
Data Structures

Indian Institute of Information Technology Allahabad

Depth First Search (DFS)

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

How do we explore a graph?

1

2

3

4

5

8

6
7

At each node, you can get a list of neighbors, and
choose to go there if you want.

3

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

4

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

5

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

6

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

7

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

8

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

9

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

10

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

11

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

12

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

13

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

14

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

15

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

16

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

17

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

18

Depth First Search

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

19

Depth First Search
Pseudocode

• Each vertex keeps track of whether it is:
• Unvisited

• In progress

• All done

20

Depth First Search
Pseudocode

• Each vertex keeps track of whether it is:
• Unvisited

• In progress

• All done

• Each vertex will also keep track of:

• The time we first enter it.

• The time we finish with it and mark it all done.

21

Depth First Search
Pseudocode

• Each vertex keeps track of whether it is:
• Unvisited

• In progress

• All done

• Each vertex will also keep track of:

• The time we first enter it.

• The time we finish with it and mark it all done.

You might have seen other ways to implement DFS than what we are about to go
through. This way has more bookkeeping – the bookkeeping will be useful later! 22

Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as .

• for v in w.neighbors:

• if v is :

• currentTime

= DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as

• return currentTime

unvisited

in progress

all done

w

currentTime = 0

23

Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as .

• for v in w.neighbors:

• if v is :

• currentTime

= DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as

• return currentTime

unvisited

in progress

all done

Start:0

currentTime = 1

w

24

Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as .

• for v in w.neighbors:

• if v is :

• currentTime

= DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as

• return currentTime

unvisited

in progress

all done

Start:0

currentTime = 1

w

25

Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as .

• for v in w.neighbors:

• if v is :

• currentTime

= DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as

• return currentTime

unvisited

in progress

all done

Start:0

Start: 1

currentTime = 2

w

26

Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as .

• for v in w.neighbors:

• if v is :

• currentTime

= DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as

• return currentTime

unvisited

in progress

all done

Start:0

Start: 1

currentTime = 2

27

Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as .

• for v in w.neighbors:

• if v is :

• currentTime

= DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as

• return currentTime

unvisited

in progress

all done

Start:0

Start: 1

Takes until
currentTime = 20

currentTime = 2

28

Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as .

• for v in w.neighbors:

• if v is :

• currentTime

= DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as

• return currentTime

unvisited

in progress

all done

Start:0

Start: 1

Takes until
currentTime = 20

currentTime = 20

29

Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as .

• for v in w.neighbors:

• if v is :

• currentTime

= DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as

• return currentTime

unvisited

in progress

all done

Start:0

Start: 1

Takes until
currentTime = 20

currentTime = 21

30

Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as .

• for v in w.neighbors:

• if v is :

• currentTime

= DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as

• return currentTime

unvisited

in progress

all done

Start:0

Start: 1
End: 21

Takes until
currentTime = 20

currentTime = 21

w

31

Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as .

• for v in w.neighbors:

• if v is :

• currentTime

= DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as

• return currentTime

unvisited

in progress

all done

Start:0

Start: 1
End: 21

Takes until
currentTime = 20

currentTime = 22

w

32

Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as .

• for v in w.neighbors:

• if v is :

• currentTime

= DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as

• return currentTime

unvisited

in progress

all done

Start:0

Start: 1
End: 21

Takes until
currentTime = 20

currentTime = 22

w

33

etc

Fun exercise

• Write pseudocode for an iterative version of DFS.

34

DFS finds all the nodes reachable from the
starting point

start

35

DFS finds all the nodes reachable from the
starting point

start

In an undirected graph, this is
called a connected component.

36

DFS finds all the nodes reachable from the
starting point

start

One application of DFS: finding
connected components.

In an undirected graph, this is
called a connected component.

37

To explore the whole graph

• Do it repeatedly!

start

start

38

Why is it called depth-first?
• We are implicitly building a tree:

A

D

B

C

E

G

F

39

Why is it called depth-first?
• We are implicitly building a tree:

A

D

B

C

E

G

F

YOINK!

40

Why is it called depth-first?
• We are implicitly building a tree:

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F D

E

41

Why is it called depth-first?
• We are implicitly building a tree:

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F D

E

42

Why is it called depth-first?
• We are implicitly building a tree:

• First, we go as deep as we can.

