Indian Institute of Information Technology Allahabad

Data Structures and Algorithms

Asymptotic Analysis

Dr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are adopted from many sources for academic purposes. Broadly, the sources have been given due credit appropriately. However, there is a chance of missing out some original primary sources. The authors of this material do not claim any copyright of such material.

The plan

- Sorting Algorithms
- InsertionSort: does it work and is it fast?
- MergeSort: does it work and is it fast?
- Skills:
- Analyzing correctness of iterative and recursive algorithms.
- Analyzing running time of recursive algorithms
- How do we measure the runtime of an algorithm?
- Worst-case analysis
- Asymptotic Analysis

Worst-case analysis

The "running time" for an algorithm is its running time on the worst possible input.

Algorithm designer

Here is your algorithm!
Algorithm:
Do the thing
Do the stuff
Return the answer

Here is an input!
(Which I designed to be terrible for your algorithm!)

Big-O notation

-What do we mean when we measure runtime?

- We probably care about wall time: how long does it take to solve the problem, in seconds or minutes or hours?
- This is heavily dependent on the programming language, architecture, etc.
- These things are very important, but are not the point of this class.
- We want a way to talk about the running time of an algorithm, independent of these considerations.

Main idea:

Focus on how the runtime scales with n (the input size).
Informally....

Number of operations	Asymptotic Running Time	(Only pay attention to the largest function of
$\frac{1}{10} n^{2}+100$	$O\left(n^{2}\right)$	n that appears.)
$0.063 n^{2}-.5 n+12.7$	$O\left(n^{2}\right)$	
$100 \cdot n^{1.5}-10^{10000} \sqrt{n}$	$O\left(n^{1.5}\right)$	We say this algorithm is "asymptotically
$11 n \log (n)+1$	$O(n \log (n))$	faster" than the others.

So $100 n \log (n)$ operations is
 "better" than n^{2} operations?

Asymptotic Analysis

One algorithm is "faster" than another if its runtime scales better with the size of the input.

Pros:

- Abstracts away from hardware- and languagespecific issues.
- Makes algorithm analysis much more tractable.

Cons:

- Only makes sense if n is large (compared to the constant factors).

1000000000 n
is "better" than n^{2} ?!?!

$\mathrm{O}(\ldots)$ means an upper bound

pronounced "big-oh of ..." or sometimes "oh of ..."

- Let $T(n), g(n)$ be functions of positive integers.
- Think of $T(n)$ as a runtime: positive and increasing in n .
- We say " $T(n)$ is $O(g(n))$ " if $T(n)$ grows no faster than $g(n)$ as n gets large.
- Formally,

$$
T(n)=O(g(n))
$$

$$
\begin{gathered}
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0}, \\
0 \leq T(n) \leq c \cdot g(n)
\end{gathered}
$$

Example

$$
\begin{gathered}
T(n)=O(g(n)) \\
\Leftrightarrow
\end{gathered}
$$

$$
2 n^{2}+10=O\left(n^{2}\right)
$$

$$
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0}
$$

$$
0 \leq T(n) \leq c \cdot g(n)
$$

Example

$$
\begin{gathered}
T(n)=O(g(n)) \\
\Leftrightarrow
\end{gathered}
$$

$$
2 n^{2}+10=O\left(n^{2}\right)
$$

$$
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0}
$$

$$
0 \leq T(n) \leq c \cdot g(n)
$$

Example

$$
\begin{gathered}
T(n)=O(g(n)) \\
\Leftrightarrow
\end{gathered}
$$

$$
2 n^{2}+10=O\left(n^{2}\right)
$$

$\exists c, n_{0}>0$ s.t. $\forall n \geq n_{0}$, $0 \leq T(n) \leq c \cdot g(n)$

Example

$$
2 n^{2}+10=O\left(n^{2}\right)
$$

$$
T(n)=O(g(n))
$$

$$
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0}
$$

$$
0 \leq T(n) \leq c \cdot g(n)
$$

Formally:

- Choose c = 3
- Choose $\mathrm{n}_{0}=4$
- Then:

$$
\begin{gathered}
\forall n \geq 4 \\
0 \leq 2 n^{2}+10 \leq 3 \cdot n^{2}
\end{gathered}
$$

