
Data Structures and Algorithms

Indian Institute of Information Technology Allahabad

Quick Sort (Randomized Algorithm)

Dr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

● An algorithm that incorporates randomness as part of its

operation.

● Basically, we’ll make random choices during the algorithm:

○ Sometimes, we’ll just hope that our algorithm is fast!

○ Other times, we’ll just hope that it works!

● Let’s formalize this...

What is a Randomized Algorithm?

3
3

LAS VEGAS

ALGORITHMS

Guarantees correctness!

But the runtime is a random variable.
(i.e. there’s a chance the runtime could take awhile)

Las Vegas vs. Monte Carlo

4
4

MONTE CARLO

ALGORITHMS

Correctness is a random variable.
(i.e. there’s a chance the output is wrong)

But the runtime is guaranteed!

LAS VEGAS

ALGORITHMS

Guarantees correctness!

But the runtime is a random variable.
(i.e. there’s a chance the runtime could take awhile)

Las Vegas vs. Monte Carlo

5
5

We’ll focus on these

algorithms today
(BogoSort, QuickSort)

You’ll see some

examples of these later

in the DAA course!

MONTE CARLO

ALGORITHMS

Correctness is a random variable.
(i.e. there’s a chance the output is wrong)

But the runtime is guaranteed!

LAS VEGAS

ALGORITHMS

Guarantees correctness!

But the runtime is a random variable.
(i.e. there’s a chance the runtime could take awhile)

Las Vegas vs. Monte Carlo

6
6

Scenario 1

1. You publish your
algorithm.

2. Bad guy picks the input.

3. You run your randomized
algorithm.

Scenario 2

1. You publish your
algorithm.

2. Bad guy picks the input.

3. Bad guy chooses the
randomness (fixes the
dice) and runs your
algorithm.

• In Scenario 1, the running time is a random variable.

• It makes sense to talk about expected running time.

• In Scenario 2, the running time is not random.

• We call this the worst-case running time of the randomized algorithm.

How do we measure the runtime of a
randomized algorithm?

7
7

Scenario 1

1. You publish your
algorithm.

2. Bad guy picks the input.

3. You run your randomized
algorithm.

Scenario 2

1. You publish your
algorithm.

2. Bad guy picks the input.

3. Bad guy chooses the
randomness (fixes the
dice) and runs your
algorithm.

• In Scenario 1, the running time is a random variable.

• It makes sense to talk about expected running time.

• In Scenario 2, the running time is not random.

• We call this the worst-case running time of the randomized algorithm.

How do we measure the runtime of a
randomized algorithm?

8
8

in both cases, we are

still thinking about the

WORST-CASE INPUT

Don’t get confused!!!
Even with randomized algorithms, we are still considering the WORST CASE

INPUT, regardless of whether we’re computing expected or worst-case

runtime.

Expected runtime IS NOT runtime when given an expected input! We are

taking the expectation over the random choices that our algorithm would

make, NOT an expectation over the distribution of possible inputs.

X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and

0 with probability 99/100.

a. What is the expected value ?

Quick Probability Exercise

9
9

X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and

0 with probability 99/100.

a. What is the expected value ?

Quick Probability Exercise

10
10

X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and

0 with probability 99/100.

a. What is the expected value ?

b. Suppose you draw n independent random variables X1, X2, …, Xn,

distributed like X. What is the expected value ?

Quick Probability Exercise

11
11

X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and

0 with probability 99/100.

a. What is the expected value ?

b. Suppose you draw n independent random variables X1, X2, …, Xn,

distributed like X. What is the expected value ?

By linearity of expectation:

Quick Probability Exercise

12
12

X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and

0 with probability 99/100.

a. What is the expected value ?

b. Suppose you draw n independent random variables X1, X2, …, Xn,

distributed like X. What is the expected value ?

c. Suppose you draw independent random variables X1, X2, …, Xn, and you

stop when you see the first “1”. Let N be the last index that you draw. What is

the expected value of N?

By linearity of expectation:

Quick Probability Exercise

13
13

X is a Bernoulli/indicator random variable which is 1 with probability 1/100 and

0 with probability 99/100.

a. What is the expected value ?

b. Suppose you draw n independent random variables X1, X2, …, Xn,

distributed like X. What is the expected value ?

c. Suppose you draw independent random variables X1, X2, …, Xn, and you

stop when you see the first “1”. Let N be the last index that you draw. What is

the expected value of N?

