suppose you draw n independent random variables X1, X2, …, Xn, 

distributed like X. What is the expected value                     ?

By linearity of expectation:

Quick Probability Exercise
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X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and 

0 with probability 99/100.

a. What is the expected value        ?

b. Suppose you draw n independent random variables X1, X2, …, Xn, 

distributed like X. What is the expected value                     ?

c. Suppose you draw independent random variables X1, X2, …, Xn, and you 

stop when you see the first “1”. Let N be the last index that you draw. What is 

the expected value of N?

By linearity of expectation:

Quick Probability Exercise
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X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and 

0 with probability 99/100.

a. What is the expected value        ?

b. Suppose you draw n independent random variables X1, X2, …, Xn, 

distributed like X. What is the expected value                     ?

c. Suppose you draw independent random variables X1, X2, …, Xn, and you 

stop when you see the first “1”. Let N be the last index that you draw. What is 

the expected value of N?

By linearity of expectation:

N is a geometric random variable. 

We can use the formula:

Quick Probability Exercise
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● If N represents “number of trials/attempts”, 

and p is the probability of “success” on each trial, then:

On the first trial we either succeed with probability p, or fail with probability (1-p).          

If we fail the remaining mean number of trials until a success is identical to the original 

mean. This follows from the fact that all trials are independent. From this we get:

Geometric Random Variable
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A bit silly, but a great pedagogical tool!
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Bogo Sort



BOGOSORT(A):

 while True:

    A.shuffle()

    sorted = True

    for i in [0,...,n-2]:

       if A[i] > A[i+1]:

     sorted = False

    if sorted:

       return A

Bogo Sort
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This randomly 

permutes A

(assume it takes 

O(n) time)



BOGOSORT(A):

 while True:

    A.shuffle()

    sorted = True

    for i in [0,...,n-2]:

       if A[i] > A[i+1]:

     sorted = False

    if sorted:

       return A

What is the expected number of iterations?

Bogo Sort: Expected Runtime
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BOGOSORT(A):

 while True:

    A.shuffle()

    sorted = True

    for i in [0,...,n-2]:

       if A[i] > A[i+1]:

     sorted = False

    if sorted:

       return A

What is the expected number of iterations?

Let Xi be a Bernoulli/Indicator variable, where 

● Xi = 1 if A is sorted on iteration i

● Xi = 0 otherwise

Bogo Sort: Expected Runtime

19
19



BOGOSORT(A):

 while True:

    A.shuffle()

    sorted = True

    for i in [0,...,n-2]:

       if A[i] > A[i+1]:

     sorted = False

    if sorted:

       return A

What is the expected number of iterations?

Let Xi be a Bernoulli/Indicator variable, where 

● Xi = 1 if A is sorted on iteration i

● Xi = 0 otherwise

Probability that Xi = 1 (A is sorted) = 1/n! 

since there are n! possible orderings of A and 

only one is sorted (assume A has distinct 

elements) ⇒ E[Xi] = 1/n!

Bogo Sort: Expected Runtime
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BOGOSORT(A):

 while True:

    A.shuffle()

    sorted = True

    for i in [0,...,n-2]:

       if A[i] > A[i+1]:

     sorted = False

    if sorted:

       return A

E[ # of iterations/trials ] = 1/(prob. of success on each trial) 

     = 1/(1/n!) = n!

What is the expected number of iterations?

Let Xi be a Bernoulli/Indicator variable, where 

● Xi = 1 if A is sorted on iteration i

● Xi = 0 otherwise

Probability that Xi = 1 (A is sorted) = 1/n! 

since there are n! possible orderings of A and 

only one is sorted (assume A has distinct 

elements) ⇒ E[Xi] = 1/n!

Bogo Sort: Expected Runtime
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BOGOSORT(A):

 while True:

    A.shuffle()

    sorted = True

    for i in [0,...,n-2]:

       if A[i] > A[i+1]:

     sorted = False

    if sorted:

       return A

Bogo Sort: Expected Runtime
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E[ runtime on a list of length n ]

     = E[ (# of iterations) * (time per iteration) ]

     = (time per iteration) * E[ # of iterations ]

     = O(n) * E[ # of iterations ]

     = O(n) * (n!)

     = O(n * n!)