Example

$$
2 n^{2}+10=O\left(n^{2}\right)
$$

$$
T(n)=O(g(n))
$$

$\exists c, n_{0}>0$ st. $\forall n \geq n_{0}$,

$$
0 \leq T(n) \leq c \cdot g(n)
$$

Formally:

- Choose c = 7
- Choose $\mathrm{n}_{0}=2$
- Then:

$$
\begin{gathered}
\forall n \geq 2 \\
0 \leq 2 n^{2}+10 \leq 7 \cdot n^{2}
\end{gathered}
$$

There is not a
"unique" choice of c and n_{0}

Another example:

$$
\begin{gathered}
T(n)=O(g(n)) \\
\Leftrightarrow
\end{gathered}
$$

$$
n=O\left(n^{2}\right)
$$

$$
\begin{gathered}
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0} \\
0 \leq T(n) \leq c \cdot g(n)
\end{gathered}
$$

- Choose c=1
- Choose $\mathrm{n}_{0}=1$
- Then

$$
\begin{gathered}
\forall n \geq 1 \\
0 \leq n \leq n^{2}
\end{gathered}
$$

This is not tight bound as $n=O(n)$

$\Omega(\ldots)$ means a lower bound

- We say " $T(n)$ is $\Omega(g(n))$ " if $T(n)$ grows at least as fast as $g(n)$ as n gets large.
-Formally,

$$
\begin{gathered}
T(n)=\Omega(g(n)) \\
\Leftrightarrow \\
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0}, \\
0 \leq c \cdot g(n) \leq T(n) \\
\text { Switched these!! }
\end{gathered}
$$

Example

$$
n \log _{2}(n)=\Omega(3 n)
$$

$$
T(n)=\Omega(g(n))
$$

$$
\begin{gathered}
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0} \\
0 \leq c \cdot g(n) \leq T(n)
\end{gathered}
$$

- Choose c = $1 / 3$
- Choose $\mathrm{n}_{0}=2$
- Then

$$
\begin{gathered}
\forall n \geq 2, \\
0 \leq \frac{3 n}{3} \leq n \log _{2}(n)
\end{gathered}
$$

$\Theta(\ldots)$ means both!

- We say " $T(n)$ is $\Theta(g(n))$ " iff both:

$$
\begin{gathered}
T(n)=O(g(n)) \\
\quad \text { and } \\
T(n)=\Omega(g(n))
\end{gathered}
$$

Example: polynomials

- Suppose the $p(n)$ is a polynomial of degree k :

$$
p(n)=a_{0}+a_{1} n+a_{2} n^{2}+\cdots+a_{k} n^{k} \text { where } a_{k}>0 .
$$

- Then $p(n)=O\left(n^{k}\right)$
- Proof:
- Choose $n_{0} \geq 1$ so that $p(n) \geq 0$ for all $n \geq n_{0}$.
- Choose $c=\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{k}\right|$

Example: polynomials

- Suppose the $p(n)$ is a polynomial of degree k :
$p(n)=a_{0}+a_{1} n+a_{2} n^{2}+\cdots+a_{k} n^{k}$ where $a_{k}>0$.
- Then $p(n)=O\left(n^{k}\right)$
- Proof:
- Choose $n_{0} \geq 1$ so that $p(n) \geq 0$ for all $n \geq n_{0}$.
- Choose $c=\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{k}\right|$
- Then for all $n \geq n_{0}$:
- $0 \leq p(n)=|p(n)| \leq\left|a_{0}\right|+\left|a_{1}\right| n+\cdots+\left|a_{k}\right| n^{k}$
- $\leq\left|a_{0}\right| n^{k}+\left|a_{1}\right| n^{k}+\cdots+\left|a_{k}\right| n^{k}$
- $\quad=c \cdot n^{k}$

Definition of c

Because $n \leq n^{k}$ for $n \geq n_{0} \geq 1$.