By linearity of expectation:

N is a geometric random variable.

We can use the formula:

Quick Probability Exercise

14
14

● If N represents “number of trials/attempts”,

and p is the probability of “success” on each trial, then:

On the first trial we either succeed with probability p, or fail with probability (1-p).

If we fail the remaining mean number of trials until a success is identical to the original

mean. This follows from the fact that all trials are independent. From this we get:

Geometric Random Variable

15
15

A bit silly, but a great pedagogical tool!

16
16

Bogo Sort

BOGOSORT(A):

 while True:

 A.shuffle()

 sorted = True

 for i in [0,...,n-2]:

 if A[i] > A[i+1]:

 sorted = False

 if sorted:

 return A

Bogo Sort

17
17

This randomly

permutes A

(assume it takes

O(n) time)

BOGOSORT(A):

 while True:

 A.shuffle()

 sorted = True

 for i in [0,...,n-2]:

 if A[i] > A[i+1]:

 sorted = False

 if sorted:

 return A

What is the expected number of iterations?

Bogo Sort: Expected Runtime

18
18

BOGOSORT(A):

 while True:

 A.shuffle()

 sorted = True

 for i in [0,...,n-2]:

 if A[i] > A[i+1]:

 sorted = False

 if sorted:

 return A

What is the expected number of iterations?

Let Xi be a Bernoulli/Indicator variable, where

● Xi = 1 if A is sorted on iteration i

● Xi = 0 otherwise

Bogo Sort: Expected Runtime

19
19

BOGOSORT(A):

 while True:

 A.shuffle()

 sorted = True

 for i in [0,...,n-2]:

 if A[i] > A[i+1]:

 sorted = False

 if sorted:

 return A

What is the expected number of iterations?

Let Xi be a Bernoulli/Indicator variable, where

● Xi = 1 if A is sorted on iteration i

● Xi = 0 otherwise

Probability that Xi = 1 (A is sorted) = 1/n!

since there are n! possible orderings of A and

only one is sorted (assume A has distinct

elements) ⇒ E[Xi] = 1/n!

Bogo Sort: Expected Runtime

20
20

BOGOSORT(A):

 while True:

 A.shuffle()

 sorted = True

 for i in [0,...,n-2]:

 if A[i] > A[i+1]:

 sorted = False

 if sorted:

 return A

E[# of iterations/trials] = 1/(prob. of success on each trial)

 = 1/(1/n!) = n!

What is the expected number of iterations?

Let Xi be a Bernoulli/Indicator variable, where

● Xi = 1 if A is sorted on iteration i

● Xi = 0 otherwise

Probability that Xi = 1 (A is sorted) = 1/n!

since there are n! possible orderings of A and

only one is sorted (assume A has distinct

elements) ⇒ E[Xi] = 1/n!

Bogo Sort: Expected Runtime

21
21

BOGOSORT(A):

 while True:

 A.shuffle()

 sorted = True

 for i in [0,...,n-2]:

 if A[i] > A[i+1]:

 sorted = False

 if sorted:

 return A

Bogo Sort: Expected Runtime

22
22

E[runtime on a list of length n]

 = E[(# of iterations) * (time per iteration)]

 = (time per iteration) * E[# of iterations]

 = O(n) * E[# of iterations]

 = O(n) * (n!)

 = O(n * n!)

 = REALLY REALLY BIG

BOGOSORT(A):

 while True:

 A.shuffle()

 sorted = True

 for i in [0,...,n-2]:

 if A[i] > A[i+1]:

 sorted = False

 if sorted:

 return A

Bogo Sort: Worst-Case Runtime

23
23

BOGOSORT(A):

 while True:

 A.shuffle()

 sorted = True

 for i in [0,...,n-2]:

 if A[i] > A[i+1]:

 sorted = False

 if sorted:

 return A

Bogo Sort: Worst-Case Runtime

24
24

Worst-case runtime =

∞

This is as if the “bad guy” chooses all the randomness in the

algorithm, so each shuffle could be unlucky… forever...