     = REALLY REALLY BIG



BOGOSORT(A):

 while True:

    A.shuffle()

    sorted = True

    for i in [0,...,n-2]:

       if A[i] > A[i+1]:

     sorted = False

    if sorted:

       return A

Bogo Sort: Worst-Case Runtime
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BOGOSORT(A):

 while True:

    A.shuffle()

    sorted = True

    for i in [0,...,n-2]:

       if A[i] > A[i+1]:

     sorted = False

    if sorted:

       return A

Bogo Sort: Worst-Case Runtime
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Worst-case runtime =

∞

This is as if the “bad guy” chooses all the randomness in the 

algorithm, so each shuffle could be unlucky… forever...



EXPECTED RUNNING 

TIME

1. You publish your randomized 

algorithm

2. Bad guy picks an input

3. You get to roll the dice (leave it 

up to randomness)

WORST-CASE RUNNING 

TIME

1. You publish your randomized 

algorithm

2. Bad guy picks an input

3. Bad guy “rolls” the dice (will 

choose the randomness in the 

worst way possible)

What have we learned?
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EXPECTED RUNNING 

TIME

1. You publish your randomized 

algorithm

2. Bad guy picks an input

3. You get to roll the dice (leave it 

up to randomness)

WORST-CASE RUNNING 

TIME

1. You publish your randomized 

algorithm

2. Bad guy picks an input

3. Bad guy “rolls” the dice (will 

choose the randomness in the 

worst way possible)

What have we learned?
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Don’t use BogoSort.



Quick Sort

A much better randomized algorithm
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EXPECTED RUNNING TIME

O (n log n)

WORST-CASE RUNNING TIME

O (n2)

Quick Sort Overview
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In practice, it works great! It’s competitive with 

MergeSort (& often better in some contexts!), and it 

runs in place (no need for lots of additional memory)

EXPECTED RUNNING TIME

O (n log n)

WORST-CASE RUNNING TIME

O (n2)

Quick Sort Overview
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Select a pivot at random

Partition around it

Recursively sort L and R!

Let’s use DIVIDE-and-CONQUER again!

Quick Sort: The Idea
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Select a pivot 3 2 7 6 1 5 4 8
Pick this pivot 

uniformly at random!

31
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Quick Sort: The Idea



Select a pivot

Partition 
around it

3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Pick this pivot 
uniformly at random!

Partition around pivot: L 
has elements less than 

pivot, and R has elements 
greater than pivot. 

L R

32
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Quick Sort: The Idea



Select a pivot

Recurse!

3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Pick this pivot 
uniformly at random!

Partition around pivot: L 
has elements less than 

pivot, and R has elements 
greater than pivot. 

L R

Recursive 
magic

Recursive 
magic

Recursively sort each side!

1 2 3 4 7 86L R
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Quick Sort: The Idea

Partition 
around it



QUICKSORT(A):

  if len(A) <= 1:

       return

  pivot = random.choice(A)

  PARTITION A into:

       L (less than pivot) and

       R (greater than pivot)

  Replace A with [L, pivot, R]

  QUICKSORT(L)

  QUICKSORT(R)

Quick Sort: Pseudo-Code
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QUICKSORT(A):

  if len(A) <= 1:

       return

  pivot = random.choice(A)

  PARTITION A into:

       L (less than pivot) and

       R (greater than pivot)

  Replace A with [L, pivot, R]

  QUICKSORT(L)

  QUICKSORT(R)

Recurrence Relation 

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)

35
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Quick Sort: Recurrence Relation



QUICKSORT(A):

  if len(A) <= 1:

       return

  pivot = random.choice(A)

  PARTITION A into:

       L (less than pivot) and

       R (greater than pivot)

  Replace A with [L, pivot, R]

  QUICKSORT(L)

  QUICKSORT(R)

Recurrence Relation 

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)
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Quick Sort: Ideal Runtime?

Ideal Runtime?



QUICKSORT(A):

  if len(A) <= 1:

       return

  pivot = random.choice(A)

  PARTITION A into:

       L (less than pivot) and

       R (greater than pivot)

  Replace A with [L, pivot, R]

  QUICKSORT(L)

  QUICKSORT(R)

Recurrence Relation 

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)

37
37

Quick Sort: Ideal Runtime?

