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The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.
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How do we explore a graph?
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At each node, you can get a list of neighbors, and 
choose to go there if you want.
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Depth First Search 

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Pseudocode

• Each vertex keeps track of whether it is:
• Unvisited

• In progress

• All done
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Depth First Search 
Pseudocode

• Each vertex keeps track of whether it is:
• Unvisited

• In progress

• All done

• Each vertex will also keep track of:

• The time we first enter it.

• The time we finish with it and mark it all done.

21



Depth First Search 
Pseudocode

• Each vertex keeps track of whether it is:
• Unvisited

• In progress

• All done

• Each vertex will also keep track of:

• The time we first enter it.

• The time we finish with it and mark it all done.

You might have seen other ways to implement DFS than what we are about to go 
through.  This way has more bookkeeping – the bookkeeping will be useful later! 22



Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as .

• for v in w.neighbors:

• if v is :

• currentTime

= DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as 

• return currentTime

unvisited

in progress

all done

w

currentTime = 0
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Fun exercise

• Write pseudocode for an iterative version of DFS.
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DFS finds all the nodes reachable from the 
starting point

start
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DFS finds all the nodes reachable from the 
starting point

start

In an undirected graph, this is 
called a connected component.
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DFS finds all the nodes reachable from the 
starting point

start

One application of DFS: finding 
connected components.

In an undirected graph, this is 
called a connected component.
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To explore the whole graph

• Do it repeatedly!

start

start
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Why is it called depth-first?
• We are implicitly building a tree:

A

D

B

C

E

G

F
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Why is it called depth-first?
• We are implicitly building a tree:

• First, we go as deep as we can.

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F D

E
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Why is it called depth-first?
• We are implicitly building a tree:

• First, we go as deep as we can.

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F D

E

Call this the 
“DFS tree”

44



Running time
To explore just the connected component we started in

• We look at each edge at most twice.
• Once from each of its endpoints

• And basically we don’t do anything else.

• So…
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Running time
To explore just the connected component we started in

• We look at each edge at most twice.
• Once from each of its endpoints

• And basically we don’t do anything else.

• So…

O(m)
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Running time
To explore just the connected component we started in

• Assume we are using the linked-list format for G.

• Say C = (V’, E’) is a connected component.

• We visit each vertex in C exactly once.
• Here, “visit” means “call DFS on”

• At each vertex w, we:
• Do some book-keeping: O(1) 
• Loop over w’s neighbors and check if they are visited (and 

then potentially make a recursive call): O(1) per neighbor or 
O(deg(w)) total.

• Total time:
• σ𝑤∈𝑉′(𝑂 deg 𝑤 + 𝑂 1 )

• = 𝑂 |𝐸′| + 𝑉′

• = 𝑂(|𝐸′|) 47
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Running time
To explore just the connected component we started in

• Assume we are using the linked-list format for G.

• Say C = (V’, E’) is a connected component.

• We visit each vertex in C exactly once.
• Here, “visit” means “call DFS on”

• At each vertex w, we:
• Do some book-keeping: O(1) 
• Loop over w’s neighbors and check if they are visited (and 

then potentially make a recursive call): O(1) per neighbor or 
O(deg(w)) total.

• Total time:
• σ𝑤∈𝑉′(𝑂 deg 𝑤 + 𝑂 1 )

• = 𝑂 |𝐸′| + 𝑉′

• = 𝑂(|𝐸′|)
In a connected graph, 
|𝑉’| ≤ |𝐸’| + 1.
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Running time
To explore the whole graph
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Running time
To explore the whole graph

• Explore the connected components one-by-one.

• This takes time O(n + m)
• Same computation as before: 

σ𝑤∈𝑉(𝑂 deg 𝑤 + 𝑂 1 ) = 𝑂 |𝐸| + 𝑉 = 𝑂(𝑛 + 𝑚)
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Running time
To explore the whole graph

• Explore the connected components one-by-one.

• This takes time O(n + m)
• Same computation as before: 

σ𝑤∈𝑉(𝑂 deg 𝑤 + 𝑂 1 ) = 𝑂 |𝐸| + 𝑉 = 𝑂(𝑛 + 𝑚)

or

Here the running time is 
O(m) like before

Here m=0 but it still takes time 
O(n) to explore the graph.
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You check:

DFS works fine on directed graphs too!

