
Data Structures

Indian Institute of Information Technology Allahabad

Hashing

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

● Hashing!
○ What operations are we trying to support?

○ Hash Functions

○ Dealing with collisions

○ What makes a good hash function?

○ Universal hash families are what we’re looking for!

Today

3
3

Hash Tables Overview

What operations does it support?

4
4

Again, we want to keep track of objects that have keys (aka, nodes

with keys)
5

5
5

The Task

Again, we want to keep track of objects that have keys (aka, nodes

with keys)
5

Sorted Arrays Linked Lists

1 2 3 4 5 7 3 5 1 4 7 2HEAD

O(n) INSERT/DELETE: first, find the
relevant element (via SEARCH) and
move a bunch of elements in the array

O(log n) SEARCH: use binary search to
see if an element is in A

O(1) INSERT: just insert the element
at the head of the linked list

O(n) SEARCH/DELETE: since the list is not
necessarily sorted, you need to scan the
list (delete by manipulating pointers)

6
6

The Task

7
7

Hash Table: Motivation

OPERATION
SORTED
ARRAY

UNSORTED
LINKED LIST

HASH TABLES
(HOPEFULLY)

SEARCH O(log(n)) O(n) O(1)

DELETE O(n) O(n) O(1)

INSERT O(n) O(1) O(1)

8
8

Hash Table: Motivation

What is a *naive*
way to achieve these

runtimes?

OPERATION
SORTED
ARRAY

UNSORTED
LINKED LIST

HASH TABLES
(HOPEFULLY)

SEARCH O(log(n)) O(n) O(1)

DELETE O(n) O(n) O(1)

INSERT O(n) O(1) O(1)

9999984 52
Suppose you’re storing
numbers from 1 - 1000:

9
9

Attempt 1: Direct Addressing

Reasonable Attempt: Direct Addressing!
(each address/bucket stores one type of item)

9999984 52
Suppose you’re storing
numbers from 1 - 1000:

10
10

Attempt 1: Direct Addressing

Reasonable Attempt: Direct Addressing!
(each address/bucket stores one type of item)

2 3 4 5 · · · 9971 998 999 1000

9999984 52
Suppose you’re storing
numbers from 1 - 1000:

11
11

Attempt 1: Direct Addressing

Reasonable Attempt: Direct Addressing!
(each address/bucket stores one type of item)

O(1) INSERT/DELETE/SEARCH: Just index into the bucket!

2 3 4 5 · · · 9971 998 999 1000

2 9994 9985

9999984 52
Suppose you’re storing
numbers from 1 - 1000:

12
12

Attempt 1: Direct Addressing

Reasonable Attempt: Direct Addressing!
(each address/bucket stores one type of item)

O(1) INSERT/DELETE/SEARCH: Just index into the bucket!

2 3 4 5 · · · 9971 998 999 1000

2 9994 9985

9999984 52
Suppose you’re storing
numbers from 1 - 1000:

13
13

Attempt 1: Direct Addressing

Not bad!

But what’s the issue with this
approach?

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

14
14

Attempt 1: Direct Addressing

Reasonable Attempt (???): Direct Addressing!
(each address/bucket stores one type of item)

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

15
15

Attempt 1: Direct Addressing

Reasonable Attempt (???): Direct Addressing!
(each address/bucket stores one type of item)

2 3 ... 1000 10021 ... 1010 ...

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

16
16

Attempt 1: Direct Addressing

1001

Reasonable Attempt (???): Direct Addressing!
(each address/bucket stores one type of item)

O(1) INSERT/DELETE/SEARCH: Just index into the bucket!

2 3 ... 1000 10021 ... 1010 ...

2 10103 10021000

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

17
17

Attempt 1: Direct Addressing

1001

Reasonable Attempt (???): Direct Addressing!
(each address/bucket stores one type of item)

O(1) INSERT/DELETE/SEARCH: Just index into the bucket!

2 3 ... 1000 10021 ... 1010 ...

2 10103 10021000

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

18
18

Attempt 1: Direct Addressing

1001

But the space requirement is
HUGE...

On the other extreme, we could save a lot of space by using linked
lists!

2 1000 1002 3HEAD 1010

19
19

Attempt 2: Back to Linked List

• Good news: Space is now proportional to the number of objects
you deal with

• Bad news: Searching for an object is now going to scale with the
number of inputs you deal with… not close to our desired O(1)!

• The direct-addressing approach still has merit because of it’s fast
object search/access

On the other extreme, we could save a lot of space by using linked
lists!

