Indian Institute of Information Technology Allahabad

Data Structures

Breadth First Search (BFS)

Dr. Shiv Ram Dubey
Assistant Professor
Department of Information Technology
Indian Institute of Information Technology, Allahabad

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

DISCLAIMER

The content (text, image, and graphics) used in this slide are adopted from many sources for academic purposes. Broadly, the sources have been given due credit appropriately. However, there is a chance of missing out some original primary sources. The authors of this material do not claim any copyright of such material.

How do we explore a graph?
If we can fly

Breadth-First Search

Exploring the world with a bird's-eye view

Not been there yetCan reach there in zero steps

Can reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search

Exploring the world with a bird's-eye view

Not been there yetCan reach there in zero steps

Can reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search

Exploring the world with a bird's-eye view

Not been there yet

Can reach there in zero steps

Can reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search

Exploring the world with a bird's-eye view
Not been there yetCan reach there in zero steps

Can reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search

Exploring the world with a bird's-eye view
Not been there yetCan reach there in zero steps

Can reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search

Exploring the world with a bird's-eye view
Not been there yetCan reach there in zero steps

Can reach there in one stepCan reach there in two stepsCan reach there in three steps

World:

Breadth-First Search
 Exploring the world with pseudocode

Breadth-First Search
 Exploring the world with pseudocode

- Set $L_{i}=[]$ for $i=1, \ldots, n$
- $L_{0}=[w]$, where w is the start node
L_{i} is the set of nodes we can reach in i
${ }^{-}$? $?$ ps from w

Breadth-First Search
 Exploring the world with pseudocode

- Set $L_{i}=[]$ for $i=1, \ldots, n$
- $L_{0}=[w]$, where w is the start node
- Mark w as visited
L_{i} is the set of nodes we can reach in i steps from w

Breadth-First Search
 Exploring the world with pseudocode

- Set $L_{i}=[]$ for $i=1, \ldots, n$
- $\mathrm{L}_{0}=[\mathrm{w}]$, where w is the start node
- Mark w as visited
- For $\mathrm{i}=0, \ldots, \mathrm{n}-1$:
L_{i} is the set of nodes we can reach in i steps from w

Breadth-First Search
 Exploring the world with pseudocode

- Set $L_{i}=[]$ for $i=1, \ldots, n$
- $L_{0}=[w]$, where w is the start node
- Mark w as visited
- For $\mathrm{i}=0, \ldots, \mathrm{n}-1$:
L_{i} is the set of nodes we can reach in i steps from w

Go through all the nodes in L_{i} and add their unvisited neighbors to L_{i+1}

Breadth-First Search

Exploring the world with pseudocode

- Set $L_{i}=[]$ for $i=1, \ldots, n$
- $L_{0}=[w]$, where w is the start node
- Mark w as visited
- For $\mathrm{i}=0, \ldots, \mathrm{n}-1$:
- For u in L_{i} :
- For each v which is a neighbor of u :
- If v isn't yet visited:
- mark vas visited, and put it in $\mathrm{L}_{\mathrm{i}+1}$

Go through all the nodes in L_{i} and add their unvisited neighbors to L_{i+1}
L_{i} is the set of nodes we can reach in i
steps from w

Breadth-First Search

Exploring the world with pseudocode

- Set $L_{i}=[]$ for $i=1, \ldots, n$
- $L_{0}=[w]$, where w is the start node
- Mark w as visited
- For $\mathrm{i}=0, \ldots, \mathrm{n}-1$:
- For u in L_{i} :
- For each v which is a neighbor of u :
- If v isn't yet visited:
- mark v as visited, and put it in L_{i+1}

Go through all the nodes in L_{i} and add their unvisited neighbors to L_{i+1}

L_{i} is the set of nodes we can reach in i
steps from w

BFS also finds all the nodes reachable from the starting point

Running time and extension to directed graphs

- To explore the whole graph, explore the connected components one-by-one.
- Same argument as DFS: BFS running time is $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Running time and extension to directed graphs

- To explore the whole graph, explore the connected components one-by-one.
- Same argument as DFS: BFS running time is $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- Like DFS, BFS also works fine on directed graphs.

Verify these!