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F D

E

43

Why is it called depth-first?
• We are implicitly building a tree:

• First, we go as deep as we can.

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F D

E

Call this the
“DFS tree”

44

Running time
To explore just the connected component we started in

• We look at each edge at most twice.
• Once from each of its endpoints

• And basically we don’t do anything else.

• So…

45

Running time
To explore just the connected component we started in

• We look at each edge at most twice.
• Once from each of its endpoints

• And basically we don’t do anything else.

• So…

O(m)

46

Running time
To explore just the connected component we started in

• Assume we are using the linked-list format for G.

• Say C = (V’, E’) is a connected component.

• We visit each vertex in C exactly once.
• Here, “visit” means “call DFS on”

• At each vertex w, we:
• Do some book-keeping: O(1)
• Loop over w’s neighbors and check if they are visited (and

then potentially make a recursive call): O(1) per neighbor or
O(deg(w)) total.

• Total time:
• σ𝑤∈𝑉′(𝑂 deg 𝑤 + 𝑂 1)

• = 𝑂 |𝐸′| + 𝑉′

• = 𝑂(|𝐸′|) 47

Running time
To explore just the connected component we started in

• Assume we are using the linked-list format for G.

• Say C = (V’, E’) is a connected component.

• We visit each vertex in C exactly once.
• Here, “visit” means “call DFS on”

• At each vertex w, we:
• Do some book-keeping: O(1)
• Loop over w’s neighbors and check if they are visited (and

then potentially make a recursive call): O(1) per neighbor or
O(deg(w)) total.

• Total time:
• σ𝑤∈𝑉′(𝑂 deg 𝑤 + 𝑂 1)

• = 𝑂 |𝐸′| + 𝑉′

• = 𝑂(|𝐸′|) 48

Running time
To explore just the connected component we started in

• Assume we are using the linked-list format for G.

• Say C = (V’, E’) is a connected component.

• We visit each vertex in C exactly once.
• Here, “visit” means “call DFS on”

• At each vertex w, we:
• Do some book-keeping: O(1)
• Loop over w’s neighbors and check if they are visited (and

then potentially make a recursive call): O(1) per neighbor or
O(deg(w)) total.

• Total time:
• σ𝑤∈𝑉′(𝑂 deg 𝑤 + 𝑂 1)

• = 𝑂 |𝐸′| + 𝑉′

• = 𝑂(|𝐸′|) 49

Running time
To explore just the connected component we started in

• Assume we are using the linked-list format for G.

• Say C = (V’, E’) is a connected component.

• We visit each vertex in C exactly once.
• Here, “visit” means “call DFS on”

• At each vertex w, we:
• Do some book-keeping: O(1)
• Loop over w’s neighbors and check if they are visited (and

then potentially make a recursive call): O(1) per neighbor or
O(deg(w)) total.

• Total time:
• σ𝑤∈𝑉′(𝑂 deg 𝑤 + 𝑂 1)

• = 𝑂 |𝐸′| + 𝑉′

• = 𝑂(|𝐸′|)
In a connected graph,
|𝑉’| ≤ |𝐸’| + 1.

50

Running time
To explore the whole graph

51

Running time
To explore the whole graph

• Explore the connected components one-by-one.

• This takes time O(n + m)
• Same computation as before:

σ𝑤∈𝑉(𝑂 deg 𝑤 + 𝑂 1) = 𝑂 |𝐸| + 𝑉 = 𝑂(𝑛 + 𝑚)

52

Running time
To explore the whole graph

• Explore the connected components one-by-one.

• This takes time O(n + m)
• Same computation as before:

σ𝑤∈𝑉(𝑂 deg 𝑤 + 𝑂 1) = 𝑂 |𝐸| + 𝑉 = 𝑂(𝑛 + 𝑚)

Here the running time is
O(m) like before 53

Running time
To explore the whole graph

• Explore the connected components one-by-one.

• This takes time O(n + m)
• Same computation as before:

σ𝑤∈𝑉(𝑂 deg 𝑤 + 𝑂 1) = 𝑂 |𝐸| + 𝑉 = 𝑂(𝑛 + 𝑚)

or

Here the running time is
O(m) like before

Here m=0 but it still takes time
O(n) to explore the graph.

54

You check:

DFS works fine on directed graphs too!

A

C

B

Only walk to C, not to B.