2 1000 1002 3HEAD 1010

20
20

Attempt 2: Back to Linked List

We like the functionality of a direct-addressable array for

constant time access

(super fast INSERT/DELETE/SEARCH)

But reserving an bucket/array slot for each possible key leads to

unreasonable space requirements

21
21

How to improve this?

We like the functionality of a direct-addressable array for

constant time access

(super fast INSERT/DELETE/SEARCH)

But reserving an bucket/array slot for each possible key leads to

unreasonable space requirements

Let’s try bucketing by the least-

significant digit…
22
22

How to improve this?

Bucket by last digit?

1 2 3 4 5 60 7 8 9

23
23

Bucketing Attempt 1

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

Bucket by last digit?

1 2 3 4 5 60 7 8 9

24
24

Bucketing Attempt 1

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

1010

1000

2 3

1002

Bucket by last digit?

1 2 3 4 5 60 7 8 9

O(1) INSERT:
Just index into the bucket (& insert at front

of a linked list)!
25
25

Bucketing Attempt 1

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

1010

1000

2 3

1002

Bucket by last digit?

O(1) INSERT: Just index into the bucket (& insert at front of a linked list)!

1 2 3 4 5 60 7 8 9

O(??????) SEARCH/DELETE:
Go visit bucket & search through until you

find it...
26
26

Bucketing Attempt 1

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

1010

1000

2 3

1002

Bucket by last digit?

O(1) INSERT: Just index into the bucket (& insert at front of a linked list)!
O(n) SEARCH/DELETE: Go visit bucket & search through until you find it...

1 2 3 4 5 60 7 8 9

O(n) SEARCH/DELETE:
Go visit bucket & search through until you

find it...
27
27

Bucketing Attempt 1

Under this scheme, a bad guy could give us inputs that
yields quite ugly worst-case runtimes...

1010

1000

2 3

1002

Bucket by last digit?

O(1) INSERT: Just index into the bucket (& insert at front of a linked list)!
O(n) SEARCH/DELETE: Go visit bucket & search through until you find it...

Under this scheme, a bad guy could give us inputs that
yields quite ugly worst-case runtimes...

1 2 3 4 5 60 7 8 9

2 3

1002

1010

1000

O(n) SEARCH/DELETE:
Go visit bucket & search through until you

find it...

Maybe another bucketing scheme?

28
28

Bucketing Attempt 1

Bucket by last digit of (number * 7) mod 3

1 2 3 4 5 60 7 8 9

29
29

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

Bucketing Attempt 2

Bucket by last digit of (number * 7) mod 3

1 2 3 4 5 60 7 8 9

30
30

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

Bucketing Attempt 2

2

3

1002 1010

1000

Bucket by last digit of (number * 7) mod 3

1 2 3 4 5 60 7 8 9

O(1) INSERT:
Just index into the bucket (& insert at front

of a linked list)!
31
31

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

Bucketing Attempt 2

2

3

1002 1010

1000

Bucket by last digit of (number * 7) mod 3

1 2 3 4 5 60 7 8 9

O(??????) SEARCH/DELETE:
Go visit bucket & search through until you

find it...
32
32

101010023 10002
Suppose you’re storing
numbers from 1 - 1010:

Bucketing Attempt 2

2

3

1002 1010

1000

Bucket by last digit of (number * 7) mod 3

1 2 3 4 5 60 7 8 9

2

3

1002 1010

1000

O(n) SEARCH/DELETE:
Go visit bucket & search through until you

find it...
33
33

Bucketing Attempt 2

Under this scheme, a bad guy could give us inputs that
yields quite ugly worst-case runtimes...

Bucket by last digit of (number * 7) mod 3

1 2 3 4 5 60 7 8 9

2

3

1002 1010

1000

O(n) SEARCH/DELETE:
Go visit bucket & search through until you

find it...
34
34

Bucketing Attempt 2

Under this scheme, a bad guy could give us inputs that
yields quite ugly worst-case runtimes...

Seems like a bad guy could still thwart us.
There are other bucketing schemes we could use,

so to reason about them more formally,
let’s talk about HASH FUNCTIONS.

What are “good” hash functions?

35
35

Hash Functions

There exists a universe U of keys, with size M.

Generally, M is really big. Examples:

● U = the set of all ASCII strings of length 20. M = 2620

● U = the set of all IPv4 addresses. M = 232

● U = the set of all possible YouTube view stats. M = 6.8 billion

36
36

Some Terminology

There exists a universe U of keys, with size M.