In an ideal world, the pivot would 
split the array exactly in half, and 

we’d get:

T(n) = T(n/2) + T(n/2) + O(n)



QUICKSORT(A):

  if len(A) <= 1:

       return

  pivot = random.choice(A)

  PARTITION A into:

       L (less than pivot) and

       R (greater than pivot)

  Replace A with [L, pivot, R]

  QUICKSORT(L)

  QUICKSORT(R)

Recurrence Relation 

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)
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Quick Sort: Ideal Runtime?

In an ideal world, the pivot would 
split the array exactly in half, and 

we’d get:

T(n) = T(n/2) + T(n/2) + O(n)

In an ideal world:

T(n) = 2 · T(n/2) + O(n)
T(n) = O(n log n)



QUICKSORT(A):

  if len(A) <= 1:

       return

  pivot = random.choice(A)

  PARTITION A into:

       L (less than pivot) and

       R (greater than pivot)

  Replace A with [L, pivot, R]

  QUICKSORT(L)

  QUICKSORT(R)

Recurrence Relation 

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)
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Quick Sort: Worst-Case Runtime?

Worst-Case 
Runtime?



QUICKSORT(A):

  if len(A) <= 1:

       return

  pivot = random.choice(A)

  PARTITION A into:

       L (less than pivot) and

       R (greater than pivot)

  Replace A with [L, pivot, R]

  QUICKSORT(L)

  QUICKSORT(R)

Recurrence Relation 

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)
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Quick Sort: Worst-Case Runtime?

With the unluckiest randomness, 
the pivot would be either min(A) 

or max(A):

T(n) = T(0) + T(n-1) + O(n)



QUICKSORT(A):

  if len(A) <= 1:

       return

  pivot = random.choice(A)

  PARTITION A into:

       L (less than pivot) and

       R (greater than pivot)

  Replace A with [L, pivot, R]

  QUICKSORT(L)

  QUICKSORT(R)

Recurrence Relation 

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)
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Quick Sort: Worst-Case Runtime?

With the unluckiest randomness, 
the pivot would be either min(A) 

or max(A):

T(n) = T(0) + T(n-1) + O(n)

With the worst “randomness”

T(n) = T(n-1) + O(n)
T(n) = O(n2)



O(n log n) 

• In order to prove this expected runtime:
• Lets compute 

• How many times are any two items compared, in 
expectation?

Quick Sort: Expected Runtime

42
42



3 2 7 6 1 5 4 8

43
43

How Many Comparisons?



3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Everything is compared to 5 
once in this first step… and then 

never again with 5.
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How Many Comparisons?



3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Everything is compared to 5 
once in this first step… and then 

never again with 5.

3 2 1 4
5 6 87
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How Many Comparisons?



3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Everything is compared to 5 
once in this first step… and then 

never again with 5.

3 2 1 4
5 6 87

1 2 3 4
5 6 87
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How Many Comparisons?



3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Everything is compared to 5 
once in this first step… and then 

never again with 5.

3 2 1 4
5 6 87

1 2 3 4
5 6 87

Only 1, 3, & 4 are 
compared to 2.

And only 7 & 8 are compared with 6. 

No comparisons ever happen 
between two numbers on opposite 

sides of 5.
47
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How Many Comparisons?



3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Everything is compared to 5 
once in this first step… and then 

never again with 5.

3 2 1 4
5 6 87

1 2 3 4
5 6 87

Only 1, 3, & 4 are 
compared to 2.

And only 7 & 8 are compared with 6. 

No comparisons ever happen 
between two numbers on opposite 

sides of 5.
48
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How Many Comparisons?

Seems like whether or not two 
elements are compared has 

something to do with pivots...



Each pair of elements is compared either 0 or 1 times. 

Let Xa,b be a Bernoulli/indicator random variable such that:

Xa,b =  1 if a and b are compared

Xa,b =  0 otherwise

49
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How Many Comparisons?



Each pair of elements is compared either 0 or 1 times. 

Let Xa,b be a Bernoulli/indicator random variable such that:

Xa,b =  1 if a and b are compared

Xa,b =  0 otherwise

In our example, X2,5 took on the value 1 since 2 and 5 were compared.

On the other hand, X3,7 took on the value 0 since 3 and 7 are not compared.
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How Many Comparisons?



Each pair of elements is compared either 0 or 1 times. 

Let Xa,b be a Bernoulli/indicator random variable such that:

Xa,b =  1 if a and b are compared

Xa,b =  0 otherwise

In our example, X2,5 took on the value 1 since 2 and 5 were compared.