A

C

B

Only walk to C, not to B.
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Application of DFS: topological sorting

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

Suppose the dependency graph has no cycles: 
it is a Directed Acyclic Graph (DAG) 56



Application of DFS: topological sorting

• Find an ordering of vertices so that all of the 
dependency requirements are met.
• Aka, if v comes before w in the ordering, there is not an 

edge from w to v.

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

Suppose the dependency graph has no cycles: 
it is a Directed Acyclic Graph (DAG) 57



Let’s do DFS

tar

coreutils

dpkg

libbz2

libselinux1

multiarch
-support

start:2

start:0

start:1

start:3

finish:4

finish:5
finish:6

finish:8
start:7

start:9

finish:10

finish:11
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Let’s do DFS

tar

coreutils

dpkg

libbz2

libselinux1

multiarch
-support

start:2

start:0

start:1

start:3

finish:4

finish:5
finish:6

finish:8
start:7

start:9

finish:10

finish:11

What do you notice about the 
finish times?  Any ideas for how 
we should do topological sort?
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Finish times seem useful

A B

Claim: In general, we’ll always have:

Suppose the underlying 
graph has no cycles

finish: [smaller]finish: [larger]
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Finish times seem useful

A B

Claim: In general, we’ll always have:

Suppose the underlying 
graph has no cycles

finish: [smaller]finish: [larger]

To understand why, let’s go back to that DFS tree.
61



A more general statement 
(this holds even if there are cycles)
This is called the “parentheses theorem”

(check this 
statement 
carefully!)
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A more general statement 
(this holds even if there are cycles)
This is called the “parentheses theorem”

• If v is a descendant of w in this tree:

w.start w.finishv.start v.finish

(check this 
statement 
carefully!)

w

v

timeline
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This is called the “parentheses theorem”

• If v is a descendant of w in this tree:

• If w is a descendant of v in this tree:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish
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A more general statement 
(this holds even if there are cycles)
This is called the “parentheses theorem”

• If v is a descendant of w in this tree:

• If w is a descendant of v in this tree:

• If neither are descendants of each other:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

(or the other way around)

(check this 
statement 
carefully!)

v

w

v

timeline
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Theorem

• If we run DFS on a directed acyclic graph,

68

If

Then B.finishTime < A.finishTime

A B



Back to 
topological sorting

• In what order should I install packages?

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

Suppose the dependency graph has no cycles: 
it is a Directed Acyclic Graph (DAG) 69

If

Then B.finishTime < A.finishTime

A B

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4



Back to 
topological sorting

• In what order should I install packages?

• In reverse order of finishing time in DFS!

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

Suppose the dependency graph has no cycles: 
it is a Directed Acyclic Graph (DAG) 70

If

Then B.finishTime < A.finishTime

A B

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4



Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done, 
put it at the beginning of the list.

71

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4



Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done, 
put it at the beginning of the list.

• multiarch_support

72
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finish:4



Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done, 
put it at the beginning of the list.

• libselinux1

• multiarch_support
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Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done, 
put it at the beginning of the list.

• libbz2

• libselinux1

• multiarch_support

74
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Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done, 
put it at the beginning of the list. • tar

• libbz2

• libselinux1

• multiarch_support

75
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Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done, 
put it at the beginning of the list.

• coreutils

• tar

• libbz2

• libselinux1

• multiarch_support
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Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done, 
put it at the beginning of the list.

• dpkg

• coreutils

• tar

• libbz2

• libselinux1

• multiarch_support

77

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4



What did we just learn?

• DFS can help you solve the topological sorting problem
• That’s the fancy name for the problem of finding an ordering that respects all 

the dependencies

• Thinking about the DFS tree is helpful.
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Example: 

A

B

C

D

Unvisited

In progress

All done

Start:0
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

Start:2 81



Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

Start:2

Start:3
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

Start:3
Leave:4

Start:2

B
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

Start:3
Leave:4

Start:2
Leave:5

BD
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1
Leave: 6

Start:3
Leave:4

Start:2
Leave:5

BDC
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0
Leave: 7

Start:1
Leave: 6

Start:3
Leave:4

Start:2
Leave:5

BDCA
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0
Leave: 7

Start:1
Leave: 6

Start:3
Leave:4

Start:2
Leave:5

BDCA

Do them in this order:
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Another use of DFS 
that we’ve already seen
• In-order enumeration of binary search trees

42 8

7

1

3

5

Do DFS and print a node’s 
label when you are done with 
the left child and before you 

begin the right child.
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• Stanford University
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