EXPECTED RUNNING

TIME

1. You publish your randomized

algorithm

2. Bad guy picks an input

3. You get to roll the dice (leave it

up to randomness)

WORST-CASE RUNNING

TIME

1. You publish your randomized

algorithm

2. Bad guy picks an input

3. Bad guy “rolls” the dice (will

choose the randomness in the

worst way possible)

What have we learned?

25
25

EXPECTED RUNNING

TIME

1. You publish your randomized

algorithm

2. Bad guy picks an input

3. You get to roll the dice (leave it

up to randomness)

WORST-CASE RUNNING

TIME

1. You publish your randomized

algorithm

2. Bad guy picks an input

3. Bad guy “rolls” the dice (will

choose the randomness in the

worst way possible)

What have we learned?

26
26

Don’t use BogoSort.

Quick Sort

A much better randomized algorithm

27
27

EXPECTED RUNNING TIME

O (n log n)

WORST-CASE RUNNING TIME

O (n2)

Quick Sort Overview

28
28

In practice, it works great! It’s competitive with

MergeSort (& often better in some contexts!), and it

runs in place (no need for lots of additional memory)

EXPECTED RUNNING TIME

O (n log n)

WORST-CASE RUNNING TIME

O (n2)

Quick Sort Overview

29
29

Select a pivot at random

Partition around it

Recursively sort L and R!

Let’s use DIVIDE-and-CONQUER again!

Quick Sort: The Idea

30
30

Select a pivot 3 2 7 6 1 5 4 8
Pick this pivot

uniformly at random!

31
31

Quick Sort: The Idea

Select a pivot

Partition
around it

3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Pick this pivot
uniformly at random!

Partition around pivot: L
has elements less than

pivot, and R has elements
greater than pivot.

L R

32
32

Quick Sort: The Idea

Select a pivot

Recurse!

3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Pick this pivot
uniformly at random!

Partition around pivot: L
has elements less than

pivot, and R has elements
greater than pivot.

L R

Recursive
magic

Recursive
magic

Recursively sort each side!

1 2 3 4 7 86L R

33
33

Quick Sort: The Idea

Partition
around it

QUICKSORT(A):

 if len(A) <= 1:

 return

 pivot = random.choice(A)

 PARTITION A into:

 L (less than pivot) and

 R (greater than pivot)

 Replace A with [L, pivot, R]

 QUICKSORT(L)

 QUICKSORT(R)

Quick Sort: Pseudo-Code

34
34

QUICKSORT(A):

 if len(A) <= 1:

 return

 pivot = random.choice(A)

 PARTITION A into:

 L (less than pivot) and

 R (greater than pivot)

 Replace A with [L, pivot, R]

 QUICKSORT(L)

 QUICKSORT(R)

Recurrence Relation

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)

35
35

Quick Sort: Recurrence Relation

QUICKSORT(A):

 if len(A) <= 1:

 return

 pivot = random.choice(A)

 PARTITION A into:

 L (less than pivot) and

 R (greater than pivot)

 Replace A with [L, pivot, R]

 QUICKSORT(L)

 QUICKSORT(R)

Recurrence Relation

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)

36
36

Quick Sort: Ideal Runtime?

Ideal Runtime?

QUICKSORT(A):

 if len(A) <= 1:

 return

 pivot = random.choice(A)

 PARTITION A into:

 L (less than pivot) and

 R (greater than pivot)

 Replace A with [L, pivot, R]

 QUICKSORT(L)

 QUICKSORT(R)

Recurrence Relation

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)

37
37

Quick Sort: Ideal Runtime?

In an ideal world, the pivot would
split the array exactly in half, and

we’d get:

T(n) = T(n/2) + T(n/2) + O(n)

QUICKSORT(A):

 if len(A) <= 1:

 return

 pivot = random.choice(A)

 PARTITION A into:

 L (less than pivot) and

 R (greater than pivot)

 Replace A with [L, pivot, R]

 QUICKSORT(L)

 QUICKSORT(R)

Recurrence Relation

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)

38
38

Quick Sort: Ideal Runtime?