Example: more polynomials

- For any $k \geq 1, n^{k}$ is NOT $O\left(n^{k-1}\right)$.
- Proof:
- Suppose that it were.
- Then there is some $\mathrm{c}, \mathrm{n}_{0}$ so that $n^{k} \leq c \cdot n^{k-1}$ for all $n \geq n_{0}$
- Aka, $n \leq c$ for all $n \geq n_{0}$
- But that's not true!
- We have a contradiction!
- It can't be that $n^{k}=O\left(n^{k-1}\right)$.

Take-away from examples

- To prove $T(n)=O(g(n))$, you have to come up with c and n_{0} so that the definition is satisfied.
- To prove $T(n)$ is NOT $O(g(n))$, one way is proof by contradiction:
- Suppose (to get a contradiction) that someone gives you a c and an n_{0} so that the definition is satisfied.
- Show that this someone must by lying to you by deriving a contradiction.

Yet more examples

- $n^{3}+3 n=O\left(n^{3}-n^{2}\right)$
- $n^{3}+3 n=\Omega\left(n^{3}-n^{2}\right)$
- $n^{3}+3 n=\Theta\left(n^{3}-n^{2}\right)$

Work through these on your own!

- 3^{n} is NOT $O\left(2^{n}\right)$
- $\log (\mathrm{n})=\Omega(\ln (\mathrm{n}))$
- $\log (n)=\Theta\left(2^{\log \log (n)}\right)$
remember that $\log =\log _{2}$ in this class.

Some brainteasers

- Are there functions f, g so that NEITHER $f=O(g)$ nor $f=$ $\Omega(\mathrm{g})$?
- Are there non-decreasing functions f, g so that the above is true?
- Define the n'th fibonacci number by $F(0)=1, F(1)=1, F(n)$ $=F(n-1)+F(n-2)$ for $n>1$. - 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

True or false:

- $F(n)=O\left(2^{n}\right)$
- $F(n)=\Omega\left(2^{n}\right)$

Recurrence
Relations!

Recurrence Relations!

- How do we calculate the runtime of a recursive algorithm?

Running time of MergeSort

- Let's call this running time $\mathrm{T}(\mathrm{n})$, when the input has length n.
- We know that $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{nlog}(\mathrm{n}))$.
- We also know that $\mathrm{T}(\mathrm{n})$ satisfies:

$$
T(n) \leq 2 \cdot T\left(\frac{n}{2}\right)+c \cdot n
$$

Last time we showed that the time to run MERGE on a problem of size n is at most $\mathrm{c}^{*} \mathrm{n}$ operations.

MERGESORT(A):

$\mathrm{n}=\operatorname{length}(\mathrm{A})$
if $\mathrm{n} \leq 1$:
return A
L = MERGESORT(A[1:n/2-1])
R = MERGESORT(A[n/2:n]) return $\operatorname{MERGE}(\mathrm{L}, \mathrm{R})$

Recurrence Relations

- $T(n)=2 \cdot T\left(\frac{n}{2}\right)+c \cdot n$ is a recurrence relation.
- It gives us a formula for $T(n)$ in terms of T (less than n)
- The challenge:

Given a recurrence relation for $T(n)$, find a closed form expression for $T(n)$.

- For example, $T(n)=O(n \log (n))$ in this case

Technicalities I: Base Case

- Formally, we should always have base cases with recurrence relations.
- $T(n)=2 \cdot T\left(\frac{n}{2}\right)+c \cdot n$ with $T(1)=O(1)$

Why does $\mathrm{T}(1)=O(1)$?

One approach

- The "tree" approach from last time.

- Add up all the work done at all the subproblems.

Another Example

Contribution at this layer:

- $T_{1}(n)=T_{1}\left(\frac{n}{2}\right)+n, \quad T_{1}(1)=1$.
- Adding up over all layers:

$$
\sum_{i=0}^{\log (n)} \frac{n}{2^{i}}=2 n-1
$$

Size n n
n/2
$\mathrm{n} / 4$
n/2t
$\mathrm{n} / 2^{\mathrm{t}}$

Aside

Finite Geometric Series

To find the sum of a finite geometric series, use the formula,
$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$,
where n is the number of terms, a_{1} is the first term and r is the common ratio .

