
Data Structures

Indian Institute of Information Technology Allahabad

Breadth First Search (BFS)

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

How do we explore a graph?

1

If we can fly

2

3

4

8
6

5

9

7

3

Breadth-First Search
Exploring the world with a bird’s-eye view

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

4

Breadth-First Search
Exploring the world with a bird’s-eye view

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

5

Breadth-First Search
Exploring the world with a bird’s-eye view

Not been there yet

Can reach there in
one step

Can reach there in
two steps

Can reach there in
three steps

Can reach there in
zero steps

start

6

Breadth-First Search
Exploring the world with a bird’s-eye view

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

7

Breadth-First Search
Exploring the world with a bird’s-eye view

start

Not been there yet

Can reach there in
one step

Can reach there in
two steps

Can reach there in
three steps

Can reach there in
zero steps

8

Breadth-First Search
Exploring the world with a bird’s-eye view

start

Not been there yet

Can reach there in
one step

Can reach there in
two steps

Can reach there in
three steps

Can reach there in
zero steps

9

Breadth-First Search
Exploring the world with pseudocode

-

L1

L2

L3

L0

Same disclaimer as for DFS: you may have seen other ways to implement this,
this will be convenient for us.

10

Breadth-First Search
Exploring the world with pseudocode

• Set Li = [] for i=1,…,n
• L0 = [w], where w is the start node
• Mark w as visited
• For i = 0, …, n-1:

• For u in Li:
• For each v which is a neighbor of u:

• If v isn’t yet visited:
• mark v as visited, and put it in Li+1

Li is the set of nodes
we can reach in i

steps from w

-

L1

L2

L3

L0

Same disclaimer as for DFS: you may have seen other ways to implement this,
this will be convenient for us.

11

Breadth-First Search
Exploring the world with pseudocode

• Set Li = [] for i=1,…,n
• L0 = [w], where w is the start node
• Mark w as visited
• For i = 0, …, n-1:

• For u in Li:
• For each v which is a neighbor of u:

• If v isn’t yet visited:
• mark v as visited, and put it in Li+1

Li is the set of nodes
we can reach in i

steps from w

-

L1

L2

L3

L0

Same disclaimer as for DFS: you may have seen other ways to implement this,
this will be convenient for us.

12

Breadth-First Search
Exploring the world with pseudocode

• Set Li = [] for i=1,…,n
• L0 = [w], where w is the start node
• Mark w as visited
• For i = 0, …, n-1:

• For u in Li:
• For each v which is a neighbor of u:

• If v isn’t yet visited:
• mark v as visited, and put it in Li+1

Li is the set of nodes
we can reach in i

steps from w

-

L1

L2

L3

L0

Same disclaimer as for DFS: you may have seen other ways to implement this,
this will be convenient for us.

13

Breadth-First Search
Exploring the world with pseudocode

• Set Li = [] for i=1,…,n
• L0 = [w], where w is the start node
• Mark w as visited
• For i = 0, …, n-1:

• For u in Li:
• For each v which is a neighbor of u:

• If v isn’t yet visited:
• mark v as visited, and put it in Li+1

Li is the set of nodes
we can reach in i

steps from w

Go through all the nodes
in Li and add their
unvisited neighbors to Li+1

-

L1

L2

L3

L0

Same disclaimer as for DFS: you may have seen other ways to implement this,
this will be convenient for us.

14

Breadth-First Search
Exploring the world with pseudocode

• Set Li = [] for i=1,…,n
• L0 = [w], where w is the start node
• Mark w as visited
• For i = 0, …, n-1:

• For u in Li:
• For each v which is a neighbor of u:

• If v isn’t yet visited:
• mark v as visited, and put it in Li+1

Li is the set of nodes
we can reach in i

steps from w

Go through all the nodes
in Li and add their
unvisited neighbors to Li+1

-

L1

L2

L3

L0

Same disclaimer as for DFS: you may have seen other ways to implement this,
this will be convenient for us.