55

Application of DFS: topological sorting

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

Suppose the dependency graph has no cycles:
it is a Directed Acyclic Graph (DAG) 56

Application of DFS: topological sorting

• Find an ordering of vertices so that all of the
dependency requirements are met.
• Aka, if v comes before w in the ordering, there is not an

edge from w to v.

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

Suppose the dependency graph has no cycles:
it is a Directed Acyclic Graph (DAG) 57

Let’s do DFS

tar

coreutils

dpkg

libbz2

libselinux1

multiarch
-support

start:2

start:0

start:1

start:3

finish:4

finish:5
finish:6

finish:8
start:7

start:9

finish:10

finish:11

58

Let’s do DFS

tar

coreutils

dpkg

libbz2

libselinux1

multiarch
-support

start:2

start:0

start:1

start:3

finish:4

finish:5
finish:6

finish:8
start:7

start:9

finish:10

finish:11

What do you notice about the
finish times? Any ideas for how
we should do topological sort?

59

Finish times seem useful

A B

Claim: In general, we’ll always have:

Suppose the underlying
graph has no cycles

finish: [smaller]finish: [larger]

60

Finish times seem useful

A B

Claim: In general, we’ll always have:

Suppose the underlying
graph has no cycles

finish: [smaller]finish: [larger]

To understand why, let’s go back to that DFS tree.
61

A more general statement
(this holds even if there are cycles)
This is called the “parentheses theorem”

(check this
statement
carefully!)

62

A more general statement
(this holds even if there are cycles)
This is called the “parentheses theorem”

• If v is a descendant of w in this tree:

w.start w.finishv.start v.finish

(check this
statement
carefully!)

w

v

timeline

63

A more general statement
(this holds even if there are cycles)
This is called the “parentheses theorem”

• If v is a descendant of w in this tree:

• If w is a descendant of v in this tree:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

(check this
statement
carefully!)

timeline

64

A more general statement
(this holds even if there are cycles)
This is called the “parentheses theorem”

• If v is a descendant of w in this tree:

• If w is a descendant of v in this tree:

• If neither are descendants of each other:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

(or the other way around)

(check this
statement
carefully!)

v

w

v

timeline

65

Theorem

• If we run DFS on a directed acyclic graph,

68

If

Then B.finishTime < A.finishTime

A B

Back to
topological sorting

• In what order should I install packages?

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

Suppose the dependency graph has no cycles:
it is a Directed Acyclic Graph (DAG) 69

If

Then B.finishTime < A.finishTime

A B

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4

Back to
topological sorting

• In what order should I install packages?

• In reverse order of finishing time in DFS!

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

Suppose the dependency graph has no cycles:
it is a Directed Acyclic Graph (DAG) 70

If

Then B.finishTime < A.finishTime

A B

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4

Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done,
put it at the beginning of the list.

71

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4

Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done,
put it at the beginning of the list.

• multiarch_support

72

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4

Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done,
put it at the beginning of the list.

• libselinux1

• multiarch_support

73

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4

Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done,
put it at the beginning of the list.

• libbz2

• libselinux1

• multiarch_support

74

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4

Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done,
put it at the beginning of the list. • tar

• libbz2

• libselinux1

• multiarch_support

75

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4

Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done,
put it at the beginning of the list.

• coreutils

• tar

• libbz2

• libselinux1

• multiarch_support

76

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4

Topological Sorting (on a DAG)

• Do DFS

• When you mark a vertex as all done,
put it at the beginning of the list.

• dpkg

• coreutils

• tar

• libbz2

• libselinux1

• multiarch_support

77

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4

What did we just learn?

• DFS can help you solve the topological sorting problem
• That’s the fancy name for the problem of finding an ordering that respects all

the dependencies

• Thinking about the DFS tree is helpful.

78

Example:

A

B

C

D

Unvisited

In progress

All done

Start:0

79

Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

80

Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

Start:2 81

Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

Start:2

Start:3

82

Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

Start:3
Leave:4

Start:2

B

83

Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

Start:3
Leave:4

Start:2
Leave:5

BD

84

Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1
Leave: 6

Start:3
Leave:4

Start:2
Leave:5

BDC

85

Example

A

B

C

D

Unvisited

In progress

All done

Start:0
Leave: 7

Start:1
Leave: 6

Start:3
Leave:4

Start:2
Leave:5

BDCA

86

Example

A

B

C

D

Unvisited

In progress

All done

Start:0
Leave: 7

Start:1
Leave: 6

Start:3
Leave:4

Start:2
Leave:5

BDCA

Do them in this order:

87

Another use of DFS
that we’ve already seen
• In-order enumeration of binary search trees

42 8

7

1

3

5

Do DFS and print a node’s
label when you are done with
the left child and before you

begin the right child.