Generally, M is really big. Examples:

● U = the set of all ASCII strings of length 20. M = 2620

● U = the set of all IPv4 addresses. M = 232

● U = the set of all possible YouTube view stats. M = 6.8 billion

Our job is to store n keys, and we assume M >> n
• Only a few (at most n) elements of U are ever going to show up.

• We don’t know which ones will show up in advance.

37
37

Some Terminology

There exists a universe U of keys, with size M.

Generally, M is really big. Examples:

● U = the set of all ASCII strings of length 20. M = 2620

● U = the set of all IPv4 addresses. M = 232

● U = the set of all possible YouTube view stats. M = 6.8 billion

Our job is to store n keys, and we assume M >> n
• Only a few (at most n) elements of U are ever going to show up.

• We don’t know which ones will show up in advance.

A hash function h: U → {1, …, n}
maps elements of U to buckets 1, …, n

38
38

Some Terminology

There exists a universe U of keys, with size M.

Generally, M is really big. Examples:

● U = the set of all ASCII strings of length 20. M = 2620

● U = the set of all IPv4 addresses. M = 232

● U = the set of all possible YouTube view stats. M = 6.8 billion

Our job is to store n keys, and we assume M >> n
• Only a few (at most n) elements of U are ever going to show up.

• We don’t know which ones will show up in advance.

A hash function h: U → {1, …, n}
maps elements of U to buckets 1, …, n

39
39

Some Terminology

NOTE:

For this lecture, I’m assuming that the
of elements I receive = # of buckets (both are n).
This doesn’t have to be the case, but we usually aim for

#buckets = O(# elements that show up)
(otherwise, we’re using “too much” space)

A hash function h: U → {1, …, n}
maps elements of U to buckets 1, …, n

40
40

Some Terminology

A hash function h: U → {1, …, n}
maps elements of U to buckets 1, …, n

···

0

1

2

31002

1010
37

3

552

This cloud is U. All
the keys in universe

live in this blob.

17
n buckets

n-2

n-1
41
41

Some Terminology

A hash function h: U → {1, …, n}
maps elements of U to buckets 1, …, n

···

0

1

2

31002

1010
37

3

552

This cloud is U. All
the keys in universe

live in this blob.

17

The hash function
being used here is

h(x) = last digit of x

n buckets

n-2

n-1
42
42

Some Terminology

A hash function h: U → {1, …, n}
maps elements of U to buckets 1, …, n

···

0

1

2

31002

1010
37

3

552

This cloud is U. All
the keys in universe

live in this blob.

17

The hash function
being used here is

h(x) = last digit of x

n buckets

n-2

n-1
43
43

Some Terminology

As we’ll see later,
this is a terrible hash

function & is used here
for demonstration

purposes only!

A hash function h: U → {1, …, n}
maps elements of U to buckets 1, …, n

···

0

1

2

31002

1010
37

3

552

This cloud is U. All
the keys in universe

live in this blob.

17

The hash function
being used here is

h(x) = last digit of x

n buckets

n-2

n-1
44
44

Some Terminology

• A hash function tells you where to start looking for an object.

• For example, if a particular hash function h has h(1002) = 2 ,
then we say “1002 hashes to 2”, and we go to bucket 2 to
search for 1002, or insert 1002, or delete 1002.

···

0

1

2

31002

1010
37

3

552 17

The hash function
being used here is

h(x) = last digit of x

n buckets

n-2

n-1
45
45

Collisions
Collisions are inevitable!
(when a hash function would map 2
different keys to the same bucket)

This is because of the Pigeonhole Principle.
Since the size of universe U > # of buckets, every
hash function (no matter how clever), suffers
from at least one collision.

To resolve collisions, one common method is to use chaining!
We’re just giving a formal name to our bucketing example from earlier:

represent each bucket’s contents as a linked list !
(Another method

is called “Open
Addressing”)

46
46

Collision Resolution: Chaining

To resolve collisions, one common method is to use chaining!
We’re just giving a formal name to our bucketing example from earlier:

represent each bucket’s contents as a linked list !
(Another method

is called “Open
Addressing”)

1002

1010

3

The hash function
being used here is

h(x) = last digit of x

37

552 17

1010

1002 552

···

0

1

2

3

n-2

n-1 47
47

Collision Resolution: Chaining

···

0

1

2

3

n-2

n-1

1002

12

2

The hash function
being used here is

h(x) = last digit of x

But if the items are all clumped together in a single bucket, SEARCH/DELETE
may be very slow because of the linked list traversal…

72

552 112
1010 1002 552

Imagine if a bad
guy chose these

numbers that
all end in 2:

48
48

Collision Resolution: Chaining

OUR GOAL: Design a function h: U → {1, …, n} so that no matter
what n items of U a bad guy chooses & the operations they

choose to perform, the buckets will be balanced.