Another Example

Contribution at this layer:

- $T_{1}(n)=T_{1}\left(\frac{n}{2}\right)+n, \quad T_{1}(1)=1$.
- Adding up over all layers:

$$
\sum_{i=0}^{\log (n)} \frac{n}{2^{i}}=2 n-1
$$

So $T_{1}(n)=O(n)$.

Another Example

- $T_{2}(n)=4 T_{2}\left(\frac{n}{2}\right)+n, \quad T_{2}(1)=1$.
- Adding up over all layers:

Contribution at this layer:

$$
\sum_{i=0}^{\log (n)} 4^{i} \cdot \frac{n}{2^{i}}=n \sum_{i=0}^{\log (n)} 2^{i}=n(2 n-1)
$$

Size n

n $2 n$ $4 n$

- So $T_{2}(n)=O\left(n^{2}\right)$

$2^{t n}$

More examples

Recursion 1

- $T(n)=4 T(n / 2)+O(n)$
- $\mathrm{T}(\mathrm{n})=O\left(\mathrm{n}^{2}\right)$
$T(n)=$ time to solve a problem of size n.

Recursion 2

- $T(n)=3 T(n / 2)+O(n)$
- $\mathrm{T}(\mathrm{n})=O\left(n^{\log _{2}(3)} \approx \mathrm{n}^{1.6}\right)$

Recursion 3

- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+O(\mathrm{n})$
- $\mathrm{T}(\mathrm{n})=O(\operatorname{nlog}(\mathrm{n}))$

Recursion 4

- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+O(\mathrm{n})$
- $\mathrm{T}(\mathrm{n})=O(\mathrm{n})$

The master theorem

- A formula for many recurrence relations.

Jedi master Yoda

The master theorem (Optional)

- Suppose that $a \geq 1, b>1$, and d are constants (independent of n).
- Suppose $T(n)=a \cdot T\left(\frac{n}{b}\right)+O\left(n^{d}\right)$. Then

$$
T(n)= \begin{cases}\mathrm{O}\left(n^{d} \log (n)\right) & \text { if } a=b^{d} \\ \mathrm{O}\left(n^{d}\right) & \text { if } a<b^{d} \\ \mathrm{O}\left(n^{\log _{b}(a)}\right) & \text { if } a>b^{d}\end{cases}
$$

Three parameters:
a : number of subproblems
b : factor by which input size shrinks
d : need to do $\mathrm{n}^{\text {d }}$ work to create all the subproblems and combine their solutions.

Examples

$$
\begin{aligned}
& T(n)=a \cdot T\left(\frac{n}{b}\right)+O\left(n^{d}\right) . \\
& T(n)= \begin{cases}O\left(n^{d} \log (n)\right) & \text { if } a=b^{d} \\
\mathrm{O}\left(n^{d}\right) & \text { if } a<b^{d} \\
\mathrm{O}\left(n^{\log _{b}(a)}\right) & \text { if } a>b^{d}\end{cases}
\end{aligned}
$$

- Recursion 1
- $\mathrm{T}(n)=4 \mathrm{~T}(n / 2)+O(n)$
- $T(n)=O\left(n^{2}\right)$

$$
\begin{aligned}
& a=4 \\
& b=2 \\
& d=1
\end{aligned} \quad a>b^{d}
$$

- Recursion 2
- $\mathrm{T}(n)=3 \mathrm{~T}(n / 2)+O(n)$
- $\mathrm{T}(n)=O\left(n^{\log _{2}(3)} \approx n^{1.6}\right)$

$$
\begin{aligned}
& a=3 \\
& b=2 \\
& d=1
\end{aligned} \quad a>b d
$$

$\sqrt{ }$

- Recursion 3
- $\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+O(n)$

$$
\begin{aligned}
& a=2 \\
& b=2 \\
& d=1
\end{aligned} \quad a=b^{d}
$$

- $T(n)=O(n \log (n))$
- Recursion 4
- $\mathrm{T}(n)=\mathrm{T}(n / 2)+O(n)$

$$
\begin{aligned}
& a=1 \\
& b=2 \\
& d=1
\end{aligned} \quad a<b^{d}
$$

- $\mathrm{T}(n)=O(n)$

Acknowledgement

- Stanford University

Thank You

