
Data Structures

Indian Institute of Information Technology Allahabad

Height-balanced Tree (AVL Tree)

Email: srdubey@iiita.ac.in Web: https://profile.iiita.ac.in/srdubey/

mailto:srdubey@iiita.ac.in
https://profile.iiita.ac.in/srdubey/

The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.

2

• SEARCH is the big one.
• Everything else just calls SEARCH and then does some small

O(1)-time operation.

42 8

73

5

6

Time = O(height of tree)

Trees have
depth O(log(n)).

Done!

How long does search take?

Wait a
second…

3
3

How long do these operations take in BST?

4

2

8

7

3

5

6

• This is a valid binary search tree.

• The version with n nodes has
depth n, not O(log(n)).

4
4

Search might take time O(n) in BST

• Goal: Fast SEARCH/INSERT/DELETE

• All these things take time O(height)

• And the height might be big!!! 

• Idea 0:
• Keep track of how deep the tree is getting.
• If it gets too tall, re-do everything from scratch.

• At least Ω(n) every so often….

• Turns out that’s not a great idea. Instead we turn to…

How often is “every so
often” in the worst case?
It’s actually pretty often!

5
5

What to do?

Self-Balancing
Binary Search Trees

6
6

• Maintain Binary Search Tree (BST) property, while moving
stuff around.

BA

CY

XYOINK!

CLAIM:
this still has BST property.

No matter what lives underneath
A,B,C, this takes time O(1). (Why?)

BA

C

Y

X

B

A

C

Y

X

B fell
down.

N
o

te: A
, B

, C
, X

, Y are variab
le n

am
es, n

o
t th

e
co

n
ten

ts o
f th

e n
o

d
e

s.

7
7

Idea 1: Rotations

4

2

8

7

3

6

5

YOINK!

42 8

73

6

5

8
8

This seems helpful

• Whenever something seems unbalanced, do rotations until
it’s okay again.

This is pretty vague.

What do we mean by
“seems unbalanced”?

What’s “okay”?

9
9

Strategy?

• Maintaining perfect balance is too hard.

• Instead, come up with some proxy for balance:
• If the tree satisfies [SOME PROPERTY], then it’s pretty balanced.
• We can maintain [SOME PROPERTY] using rotations.

There are actually several ways to
do this, but we’ll see:
1. AVL Tree (In this course)
2. Multiway-Search Tree (2-4 Tree)
3. Red-Black Tree

10
10

Idea 2: have some proxy for balance

These two examples demonstrate how we can correct for
imbalances: starting with this tree, add 1:

Prototypical Examples

11
11

This is more like a linked list; however, we can fix this…

Prototypical Examples

12
12

Promote 2 to the root, demote 3 to be 2’s right child, and 1
remains the left child of 2

Prototypical Examples

13
13

The result is a perfect, though trivial tree

Prototypical Examples

14
14

Alternatively, given this tree, insert 2

Prototypical Examples

15
15

Again, the product is a linked list; however, we can fix this, too

Prototypical Examples

16
16

Promote 2 to the root, and assign 1 and 3 to be its children

Prototypical Examples

17
17

The result is, again, a perfect tree

These examples may seem trivial, but they are the basis for
the corrections in the next data structure we will see: AVL
trees

Prototypical Examples

18
18

We will focus on the first strategy: AVL trees

• Named after Adelson-Velskii and Landis

Balance is defined by comparing the height of the two sub-
trees

Recall:

• An empty tree has height –1

• A tree with a single node has height 0

AVL Trees

19
19

A binary search tree is said to be AVL balanced if:

• The difference in the heights between the left and right
sub-trees is at most 1, and

• Both sub-trees are themselves AVL trees

AVL Trees

20
20

AVL trees with 1, 2, 3, and 4 nodes:

AVL Trees

21
21

Here is a larger AVL tree (42 nodes):

AVL Trees

22
22

The root node is AVL-balanced:

• Both sub-trees are of height 4:

AVL Trees

23
23

All other nodes are AVL balanced

• The sub-trees differ in height by at most one

AVL Trees

24
24

• By the definition of complete trees, any complete binary
search tree is an AVL tree

• Thus an upper bound on the number of nodes in an AVL
tree of height h a perfect binary tree with 2h + 1 – 1 nodes

• What is an lower bound?

Height of an AVL Tree

25
25

Let F(h) be the fewest number of nodes in a tree of height h

From a previous slide:

F(0) = 1

F(1) = 2

F(2) = 4

Can we find F(h)?