On the other hand, X3,7 took on the value 0 since 3 and 7 are not compared.
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How Many Comparisons?

Total number of comparisons =



Each pair of elements is compared either 0 or 1 times. 

Let Xa,b be a Bernoulli/indicator random variable such that:

Xa,b =  1 if a and b are compared

Xa,b =  0 otherwise

In our example, X2,5 took on the value 1 since 2 and 5 were compared.

On the other hand, X3,7 took on the value 0 since 3 and 7 are not compared.

by linearity of 
expectation!
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How Many Comparisons?

Total number of comparisons =



Each pair of elements is compared either 0 or 1 times. 

Let Xa,b be a Bernoulli/indicator random variable such that:

Xa,b =  1 if a and b are compared

Xa,b =  0 otherwise

In our example, X2,5 took on the value 1 since 2 and 5 were compared.

On the other hand, X3,7 took on the value 0 since 3 and 7 are not compared.

Total number of comparisons =

by linearity of 
expectation!

We need to 
figure out this 

value!
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How Many Comparisons?



So, what’s E[Xa,b]?
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How Many Comparisons?



So, what’s E[Xa,b]?

E[Xa,b]  =  1 · P(Xa,b =  1)  +  0 ·  P(Xa,b =  0)  =  P(Xa,b =  1)
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How Many Comparisons?



So, what’s E[Xa,b]?

E[Xa,b]  =  1 · P(Xa,b =  1)  +  0 ·  P(Xa,b =  0)  =  P(Xa,b =  1)

So, what’s P(Xa,b = 1)?  
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How Many Comparisons?



So, what’s E[Xa,b]?

P(X3,7 = 1) is the probability that 3 and 7 are 

compared. 
2 1 83 7 6 5 4

E[Xa,b]  =  1 · P(Xa,b =  1)  +  0 ·  P(Xa,b =  0)  =  P(Xa,b =  1)

So, what’s P(Xa,b = 1)?  

  It’s the probability that a and b are compared. Consider this example:
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How Many Comparisons?



So, what’s E[Xa,b]?

P(X3,7 = 1) is the probability that 3 and 7 are 

compared. 

2 1 83 7 6 5 4

2 1 83 7 6 5 4

This is exactly the probability that either 3 or 7 is first 

picked to be a pivot out of the highlighted entries. 

E[Xa,b]  =  1 · P(Xa,b =  1)  +  0 ·  P(Xa,b =  0)  =  P(Xa,b =  1)

So, what’s P(Xa,b = 1)?  

  It’s the probability that a and b are compared. Consider this example:
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How Many Comparisons?



So, what’s E[Xa,b]?

321 4

P(X3,7 = 1) is the probability that 3 and 7 are 

compared. 

If 4, 5, or 6 get picked as a pivot first, then 3 and 7 

would be separated and never see each other again.

2 1 83 7 6 5 4

5

2 1 83 7 6 5 4

87

:( :(

This is exactly the probability that either 3 or 7 is first 

picked to be a pivot out of the highlighted entries. 

E[Xa,b]  =  1 · P(Xa,b =  1)  +  0 ·  P(Xa,b =  0)  =  P(Xa,b =  1)

So, what’s P(Xa,b = 1)?  

  It’s the probability that a and b are compared. Consider this example:
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How Many Comparisons?



So, what’s E[Xa,b]?

321 4

P(X3,7 = 1) is the probability that 3 and 7 are 

compared. 

If 4, 5, or 6 get picked as a pivot first, then 3 and 7 

would be separated and never see each other again.

2 1 83 7 6 5 4

5

2 1 83 7 6 5 4

87

:( :(

This is exactly the probability that either 3 or 7 is first 

picked to be a pivot out of the highlighted entries. 

E[Xa,b]  =  1 · P(Xa,b =  1)  +  0 ·  P(Xa,b =  0)  =  P(Xa,b =  1)

So, what’s P(Xa,b = 1)?  

  It’s the probability that a and b are compared. Consider this example:

60
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How Many Comparisons?

P(Xa,b = 1)  aka probability that a & b are compared
=

probability that either a or b are selected as a pivot 
before elements between a and b.

=
  2                                 .

(# elements from a to b, inclusive)



So, what’s E[Xa,b]?

321 4

P(X3,7 = 1) is the probability that 3 and 7 are 

compared. 