88

• Stanford University

89

Acknowledgement

Thank You

90

	Slide 1
	Slide 2
	Slide 3: How do we explore a graph?
	Slide 4: Depth First Search
	Slide 5: Depth First Search
	Slide 6: Depth First Search
	Slide 7: Depth First Search
	Slide 8: Depth First Search
	Slide 9: Depth First Search
	Slide 10: Depth First Search
	Slide 11: Depth First Search
	Slide 12: Depth First Search
	Slide 13: Depth First Search
	Slide 14: Depth First Search
	Slide 15: Depth First Search
	Slide 16: Depth First Search
	Slide 17: Depth First Search
	Slide 18: Depth First Search
	Slide 19: Depth First Search
	Slide 20: Depth First Search Pseudocode
	Slide 21: Depth First Search Pseudocode
	Slide 22: Depth First Search Pseudocode
	Slide 23: Depth First Search
	Slide 24: Depth First Search
	Slide 25: Depth First Search
	Slide 26: Depth First Search
	Slide 27: Depth First Search
	Slide 28: Depth First Search
	Slide 29: Depth First Search
	Slide 30: Depth First Search
	Slide 31: Depth First Search
	Slide 32: Depth First Search
	Slide 33: Depth First Search
	Slide 34: Fun exercise
	Slide 35: DFS finds all the nodes reachable from the starting point
	Slide 36: DFS finds all the nodes reachable from the starting point
	Slide 37: DFS finds all the nodes reachable from the starting point
	Slide 38: To explore the whole graph
	Slide 39: Why is it called depth-first?
	Slide 40: Why is it called depth-first?
	Slide 41: Why is it called depth-first?
	Slide 42: Why is it called depth-first?
	Slide 43: Why is it called depth-first?
	Slide 44: Why is it called depth-first?
	Slide 45: Running time To explore just the connected component we started in
	Slide 46: Running time To explore just the connected component we started in
	Slide 47: Running time To explore just the connected component we started in
	Slide 48: Running time To explore just the connected component we started in
	Slide 49: Running time To explore just the connected component we started in
	Slide 50: Running time To explore just the connected component we started in
	Slide 51: Running time To explore the whole graph
	Slide 52: Running time To explore the whole graph
	Slide 53: Running time To explore the whole graph
	Slide 54: Running time To explore the whole graph
	Slide 55: You check:
	Slide 56: Application of DFS: topological sorting
	Slide 57: Application of DFS: topological sorting
	Slide 58: Let’s do DFS
	Slide 59: Let’s do DFS
	Slide 60: Finish times seem useful
	Slide 61: Finish times seem useful
	Slide 62: A more general statement (this holds even if there are cycles) This is called the “parentheses theorem”
	Slide 63: A more general statement (this holds even if there are cycles) This is called the “parentheses theorem”
	Slide 64: A more general statement (this holds even if there are cycles) This is called the “parentheses theorem”
	Slide 65: A more general statement (this holds even if there are cycles) This is called the “parentheses theorem”
	Slide 68: Theorem
	Slide 69: Back to topological sorting
	Slide 70: Back to topological sorting
	Slide 71: Topological Sorting (on a DAG)
	Slide 72: Topological Sorting (on a DAG)
	Slide 73: Topological Sorting (on a DAG)
	Slide 74: Topological Sorting (on a DAG)
	Slide 75: Topological Sorting (on a DAG)
	Slide 76: Topological Sorting (on a DAG)
	Slide 77: Topological Sorting (on a DAG)
	Slide 78: What did we just learn?
	Slide 79: Example:
	Slide 80: Example
	Slide 81: Example
	Slide 82: Example
	Slide 83: Example
	Slide 84: Example
	Slide 85: Example
	Slide 86: Example
	Slide 87: Example
	Slide 88: Another use of DFS that we’ve already seen
	Slide 89
	Slide 90: Thank You