(Here, balanced means O(1) entries per bucket)

Then we’d achieve our dream of O(1) INSERT/DELETE/SEARCH.

Remember worst-case analysis:

49
49

Hash Table Goals

Can you come up with such a function?

OUR GOAL: Design a function h: U → {1, …, n} so that no matter
what n items of U a bad guy chooses & the operations they

choose to perform, the buckets will be balanced.

(Here, balanced means O(1) entries per bucket)

Then we’d achieve our dream of O(1) INSERT/DELETE/SEARCH.

Remember worst-case analysis:

50
50

Hash Table Goals

OUR GOAL: Design a function h: U → {1, …, n} so that no matter what n
items of U a bad guy chooses, the buckets will be balanced (have O(1) size).

Can you come up with such a function? No.
No deterministic hash function can defeat worst-case input!

51
51

Hash Table Goals

OUR GOAL: Design a function h: U → {1, …, n} so that no matter what n
items of U a bad guy chooses, the buckets will be balanced (have O(1) size).

Can you come up with such a function? No.
No deterministic hash function can defeat worst-case input!

● The universe U has M items

● They get hashed into n buckets

● At least 1 bucket has at least M/n items hashed to it (Pigeonhole)

● M is wayyyy bigger than n, so M/n is bigger than n

The n items the bad guy chooses are items that all land
in this very full bucket. That bucket has size Ω(n).

52
52

Hash Table Goals

OUR GOAL: Design a function h: U → {1, …, n} so that no matter what n
items of U a bad guy chooses, the buckets will be balanced (have O(1) size).

Can you come up with such a function? No.
No deterministic hash function can defeat worst-case input!

● The universe U has M items

● They get hashed into n buckets

● At least 1 bucket has at least M/n items hashed to it (Pigeonhole)

● M is wayyyy bigger than n, so M/n is bigger than n

The n items the bad guy chooses are items that all land
in this very full bucket. That bucket has size Ω(n).

The problem is that the bad guy knows our hash

function beforehand. 53
53

Hash Table Goals

OUR GOAL: Design a function h: U → {1, …, n} so that no matter what n
items of U a bad guy chooses, the buckets will be balanced (have O(1) size).

Can you come up with such a function? No.
No deterministic hash function can defeat worst-case input!

● The universe U has M items

● They get hashed into n buckets

● At least 1 bucket has at least M/n items hashed to it (Pigeonhole)

● M is wayyyy bigger than n, so M/n is bigger than n

The n items the bad guy chooses are items that all land
in this very full bucket. That bucket has size Ω(n).

The problem is that the bad guy knows our hash

function beforehand. 54
54

Hash Table Goals

Maybe there’s a way to weaken the

adversary...

LET’S BRING IN SOME

RANDOMNESS!

Hash Functions and
Randomness

What it means to weaken the adversary & ways to do it

55
55

You can think of it like a game:

1. You announce your set of hash functions, H.
2. The adversary chooses n items for your hash function to hash.
3. You then randomly pick a hash function h from H to hash the n

items.

So, our strategy is to define a set of hash functions, and then
we randomly choose a hash function h from this set to use!

56
56

Intuition

You can think of it like a game:

1. You announce your set of hash functions, H.
2. The adversary chooses n items for your hash function to hash.
3. You then randomly pick a hash function h from H to hash the n

items.

So, our strategy is to define a set of hash functions, and then
we randomly choose a hash function h from this set to use!

57
57

Intuition

What would make a “good” set of hash functions H?

What we want

Let’s see an example of a set of hash functions H
that achieves this goal!

Design a set H = {h1, h2, h3, …, hk} where hi : U → {1, …, n},
such that if we chose a random h in H and after an
adversary chooses n items {u1, u2, …, un} to hash,

for any item ui,
the expected # of items in ui’s bucket is O(1)

58
58

Intuition What would make a “good”
set of hash functions H?

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

WHAT WE WANT:
Design a set H = {h1, h2, h3, …, hk} where hi : U → {1, …, n}, such that if we chose a

uniformly random h in H and after an adversary chooses n items {u1, u2, …, un} to hash,

for any item ui,
the expected # of items in ui’s bucket is O(1)

59
59

H = Exhaustive Set of All Hash Functions

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

0

0

0

1

0

0

0

0

1

1

0

1

0

1

0

1

1

0

0

1

1

1

1

1

h1 h2 h3 h4 h5 h6 h7 h8

“a”

“b”

“c”

The 0’s and 1’s
represent the binary

buckets i.e. h8 will
hash “b” to bucket 1.