In an ideal world, the pivot would
split the array exactly in half, and

we’d get:

T(n) = T(n/2) + T(n/2) + O(n)

In an ideal world:

T(n) = 2 · T(n/2) + O(n)
T(n) = O(n log n)

QUICKSORT(A):

 if len(A) <= 1:

 return

 pivot = random.choice(A)

 PARTITION A into:

 L (less than pivot) and

 R (greater than pivot)

 Replace A with [L, pivot, R]

 QUICKSORT(L)

 QUICKSORT(R)

Recurrence Relation

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)

39
39

Quick Sort: Worst-Case Runtime?

Worst-Case
Runtime?

QUICKSORT(A):

 if len(A) <= 1:

 return

 pivot = random.choice(A)

 PARTITION A into:

 L (less than pivot) and

 R (greater than pivot)

 Replace A with [L, pivot, R]

 QUICKSORT(L)

 QUICKSORT(R)

Recurrence Relation

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)

40
40

Quick Sort: Worst-Case Runtime?

With the unluckiest randomness,
the pivot would be either min(A)

or max(A):

T(n) = T(0) + T(n-1) + O(n)

QUICKSORT(A):

 if len(A) <= 1:

 return

 pivot = random.choice(A)

 PARTITION A into:

 L (less than pivot) and

 R (greater than pivot)

 Replace A with [L, pivot, R]

 QUICKSORT(L)

 QUICKSORT(R)

Recurrence Relation

for QUICKSORT

T(n) = T(|L|) + T(|R|) + O(n)

T(0) = T(1) = O(1)

41
41

Quick Sort: Worst-Case Runtime?

With the unluckiest randomness,
the pivot would be either min(A)

or max(A):

T(n) = T(0) + T(n-1) + O(n)

With the worst “randomness”

T(n) = T(n-1) + O(n)
T(n) = O(n2)

O(n log n)

• In order to prove this expected runtime:
• Lets compute

• How many times are any two items compared, in
expectation?

Quick Sort: Expected Runtime

42
42

3 2 7 6 1 5 4 8

43
43

How Many Comparisons?

3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Everything is compared to 5
once in this first step… and then

never again with 5.

44
44

How Many Comparisons?

3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Everything is compared to 5
once in this first step… and then

never again with 5.

3 2 1 4
5 6 87

45
45

How Many Comparisons?

3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Everything is compared to 5
once in this first step… and then

never again with 5.

3 2 1 4
5 6 87

1 2 3 4
5 6 87

46
46

How Many Comparisons?

3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Everything is compared to 5
once in this first step… and then

never again with 5.

3 2 1 4
5 6 87

1 2 3 4
5 6 87

Only 1, 3, & 4 are
compared to 2.

And only 7 & 8 are compared with 6.

No comparisons ever happen
between two numbers on opposite

sides of 5.
47
47

How Many Comparisons?

3 2 7 6 1 5 4 8

3 2 1 4
5

6 87

Everything is compared to 5
once in this first step… and then

never again with 5.

3 2 1 4
5 6 87

1 2 3 4
5 6 87

Only 1, 3, & 4 are
compared to 2.

And only 7 & 8 are compared with 6.

No comparisons ever happen
between two numbers on opposite

sides of 5.
48
48

How Many Comparisons?

Seems like whether or not two
elements are compared has

something to do with pivots...

Each pair of elements is compared either 0 or 1 times.

Let Xa,b be a Bernoulli/indicator random variable such that:

Xa,b = 1 if a and b are compared

Xa,b = 0 otherwise

49
49

How Many Comparisons?

Each pair of elements is compared either 0 or 1 times.

Let Xa,b be a Bernoulli/indicator random variable such that:

Xa,b = 1 if a and b are compared

Xa,b = 0 otherwise

In our example, X2,5 took on the value 1 since 2 and 5 were compared.

On the other hand, X3,7 took on the value 0 since 3 and 7 are not compared.

50
50

How Many Comparisons?

Each pair of elements is compared either 0 or 1 times.

Let Xa,b be a Bernoulli/indicator random variable such that:

Xa,b = 1 if a and b are compared

Xa,b = 0 otherwise

In our example, X2,5 took on the value 1 since 2 and 5 were compared.

On the other hand, X3,7 took on the value 0 since 3 and 7 are not compared.

51
51

How Many Comparisons?

Total number of comparisons =

Each pair of elements is compared either 0 or 1 times.

Let Xa,b be a Bernoulli/indicator random variable such that:

Xa,b = 1 if a and b are compared

Xa,b = 0 otherwise

In our example, X2,5 took on the value 1 since 2 and 5 were compared.