15

Breadth-First Search
Exploring the world with pseudocode

• Set Li = [] for i=1,…,n
• L0 = [w], where w is the start node
• Mark w as visited
• For i = 0, …, n-1:

• For u in Li:
• For each v which is a neighbor of u:

• If v isn’t yet visited:
• mark v as visited, and put it in Li+1

Li is the set of nodes
we can reach in i

steps from w

Go through all the nodes
in Li and add their
unvisited neighbors to Li+1

-

L1

L2

L3

L0

Same disclaimer as for DFS: you may have seen other ways to implement this,
this will be convenient for us.

16

BFS also finds all the nodes reachable from
the starting point

start

It is also a good way to find all
the connected components.

17

Running time and

extension to directed graphs

• To explore the whole graph, explore the connected
components one-by-one.
• Same argument as DFS: BFS running time is O(n + m)

18

Running time and

extension to directed graphs

• To explore the whole graph, explore the connected
components one-by-one.
• Same argument as DFS: BFS running time is O(n + m)

• Like DFS, BFS also works fine on directed graphs.

Verify these!

19

Why is it called breadth-first?
• We are implicitly building a tree:

A

D

B

C

E

G

F

20

Why is it called breadth-first?
• We are implicitly building a tree:

A

D

B

C

E

G

F

YOINK!

21

Why is it called breadth-first?
• We are implicitly building a tree:

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F
D

E

22

Why is it called breadth-first?
• We are implicitly building a tree:

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F
D

E

23

Why is it called breadth-first?
• We are implicitly building a tree:

• First we go as broadly as we can.

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F
D

E

24

Why is it called breadth-first?
• We are implicitly building a tree:

• First we go as broadly as we can.

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F
D

E

Call this the
“BFS tree”

25

Why is it called breadth-first?
• We are implicitly building a tree:

• First we go as broadly as we can.

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F
D

E

Call this the
“BFS tree”

L3

L1

L2

L0

26

Application of BFS: shortest path

w

v

• How long is the shortest path between w and v?

27

Application of BFS: shortest path

w

v

• How long is the shortest path between w and v?

Not been there yet

Can reach there in
one step

Can reach there in
two steps

Can reach there in
three steps

Can reach there in
zero steps

28

Application of BFS: shortest path

w

v

• How long is the shortest path between w and v?

Not been there yet

Can reach there in
one step

Can reach there in
two steps

Can reach there in
three steps

Can reach there in
zero steps

It’s three!
29

Application of BFS: shortest path

w

v

• How long is the shortest path between w and v?

Not been there yet

Can reach there in
one step

Can reach there in
two steps

Can reach there in
three steps

Can reach there in
zero steps

It’s three!
30

To find the distance between w and all other
vertices v The distance between two

vertices is the number of edges in
the shortest path between them.

w

v Call this the
“BFS tree”

L3

L1

L2

L0

31

To find the distance between w and all other
vertices v

• Do a BFS starting at w

• For all v in Li

• The shortest path between w and v
has length i

• A shortest path between w and v is
given by the path in the BFS tree.

• If we never found v, the distance
is infinite.

The distance between two
vertices is the number of edges in
the shortest path between them.

w

v Call this the
“BFS tree”

L3

L1

L2

L0

32

To find the distance between w and all other
vertices v

• Do a BFS starting at w

• For all v in Li

• The shortest path between w and v
has length i

• A shortest path between w and v is
given by the path in the BFS tree.

• If we never found v, the distance
is infinite.

The distance between two
vertices is the number of edges in
the shortest path between them.

w

v Call this the
“BFS tree”

L3

L1

L2

L0

Modify the BFS pseudocode to
return shortest paths!

33

• The BFS tree is useful for computing distances
between pairs of vertices.

• We can find the shortest path between u and v in
time O(m).

What have we learned?

36

Another application of BFS

• Testing bipartite-ness

37

Exercise: fish
• You have a bunch of fish and two fish tanks.

• Some pairs of fish will fight if put in the same tank.
• Model this as a graph: connected fish will fight.

• Can you put the fish in the two tanks so that there is no fighting?

38

Exercise: fish
• You have a bunch of fish and two fish tanks.

• Some pairs of fish will fight if put in the same tank.
• Model this as a graph: connected fish will fight.

• Can you put the fish in the two tanks so that there is no fighting?