WHAT WE WANT:
Design a set H = {h1, h2, h3, …, hk} where hi : U → {1, …, n}, such that if we chose a

uniformly random h in H and after an adversary chooses n items {u1, u2, …, un} to hash,

for any item ui,
the expected # of items in ui’s bucket is O(1)

Here is an example
where

U = {“a”, “b”, “c”}
so M = 3. Also, we

have n = 2. 60
60

H = Exhaustive Set of All Hash Functions

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

61
61

H = Exhaustive Set of All Hash Functions

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

62
62

H = Exhaustive Set of All Hash Functions

This probability is taken
over the random choice of

hash function!

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

63
63

H = Exhaustive Set of All Hash Functions

This probability is taken
over the random choice of

hash function!

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

64
64

H = Exhaustive Set of All Hash Functions

This probability is taken
over the random choice of

hash function!

How do we know that
P[h(ui) = h(uj)] = 1/n ?

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

65
65

H = Exhaustive Set of All Hash Functions

This probability is taken
over the random choice of

hash function!

How do we know that
P[h(ui) = h(uj)] = 1/n ?

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

66
66

H = Exhaustive Set of All Hash Functions

This probability is taken
over the random choice of

hash function!

O(1)
This is what we

wanted!

How do we know that
P[h(ui) = h(uj)] = 1/n ?

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

67
67

H = Exhaustive Set of All Hash Functions

This probability is taken
over the random choice of

hash function!

O(1)
This is what we

wanted!

How do we know that
P[h(ui) = h(uj)] = 1/n ?

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

68
68

H = Exhaustive Set of All Hash Functions

This probability is taken
over the random choice of

hash function!

Good News:

H achieves our goal!
If we choose a uniformly random hash function
from Exhaustive Set of All Hash Functions,

then INSERT/DELETE/SEARCH on any n elements
will have expected runtime of O(1).

O(1)
This is what we

wanted!

How do we know that
P[h(ui) = h(uj)] = 1/n ?

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

69
69

H = Exhaustive Set of All Hash Functions

This probability is taken
over the random choice of

hash function!
Bad News:

How many bits does it take to store a uniformly
random hash function?

A lot!

We’d use a lookup table: one entry per element of U, each storing which
bucket to hash that element to.

(M elements) * (log(n) bits to write down a bucket #) = M log n bits

This is HUGE… (& enough to do direct addressing!)

70
70

How many bits does it take to store a uniformly
random hash function?

We’d use a lookup table: one entry per element of U, each storing which
bucket to hash that element to.

(M elements) * (log(n) bits to write down a bucket #) = M log n bits

This is HUGE… (& enough to do direct addressing!)

71
71

How many bits does it take to store a uniformly
random hash function?

How do we fix this size issue?

Universal Hash Families

“Good” sets of hash functions that aren’t as large!

72
72

O(1)
This is what we

wanted!

The fact that

P[h(ui)=h(uj)] = 1/n

did all the work
here

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

73
73

What we wanted

O(1)
This is what we

wanted!

The fact that

P[h(ui)=h(uj)] = 1/n

did all the work
here

H = the exhaustive set of all hash functions that map
elements in the universe U to buckets 1 to n.

H contains a total of nM hash functions.

74
74

What we wanted

The exhaustive set of all hash functions achieved

our goal but was way too big, so let’s pick h from

a smaller hash family where

P[h(ui) = h(uj)] ≤ 1/n

A hash family is a fancy name for a set of hash functions.

A hash family H is a universal hash family if,
when h is chosen uniformly at random from H,

75
75

Universal Hash Family

Then if we randomly choose h from a universal hash family H,
we’ll be guaranteed that:

E[# of items in ui’s bucket] ≤ 2 = O(1)

A hash family is a fancy name for a set of hash functions.

A hash family H is a universal hash family if,
when h is chosen uniformly at random from H,

76
76

Universal Hash Family

O(1)
This is what we

wanted!

≤

This inequality is now
what a universal hash

family guarantees!

77
77

Flashback of the Math
A hash family H is a universal hash
family if, when h is chosen
uniformly at random from H,

Are there smaller ones universal hash families?

78
78

A Small Universal Hash Family?