Height of an AVL Tree

26
26

The worst-case AVL tree of height h would have:

• A worst-case AVL tree of height h – 1 on one side,

• A worst-case AVL tree of height h – 2 on the other, and

• The root node

We get: F(h) = F(h – 1) + 1 + F(h – 2)

Height of an AVL Tree

27
27

This is a recurrence relation:

The solution?









+−+−

=

=

=

11)2F()1F(

12

01

)F(

hhh

h

h

h

Height of an AVL Tree

28
28

• Fact: The height of an AVL tree storing n keys is O(log n).

• Proof: Let us bound n(h): the minimum number of internal nodes of an
AVL tree of height h.

• We easily see that n(1) = 1 and n(2) = 2

• For n > 2, an AVL tree of height h contains the root node, one AVL
subtree of height h-1 and another of height h-2.

• That is, n(h) = 1 + n(h-1) + n(h-2)

• Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
• n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),
• n(h) > 2in(h-2i)

• Solving the base case we get: n(h) > 2 h/2-1

• Taking logarithms: h < 2log n(h) +2

• Thus the height of an AVL tree is O(log n)

3

4
n(1)

n(2)

Height of an AVL Tree

30 30

To maintain AVL balance, observe that:

• Inserting a node can increase the height of a tree by at
most 1

• Removing a node can decrease the height of a tree by
at most 1

Maintaining Balance

31
31

Consider this AVL tree

Maintaining Balance

32
32

Maintaining Balance

33
33

Consider inserting 15 into this tree

• In this case, the heights of none of the trees change

The tree remains balanced

Maintaining Balance

34
34

Consider inserting 42 into this tree

• In this case, the heights of none of the trees change

Maintaining Balance

35
35

If a tree is AVL balanced, for an insertion to cause an
imbalance:

• The heights of the sub-trees must differ by 1

• The insertion must increase the height of the deeper sub-
tree by 1

Maintaining Balance

36
36

Suppose we insert 23 into our initial tree

Maintaining Balance

37
37

The heights of each of the sub-trees from here to the
root are increased by one

Maintaining Balance

38
38

However, only two of the nodes are unbalanced: 17
and 36

Maintaining Balance

39
39

However, only two of the nodes are unbalanced: 17
and 36

• We only have to fix the imbalance at the lowest node

Maintaining Balance

40
40

We can promote 23 to where 17 is, and make 17 the left
child of 23

Maintaining Balance

41
41

Thus, that node is no longer unbalanced

• Incidentally, neither is the root now balanced again,
too

Maintaining Balance

42
42

Consider adding 6:

Maintaining Balance

43
43

The height of each of the trees in the path back to the
root are increased by one

Maintaining Balance

44
44

The height of each of the trees in the path back to the
root are increased by one

• However, only the root node is now unbalanced

Maintaining Balance

45
45

We may fix this by rotating the root to the right

Note: the right subtree of 12 became the left subtree of 36

Maintaining Balance

46
46

Consider the following setup

• Each blue triangle represents a tree of height h

Case 1 setup

47
47

Insert a into this tree: it falls into the left subtree BL of b

• Assume BL remains balanced

• Thus, the tree rooted at b is also balanced

Left subtree of left child

Maintaining Balance: Case 1

48
48

The tree rooted at node f is now unbalanced

• We will correct the imbalance at this node

Maintaining Balance: Case 1

49
49

We will modify these three pointers:

Maintaining Balance: Case 1

50
50

Specifically, we will rotate these two nodes around the root:

• Recall the first prototypical example

• Promote node b to the root and demote node f to be the
right child of b

Maintaining Balance: Case 1

51
51

Make f the right child of b

Maintaining Balance: Case 1

52
52

Assign former parent of node f to point to node b

Make BR left child of node f

Maintaining Balance: Case 1

53
53

The nodes b and f are now balanced and all remaining
nodes of the subtrees are in their correct positions

Maintaining Balance: Case 1

54
54

Additionally, height of the tree rooted at b equals the original
height of the tree rooted at f

• Thus, this insertion will no longer affect the balance of any
ancestors all the way back to the root

Maintaining Balance: Case 1

55
55

More Examples

56
56

Alternatively, consider the insertion of c where b < c < f into
our original tree

Maintaining Balance: Case 2

57
57

Assume that the insertion of c increases the height of BR

• Once again, f becomes unbalanced

Right subtree of left child

Maintaining Balance: Case 2

58
58

Here are examples of when the
insertion of 14 may cause this
situation when h = –1, 0, and 1