On the other hand, X3,7 took on the value 0 since 3 and 7 are not compared.

by linearity of
expectation!

52
52

How Many Comparisons?

Total number of comparisons =

Each pair of elements is compared either 0 or 1 times.

Let Xa,b be a Bernoulli/indicator random variable such that:

Xa,b = 1 if a and b are compared

Xa,b = 0 otherwise

In our example, X2,5 took on the value 1 since 2 and 5 were compared.

On the other hand, X3,7 took on the value 0 since 3 and 7 are not compared.

Total number of comparisons =

by linearity of
expectation!

We need to
figure out this

value!

53
53

How Many Comparisons?

So, what’s E[Xa,b]?

54
54

How Many Comparisons?

So, what’s E[Xa,b]?

E[Xa,b] = 1 · P(Xa,b = 1) + 0 · P(Xa,b = 0) = P(Xa,b = 1)

55
55

How Many Comparisons?

So, what’s E[Xa,b]?

E[Xa,b] = 1 · P(Xa,b = 1) + 0 · P(Xa,b = 0) = P(Xa,b = 1)

So, what’s P(Xa,b = 1)?

56
56

How Many Comparisons?

So, what’s E[Xa,b]?

P(X3,7 = 1) is the probability that 3 and 7 are

compared.
2 1 83 7 6 5 4

E[Xa,b] = 1 · P(Xa,b = 1) + 0 · P(Xa,b = 0) = P(Xa,b = 1)

So, what’s P(Xa,b = 1)?

 It’s the probability that a and b are compared. Consider this example:

57
57

How Many Comparisons?

So, what’s E[Xa,b]?

P(X3,7 = 1) is the probability that 3 and 7 are

compared.

2 1 83 7 6 5 4

2 1 83 7 6 5 4

This is exactly the probability that either 3 or 7 is first

picked to be a pivot out of the highlighted entries.

E[Xa,b] = 1 · P(Xa,b = 1) + 0 · P(Xa,b = 0) = P(Xa,b = 1)

So, what’s P(Xa,b = 1)?

 It’s the probability that a and b are compared. Consider this example:

58
58

How Many Comparisons?

So, what’s E[Xa,b]?

321 4

P(X3,7 = 1) is the probability that 3 and 7 are

compared.

If 4, 5, or 6 get picked as a pivot first, then 3 and 7

would be separated and never see each other again.

2 1 83 7 6 5 4

5

2 1 83 7 6 5 4

87

:(:(

This is exactly the probability that either 3 or 7 is first

picked to be a pivot out of the highlighted entries.

E[Xa,b] = 1 · P(Xa,b = 1) + 0 · P(Xa,b = 0) = P(Xa,b = 1)

So, what’s P(Xa,b = 1)?

 It’s the probability that a and b are compared. Consider this example:

59
59

How Many Comparisons?

So, what’s E[Xa,b]?

321 4

P(X3,7 = 1) is the probability that 3 and 7 are

compared.

If 4, 5, or 6 get picked as a pivot first, then 3 and 7

would be separated and never see each other again.

2 1 83 7 6 5 4

5

2 1 83 7 6 5 4

87

:(:(

This is exactly the probability that either 3 or 7 is first

picked to be a pivot out of the highlighted entries.

E[Xa,b] = 1 · P(Xa,b = 1) + 0 · P(Xa,b = 0) = P(Xa,b = 1)

So, what’s P(Xa,b = 1)?

 It’s the probability that a and b are compared. Consider this example:

60
60

How Many Comparisons?

P(Xa,b = 1) aka probability that a & b are compared
=

probability that either a or b are selected as a pivot
before elements between a and b.

=
 2 .

(# elements from a to b, inclusive)

So, what’s E[Xa,b]?

321 4

P(X3,7 = 1) is the probability that 3 and 7 are

compared.

If 4, 5, or 6 get picked as a pivot first, then 3 and 7

would be separated and never see each other again.

2 1 83 7 6 5 4

5

2 1 83 7 6 5 4

87

:(:(

This is exactly the probability that either 3 or 7 is first

picked to be a pivot out of the highlighted entries.