H = {h0, h1} where

h0 = MOST_SIGNIFICANT_DIGIT

h1 = LEAST_SIGNIFICANT_DIGIT

79
79

A Non-Example

Why is this not a universal hash family?

Why is this not a universal hash family?

There’s a ½ probability of choosing h0, and h0(153) = h0(173) = bucket 1

There’s a ½ probability of choosing h1, and h1(153) = h1(173) = bucket 3

Probability that a
randomly chosen h from
H collides 153 & 173 is 1!

H = {h0, h1} where

h0 = MOST_SIGNIFICANT_DIGIT

h1 = LEAST_SIGNIFICANT_DIGIT

80
80

A Non-Example

Here is one of the more well-studied universal hash families:

Pick a prime p ≥ M

Define ha,b(x) = ((ax + b) mod p) mod n

H = { ha,b : a ∊ {1, …, p - 1}, b ∊ {0, …, p - 1} }

81
81

An Example

Here is one of the more well-studied universal hash families:

Example: Suppose n = 3, and p = 5. Here’s h2,4:

h2,4(1) = ((2*1 + 4) mod 5) mod 3 = (6 mod 5) mod 3 = 1 mod 3 = 1

h2,4(4) = ((2*4 + 4) mod 5) mod 3 = (12 mod 5) mod 3 = 2 mod 3 = 2

h2,4(3) = ((2*3 + 4) mod 5) mod 3 = (6 mod 5) mod 3 = 1 mod 3 = 1

Pick a prime p ≥ M

Define ha,b(x) = ((ax + b) mod p) mod n

H = { ha,b : a ∊ {1, …, p - 1}, b ∊ {0, …, p - 1} }

82
82

An Example

Here is one of the more well-studied universal hash families:

Pick a prime p ≥ M

Define ha,b(x) = ((ax + b) mod p) mod n

H = { ha,b : a ∊ {1, …, p - 1}, b ∊ {0, …, p - 1} }

83
83

An Example

To draw a hash function h from H:

Pick a random a
in {1, …, p - 1}.

Pick a random b
in {0, …, p - 1}.&

Here is one of the more well-studied universal hash families:

Pick a prime p ≥ M

Define ha,b(x) = ((ax + b) mod p) mod n

H = { ha,b : a ∊ {1, …, p - 1}, b ∊ {0, …, p - 1} }

84
84

An Example

To draw a hash function h from H:

Pick a random a
in {1, …, p - 1}.

Pick a random b
in {0, …, p - 1}.&

To store ha,b, you just need to store two numbers: a and b!

Since a and b are at most p-1, we need ~2·log(p) bits.

p is a prime that’s close-ish to M, so this means the space

needed =

O(log M)
This is so much better than O(M log n)!

Hash Tables

Putting everything together, what’s the scheme?

85
85

You choose your set of
hash functions H, a

universal hash family
like H = mod p mod n.

H

86
86

The Whole Scheme

You choose your set of
hash functions H, a

universal hash family
like H = mod p mod n.

When the client initializes a hash
table, randomly pick a hash

function h from H to use in the
hash table to hash the items.

H

h

87
87

The Whole Scheme

···

0

1

2

3

n-1

n

Now you’re ready
to start hashing
values from the

universe U!

You choose your set of
hash functions H, a

universal hash family
like H = mod p mod n.

When the client initializes a hash
table, randomly pick a hash

function h from H to use in the
hash table to hash the items.

H

h

88
88

The Whole Scheme

···

0

1

2

3

n-1

n

Now you’re ready
to start hashing
values from the

universe U!

From now on, any operation
on the hash table uses that
same h that you randomly

selected from H

We can now
expect that

these buckets
will be pretty

balanced

You choose your set of
hash functions H, a

universal hash family
like H = mod p mod n.

When the client initializes a hash
table, randomly pick a hash

function h from H to use in the
hash table to hash the items.

H

h

89
89

The Whole Scheme

90
90

Hash Table: Motivation

* Assuming we
implement it cleverly
with a “good” hash

function

OPERATION
SORTED
ARRAY

UNSORTED
LINKED LIST

HASH TABLES
(HOPEFULLY)

SEARCH O(log(n)) O(n) O(1)

DELETE O(n) O(n) O(1)

INSERT O(n) O(1) O(1)

• Stanford University

91

Acknowledgement

Thank You

92

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Hash Tables Overview
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Hash Functions and Randomness
	Slide 56
	Slide 57
	Slide 58: What we want
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Universal Hash Families
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: Hash Tables
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92: Thank You