If 4, 5, or 6 get picked as a pivot first, then 3 and 7 

would be separated and never see each other again.

2 1 83 7 6 5 4

5

2 1 83 7 6 5 4

87

:( :(

This is exactly the probability that either 3 or 7 is first 

picked to be a pivot out of the highlighted entries. 

E[Xa,b]  =  1 · P(Xa,b =  1)  +  0 ·  P(Xa,b =  0)  =  P(Xa,b =  1)

So, what’s P(Xa,b = 1)?  

  It’s the probability that a and b are compared. Consider this example:

61
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How Many Comparisons?

P(Xa,b = 1)  aka probability that a & b are compared
=

probability that either a or b are selected as a pivot 
before elements between a and b.

=
  2                                 .

b – a + 1



Total number of 
comparisons =

We just computed 
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to 
make notation nicer

Increase summation limits to 
make them nicer (hence the ≤)

Nothing in the summation 
depends on a, so pull 2 out

decrease each denominator → 
we get the harmonic series!

62
62

Quick Sort Expected Runtime



Total number of 
comparisons =

We just computed 
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to 
make notation nicer

Increase summation limits to 
make them nicer (hence the ≤)

Nothing in the summation 
depends on a, so pull 2 out

decrease each denominator → 
we get the harmonic series!
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Quick Sort Expected Runtime



Total number of 
comparisons =

We just computed 
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to 
make notation nicer

Increase summation limits to 
make them nicer (hence the ≤)

Nothing in the summation 
depends on a, so pull 2 out

decrease each denominator → 
we get the harmonic series!
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Quick Sort Expected Runtime



Total number of 
comparisons =

We just computed 
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to 
make notation nicer

Increase summation limits to 
make them nicer (hence the ≤)

Nothing in the summation 
depends on a, so pull 2 out

decrease each denominator → 
we get the harmonic series!

65
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Quick Sort Expected Runtime



Total number of 
comparisons =

We just computed 
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to 
make notation nicer

Increase summation limits to 
make them nicer (hence the ≤)

Nothing in the summation 
depends on a, so pull 2 out

decrease each denominator → 
we get the harmonic series!
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Quick Sort Expected Runtime



Total number of 
comparisons =

We just computed 
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to 
make notation nicer

Increase summation limits to 
make them nicer (hence the ≤)

Nothing in the summation 
depends on a, so pull 2 out

decrease each denominator → 
we get the harmonic series!
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Quick Sort Expected Runtime



Total number of 
comparisons =

We just computed 
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to 
make notation nicer

Increase summation limits to 
make them nicer (hence the ≤)

Nothing in the summation 
depends on a, so pull 2 out
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Quick Sort Expected Runtime

decrease each denominator → 
we get the harmonic series!



Total number of 
comparisons =

We just computed 
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to 
make notation nicer

Increase summation limits to 
make them nicer (hence the ≤)

Nothing in the summation 
depends on a, so pull 2 out

If E[ # comparisons ] = O(n log n), 
does this mean E[ running time ] 

is also O(n log n)?

YES! Intuitively, the runtime is 
dominated by comparisons.
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Quick Sort Expected Runtime

decrease each denominator → 
we get the harmonic series!



QUICKSORT(A):
if len(A) <= 1:

         return
pivot = random.choice(A) 
PARTITION A into:
    L (less than pivot) and
    R (greater than pivot)
Replace A with [L, pivot, R]
QUICKSORT(L)
QUICKSORT(R)

Worst case runtime: 
O(n2)

Expected runtime: 
O(n log n)

Quick Sort
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How is it implemented? Do people use it?

Quick Sort in Practice
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In practice, a more clever approach is used to implement 
PARTITION, so that the entire QuickSort algorithm can be 
implemented “in-place” 

(i.e. via swaps, rather than constructing separate L or R 
subarrays)

Implementing Quick Sort

72
72



7 2 3 1 5 46 8

Choose pivot & swap 
with last element so 
pivot is at the end.
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An Example In-Place Partition



7 2 3 1 5 46 8

Choose pivot & swap 
with last element so 
pivot is at the end.

Initialize
and 

7 2 3 8 1 5 4 6
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An Example In-Place Partition



7 2 3 8 1 5 4 6

7 2 3 1 5 46 8

Choose pivot & swap 
with last element so 
pivot is at the end.