39

Exercise: fish
• You have a bunch of fish and two fish tanks.

• Some pairs of fish will fight if put in the same tank.
• Model this as a graph: connected fish will fight.

• Can you put the fish in the two tanks so that there is no fighting?

40

Bipartite graphs

• A bipartite graph looks like this:

41

Bipartite graphs

• A bipartite graph looks like this:

Can color the vertices red
and orange so that there

are no edges between any
same-colored vertices

Example:
are students

are classes
if the student is

enrolled in the class

Example:
are in tank A
are in tank B

if the fish fight

42

Is this graph bipartite?

43

How about this one?

44

How about this one?

45

This one?

46

Application of BFS:

Testing Bipartiteness

• Color the levels of the BFS tree in
alternating colors.

• If you never color two connected
nodes the same color, then it is
bipartite.

• Otherwise, it’s not.

A

B

C

G

F
D

E

47

Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

48

Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

49

Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

50

Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

51

Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

52

Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

53

Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

54

Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

55

Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

56

Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

57

Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

58

Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in
one step

Can reach there in
two steps

start

Can reach there in
three steps

Can reach there in
zero steps

59

What have we learned?

BFS can be used to detect
bipartite-ness in time O(n + m).

63

• Stanford University

64

Acknowledgement

Thank You

65

	Slide 1
	Slide 2
	Slide 3: How do we explore a graph?
	Slide 4: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 5: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 6: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 7: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 8: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 9: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 10: Breadth-First Search Exploring the world with pseudocode
	Slide 11: Breadth-First Search Exploring the world with pseudocode
	Slide 12: Breadth-First Search Exploring the world with pseudocode
	Slide 13: Breadth-First Search Exploring the world with pseudocode
	Slide 14: Breadth-First Search Exploring the world with pseudocode
	Slide 15: Breadth-First Search Exploring the world with pseudocode
	Slide 16: Breadth-First Search Exploring the world with pseudocode
	Slide 17: BFS also finds all the nodes reachable from the starting point
	Slide 18: Running time and extension to directed graphs
	Slide 19: Running time and extension to directed graphs
	Slide 20: Why is it called breadth-first?
	Slide 21: Why is it called breadth-first?
	Slide 22: Why is it called breadth-first?
	Slide 23: Why is it called breadth-first?
	Slide 24: Why is it called breadth-first?
	Slide 25: Why is it called breadth-first?
	Slide 26: Why is it called breadth-first?
	Slide 27: Application of BFS: shortest path
	Slide 28: Application of BFS: shortest path
	Slide 29: Application of BFS: shortest path
	Slide 30: Application of BFS: shortest path
	Slide 31: To find the distance between w and all other vertices v
	Slide 32: To find the distance between w and all other vertices v
	Slide 33: To find the distance between w and all other vertices v
	Slide 36: What have we learned?
	Slide 37: Another application of BFS
	Slide 38: Exercise: fish
	Slide 39: Exercise: fish
	Slide 40: Exercise: fish
	Slide 41: Bipartite graphs
	Slide 42: Bipartite graphs
	Slide 43: Is this graph bipartite?
	Slide 44: How about this one?
	Slide 45: How about this one?
	Slide 46: This one?
	Slide 47: Application of BFS: Testing Bipartiteness
	Slide 48: Breadth-First Search For testing bipartite-ness
	Slide 49: Breadth-First Search For testing bipartite-ness
	Slide 50: Breadth-First Search For testing bipartite-ness
	Slide 51: Breadth-First Search For testing bipartite-ness
	Slide 52: Breadth-First Search For testing bipartite-ness
	Slide 53: Breadth-First Search For testing bipartite-ness
	Slide 54: Breadth-First Search For testing bipartite-ness
	Slide 55: Breadth-First Search For testing bipartite-ness
	Slide 56: Breadth-First Search For testing bipartite-ness
	Slide 57: Breadth-First Search For testing bipartite-ness
	Slide 58: Breadth-First Search For testing bipartite-ness
	Slide 59: Breadth-First Search For testing bipartite-ness
	Slide 63: What have we learned?
	Slide 64
	Slide 65: Thank You