Why is it called breadth-first?

- We are implicitly building a tree:

Why is it called breadth-first?

- We are implicitly building a tree:

Why is it called breadth-first?

- We are implicitly building a tree:

Why is it called breadth-first?

- We are implicitly building a tree:

Why is it called breadth-first?

- We are implicitly building a tree:

- First we go as broadly as we can.

Why is it called breadth-first?

- We are implicitly building a tree:

- First we go as broadly as we can.

Why is it called breadth-first?

- We are implicitly building a tree:

- First we go as broadly as we can.

Application of BFS: shortest path

- How long is the shortest path between w and v ?

Application of BFS: shortest path

- How long is the shortest path between w and v ?
Not been there yet

Can reach there in zero stepsCan reach there in one stepCan reach there in two stepsCan reach there in three steps

Application of BFS: shortest path

- How long is the shortest path between w and v ?

Application of BFS: shortest path

- How long is the shortest path between w and v ?

To find the distance between w and all other vertices v
 The distance between two vertices is the number of edges in the shortest path between them.

To find the distance between w and all other vertices v
 The distance between two vertices is the number of edges in the shortest path between them.

- Do a BFS starting at w
- For all v in L_{i}
- The shortest path between w and v has length i
- A shortest path between w and v is given by the path in the BFS tree.
- If we never found v , the distance is infinite.

To find the distance between w and all other vertices v
 The distance between two vertices is the number of edges in the shortest path between them.

- Do a BFS starting at w
- For all v in L_{i}
- The shortest path between w and v has length i
- A shortest path between w and v is given by the path in the BFS tree.
- If we never found v , the distance is infinite.

Modify the BFS pseudocode to return shortest paths!

What have we learned?

- The BFS tree is useful for computing distances between pairs of vertices.
- We can find the shortest path between u and v in time $O(m)$.

Another application of BFS

- Testing bipartite-ness

Exercise: fish

- You have a bunch of fish and two fish tanks.
- Some pairs of fish will fight if put in the same tank.
- Model this as a graph: connected fish will fight.

Exercise: fish

- You have a bunch of fish and two fish tanks.
- Some pairs of fish will fight if put in the same tank.
- Model this as a graph: connected fish will fight.

Exercise: fish

- You have a bunch of fish and two fish tanks.
- Some pairs of fish will fight if put in the same tank.
- Model this as a graph: connected fish will fight.
- Can you put the fish in the two tanks so that there is no fighting?

Bipartite graphs

- A bipartite graph looks like this:

Bipartite graphs

- A bipartite graph looks like this:

Can color the vertices red and orange so that there are no edges between any same-colored vertices

Is this graph bipartite?

How about this one?

How about this one?

This one?

Application of BFS:

Testing Bipartiteness

- Color the levels of the BFS tree in alternating colors.
- If you never color two connected nodes the same color, then it is bipartite.
- Otherwise, it's not.

Breadth-First Search
 For testing bipartite-ness

Not been there yetCan reach there in zero stepsCan reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search
 For testing bipartite-ness

Not been there yetCan reach there in zero stepsCan reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search
 For testing bipartite-ness

Not been there yetCan reach there in zero stepsCan reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search
 For testing bipartite-ness

Not been there yetCan reach there in zero stepsCan reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search
 For testing bipartite-ness

Not been there yetCan reach there in zero stepsCan reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search

For testing bipartite-ness

Breadth-First Search
 For testing bipartite-ness

Not been there yetCan reach there in zero stepsCan reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search
 For testing bipartite-ness

Not been there yetCan reach there in zero stepsCan reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search
 For testing bipartite-ness

Not been there yetCan reach there in zero stepsCan reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search
 For testing bipartite-ness

Not been there yetCan reach there in zero stepsCan reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search

For testing bipartite-ness
Not been there yetCan reach there in zero stepsCan reach there in one stepCan reach there in two stepsCan reach there in three steps

Breadth-First Search

For testing bipartite-ness

Not been there yetCan reach there in zero stepsCan reach there in one stepCan reach there in two stepsCan reach there in three steps

What have we learned?

BFS can be used to detect bipartite-ness in time $O(n+m)$.

Acknowledgement

- Stanford University

Thank You