Initialize
and 

Increment    until it sees 
something smaller than pivot, 
swap the things ahead of the 
bars & increment both bars

7 2 3 8 1 5 4 6
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An Example In-Place Partition



7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

7 2 3 1 5 46 8

Choose pivot & swap 
with last element so 
pivot is at the end.

Initialize
and 

Increment    until it sees 
something smaller than pivot, 
swap the things ahead of the 
bars & increment both bars

Repeat until the    bar 
reaches the end, then 

swap the pivot into the 
right place.

7 2 3 8 1 5 4 6

76
76

An Example In-Place Partition



7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

2 3 7 8 1 5 4 6

7 2 3 1 5 46 8

Choose pivot & swap 
with last element so 
pivot is at the end.

Initialize
and 

Increment    until it sees 
something smaller than pivot, 
swap the things ahead of the 
bars & increment both bars

Repeat until the    bar 
reaches the end, then 

swap the pivot into the 
right place.

7 2 3 8 1 5 4 6
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An Example In-Place Partition



7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 7 8 1 5 4 67 2 3 1 5 46 8

Choose pivot & swap 
with last element so 
pivot is at the end.

Initialize
and 

Increment    until it sees 
something smaller than pivot, 
swap the things ahead of the 
bars & increment both bars

Repeat until the    bar 
reaches the end, then 

swap the pivot into the 
right place.

7 2 3 8 1 5 4 6
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An Example In-Place Partition



7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 1 8 7 5 4 6

7 2 3 1 5 46 8

Choose pivot & swap 
with last element so 
pivot is at the end.

Initialize
and 

Increment    until it sees 
something smaller than pivot, 
swap the things ahead of the 
bars & increment both bars

Repeat until the    bar 
reaches the end, then 

swap the pivot into the 
right place.

7 2 3 8 1 5 4 6
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An Example In-Place Partition



7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 1 8 7 5 4 6

2 3 1 5 7 8 4 6

7 2 3 1 5 46 8

Choose pivot & swap 
with last element so 
pivot is at the end.

Initialize
and 

Increment    until it sees 
something smaller than pivot, 
swap the things ahead of the 
bars & increment both bars

Repeat until the    bar 
reaches the end, then 

swap the pivot into the 
right place.

7 2 3 8 1 5 4 6
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An Example In-Place Partition



7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 1 8 7 5 4 6

2 3 1 5 7 8 4 6

2 3 1 5 4 8 7 6

7 2 3 1 5 46 8

Choose pivot & swap 
with last element so 
pivot is at the end.

Initialize
and 

Increment    until it sees 
something smaller than pivot, 
swap the things ahead of the 
bars & increment both bars

Repeat until the    bar 
reaches the end, then 

swap the pivot into the 
right place.

7 2 3 8 1 5 4 6
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An Example In-Place Partition



7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 1 8 7 5 4 6

2 3 1 5 7 8 4 6

2 3 1 5 4 8 7 6

2 3 1 5 4 7 86

7 2 3 1 5 46 8

Choose pivot & swap 
with last element so 
pivot is at the end.

Initialize
and 

Increment    until it sees 
something smaller than pivot, 
swap the things ahead of the 
bars & increment both bars

Repeat until the    bar 
reaches the end, then 

swap the pivot into the 
right place.

7 2 3 8 1 5 4 6
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An Example In-Place Partition



QuickSort (random pivot) MergeSort (deterministic)

Runtime
Worst-case: O(n2)

Expected: O(n log n)
Worst-case: O(n log n)

Used by
Java (primitive types), 
C (qsort), Unix, gcc… 

Java for objects, perl

In-place?
(i.e. with O(log n) 

extra memory)

Yes, pretty easily!

Easy if you sacrifice runtime 
(O(nlogn) MERGE runtime).

Not so easy if you want to keep 
runtime & stability.

Stable? No Yes

Other Pros
Good cache locality if 

implemented for arrays
Merge step is really efficient 

with linked lists
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Quick Sort vs. Merge Sort
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https://en.wikipedia.org/wiki/Block_sort


● Runtimes of randomized algorithms can be measured in two 

main ways:

○ Expected runtime (you roll the dice)

○ Worst-case runtime (the bad guy gets to fix the dice)

● QUICKSORT! 

○ Another DIVIDE and CONQUER sorting algorithm that employs 
randomness

○ Elegant, structurally simple, and actually used in practice! 

Recap
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• Stanford University
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