E[Xa,b] = 1 · P(Xa,b = 1) + 0 · P(Xa,b = 0) = P(Xa,b = 1)

So, what’s P(Xa,b = 1)?

 It’s the probability that a and b are compared. Consider this example:

61
61

How Many Comparisons?

P(Xa,b = 1) aka probability that a & b are compared
=

probability that either a or b are selected as a pivot
before elements between a and b.

=
 2 .

b – a + 1

Total number of
comparisons =

We just computed
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to
make notation nicer

Increase summation limits to
make them nicer (hence the ≤)

Nothing in the summation
depends on a, so pull 2 out

decrease each denominator →
we get the harmonic series!

62
62

Quick Sort Expected Runtime

Total number of
comparisons =

We just computed
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to
make notation nicer

Increase summation limits to
make them nicer (hence the ≤)

Nothing in the summation
depends on a, so pull 2 out

decrease each denominator →
we get the harmonic series!

63
63

Quick Sort Expected Runtime

Total number of
comparisons =

We just computed
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to
make notation nicer

Increase summation limits to
make them nicer (hence the ≤)

Nothing in the summation
depends on a, so pull 2 out

decrease each denominator →
we get the harmonic series!

64
64

Quick Sort Expected Runtime

Total number of
comparisons =

We just computed
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to
make notation nicer

Increase summation limits to
make them nicer (hence the ≤)

Nothing in the summation
depends on a, so pull 2 out

decrease each denominator →
we get the harmonic series!

65
65

Quick Sort Expected Runtime

Total number of
comparisons =

We just computed
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to
make notation nicer

Increase summation limits to
make them nicer (hence the ≤)

Nothing in the summation
depends on a, so pull 2 out

decrease each denominator →
we get the harmonic series!

66
66

Quick Sort Expected Runtime

Total number of
comparisons =

We just computed
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to
make notation nicer

Increase summation limits to
make them nicer (hence the ≤)

Nothing in the summation
depends on a, so pull 2 out

decrease each denominator →
we get the harmonic series!

67
67

Quick Sort Expected Runtime

Total number of
comparisons =

We just computed
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to
make notation nicer

Increase summation limits to
make them nicer (hence the ≤)

Nothing in the summation
depends on a, so pull 2 out

68
68

Quick Sort Expected Runtime

decrease each denominator →
we get the harmonic series!

Total number of
comparisons =

We just computed
E[Xa,b] = P(Xa,b,= 1)

Introduce c = b – a to
make notation nicer

Increase summation limits to
make them nicer (hence the ≤)

Nothing in the summation
depends on a, so pull 2 out

If E[# comparisons] = O(n log n),
does this mean E[running time]

is also O(n log n)?

YES! Intuitively, the runtime is
dominated by comparisons.

69
69

Quick Sort Expected Runtime

decrease each denominator →
we get the harmonic series!

QUICKSORT(A):
if len(A) <= 1:

 return
pivot = random.choice(A)
PARTITION A into:
 L (less than pivot) and
 R (greater than pivot)
Replace A with [L, pivot, R]
QUICKSORT(L)
QUICKSORT(R)

Worst case runtime:
O(n2)

Expected runtime:
O(n log n)

Quick Sort

70
70

How is it implemented? Do people use it?

Quick Sort in Practice

71
71

In practice, a more clever approach is used to implement
PARTITION, so that the entire QuickSort algorithm can be
implemented “in-place”

(i.e. via swaps, rather than constructing separate L or R
subarrays)

Implementing Quick Sort

72
72

7 2 3 1 5 46 8

Choose pivot & swap
with last element so
pivot is at the end.

73
73

An Example In-Place Partition

7 2 3 1 5 46 8

Choose pivot & swap
with last element so
pivot is at the end.

Initialize
and

7 2 3 8 1 5 4 6

74
74

An Example In-Place Partition

7 2 3 8 1 5 4 6

7 2 3 1 5 46 8

Choose pivot & swap
with last element so
pivot is at the end.

Initialize
and

Increment until it sees
something smaller than pivot,
swap the things ahead of the
bars & increment both bars

7 2 3 8 1 5 4 6

75
75

An Example In-Place Partition

7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

7 2 3 1 5 46 8

Choose pivot & swap
with last element so
pivot is at the end.

Initialize
and

Increment until it sees
something smaller than pivot,
swap the things ahead of the
bars & increment both bars

Repeat until the bar
reaches the end, then

swap the pivot into the
right place.

7 2 3 8 1 5 4 6

76
76

An Example In-Place Partition

7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

2 3 7 8 1 5 4 6

7 2 3 1 5 46 8

Choose pivot & swap
with last element so
pivot is at the end.

Initialize
and

Increment until it sees
something smaller than pivot,
swap the things ahead of the
bars & increment both bars

Repeat until the bar
reaches the end, then

swap the pivot into the
right place.

7 2 3 8 1 5 4 6

77
77

An Example In-Place Partition

7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 7 8 1 5 4 67 2 3 1 5 46 8

Choose pivot & swap
with last element so
pivot is at the end.

Initialize
and

Increment until it sees
something smaller than pivot,
swap the things ahead of the
bars & increment both bars

Repeat until the bar
reaches the end, then

swap the pivot into the
right place.

7 2 3 8 1 5 4 6

78
78

An Example In-Place Partition

7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 1 8 7 5 4 6

7 2 3 1 5 46 8

Choose pivot & swap
with last element so
pivot is at the end.

Initialize
and

Increment until it sees
something smaller than pivot,
swap the things ahead of the
bars & increment both bars

Repeat until the bar
reaches the end, then

swap the pivot into the
right place.

7 2 3 8 1 5 4 6

79
79

An Example In-Place Partition

7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 1 8 7 5 4 6

2 3 1 5 7 8 4 6

7 2 3 1 5 46 8

Choose pivot & swap
with last element so
pivot is at the end.

Initialize
and

Increment until it sees
something smaller than pivot,
swap the things ahead of the
bars & increment both bars

Repeat until the bar
reaches the end, then

swap the pivot into the
right place.

7 2 3 8 1 5 4 6

80
80

An Example In-Place Partition

7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 1 8 7 5 4 6

2 3 1 5 7 8 4 6

2 3 1 5 4 8 7 6

7 2 3 1 5 46 8

Choose pivot & swap
with last element so
pivot is at the end.

Initialize
and

Increment until it sees
something smaller than pivot,
swap the things ahead of the
bars & increment both bars

Repeat until the bar
reaches the end, then

swap the pivot into the
right place.

7 2 3 8 1 5 4 6

81
81

An Example In-Place Partition

7 2 3 8 1 5 4 6

2 7 3 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 7 8 1 5 4 6

2 3 1 8 7 5 4 6

2 3 1 5 7 8 4 6

2 3 1 5 4 8 7 6

2 3 1 5 4 7 86

7 2 3 1 5 46 8

Choose pivot & swap
with last element so
pivot is at the end.

Initialize
and

Increment until it sees
something smaller than pivot,
swap the things ahead of the
bars & increment both bars

Repeat until the bar
reaches the end, then

swap the pivot into the
right place.

7 2 3 8 1 5 4 6

82
82

An Example In-Place Partition

QuickSort (random pivot) MergeSort (deterministic)

Runtime
Worst-case: O(n2)

Expected: O(n log n)
Worst-case: O(n log n)

Used by
Java (primitive types),
C (qsort), Unix, gcc…

Java for objects, perl

In-place?
(i.e. with O(log n)

extra memory)

Yes, pretty easily!

Easy if you sacrifice runtime
(O(nlogn) MERGE runtime).

Not so easy if you want to keep
runtime & stability.

Stable? No Yes

Other Pros
Good cache locality if

implemented for arrays
Merge step is really efficient

with linked lists

Yo
u

 d
o

 n
o

t
n

ee
d

 t
o

 u
n

d
er

st
an

d

an
y

o
f

th
is

 s
tu

ff
Quick Sort vs. Merge Sort

83
83

https://en.wikipedia.org/wiki/Block_sort

● Runtimes of randomized algorithms can be measured in two

main ways:

○ Expected runtime (you roll the dice)

○ Worst-case runtime (the bad guy gets to fix the dice)

● QUICKSORT!

○ Another DIVIDE and CONQUER sorting algorithm that employs
randomness

○ Elegant, structurally simple, and actually used in practice!

Recap

84
84

• Stanford University

85

Acknowledgement

Thank You

86

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Bogo Sort
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Quick Sort
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: O(n log n)
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Thank You