Maintaining Balance: Case 2

59
59

Unfortunately, the previous correction does not fix the
imbalance at the root of this sub-tree: the new root, b,
remains unbalanced

Maintaining Balance: Case 2

60
60

In our three sample cases
with h = –1, 0, and 1,
doing the same thing
as before results in
a tree that is still
unbalanced…

• The imbalance is just
shifted to the other
side

Maintaining Balance: Case 2

61
61

Lets start over …

Maintaining Balance: Case 2

62
62

Re-label the tree by dividing the left subtree of f into a
tree rooted at d with two subtrees of height h – 1

Maintaining Balance: Case 2

63
63

Now an insertion causes an imbalance at f

• The addition of either c or e will cause this

Maintaining Balance: Case 2

64
64

We will reassign the following pointers

Maintaining Balance: Case 2

65
65

Specifically, we will order these three nodes as a perfect tree

• Recall the second prototypical example

Maintaining Balance: Case 2

66
66

To achieve this, b and f will be assigned as children of
the new root d

Maintaining Balance: Case 2

67
67

We also have to connect the two subtrees and original

parent of f

Maintaining Balance: Case 2

68
68

Now the tree rooted at d is balanced

Maintaining Balance: Case 2

69
69

Again, the height of the root did not change

Maintaining Balance: Case 2

70
70

14

Maintaining Balance: Case 2

71
71

In our three sample cases
with h = –1, 0, and 1, the
node is now balanced
and the same height
as the tree before the
insertion

There are two symmetric cases to those we have examined:

• Insertions into the right-right sub-tree

-- Insertions into either the right-left sub-tree

Maintaining Balance: Summary

72
72

Consider this AVL tree

More Examples: Insertion

73
73

Insert 73

Insertion

74
74

The node 81 is unbalanced

• A left-left imbalance

Insertion

75
75

Insertion

76
76

The node 81 is unbalanced

• A left-left imbalance

Insertion

77
77

The node 81 is unbalanced

• A left-left imbalance

The node 81 is unbalanced

• A left-left imbalance

• Promote the intermediate node to the imbalanced node

• 75 is that node

Insertion

78
78

Insertion

79
79

The node 81 is unbalanced

• A left-left imbalance

• Promote the intermediate node to the imbalanced node

• 75 is that node

The tree is AVL balanced

Insertion

80
80

Insert 77

Insertion

81
81

The node 87 is unbalanced
• A left-right imbalance

Insertion

82
82

Insertion

83
83

The node 87 is unbalanced
• A left-right imbalance

Insertion

84
84

The node 87 is unbalanced
• A left-right imbalance

Insertion

85
85

The node 87 is unbalanced
• A left-right imbalance

• Promote the intermediate node to the imbalanced node

• 81 is that value

Insertion

86
86

The node 87 is unbalanced
• A left-right imbalance

• Promote the intermediate node to the imbalanced node

• 81 is that value

The tree is balanced

Insertion

87
87

Insert 76

Insertion

88
88

The node 78 is unbalanced

• A left-left imbalance

Insertion

89
89

The node 78 is unbalanced

• Promote 77

Insertion

90
90

Again, balanced

Insertion

91
91

Insert 80

Insertion

92
92

The node 69 is unbalanced

• A right-left imbalance

• Promote the intermediate node to the imbalanced node

Insertion

93
93

The node 69 is unbalanced

• A left-right imbalance

• Promote the intermediate node to the imbalanced node

• 75 is that value

Insertion

94
94

Again, balanced

Insertion

95
95

Insert 74

Insertion

96
96

The node 72 is unbalanced

• A right-right imbalance

• Promote the intermediate node to the imbalanced node

Insertion

97
97

The node 72 is unbalanced

• A right-right imbalance

• Promote the intermediate node to the imbalanced node

Insertion

98
98

Again, balanced

Insertion

99
99

Insert 55

Insertion

100
100

The node 69 is imbalanced

• A left-left imbalance

• Promote the intermediate node to the imbalanced node

Insertion

101
101

The node 69 is imbalanced

• A left-left imbalance

• Promote the intermediate node to the imbalanced node

• 63 is that value

Insertion

102
102

Insert 55

• No imbalances

Insertion

103
103

Insert 67

Again, balanced

Insertion

104
104

Insert 70

Insertion

105
105

The root node is now imbalanced

• A right-left imbalance

• Promote the intermediate node to the root

Insertion

106
106

The root node is imbalanced

• A right-left imbalance

• Promote the intermediate node to the root

• 63 is that node

Insertion

107
107

The result is balanced

Insertion

108
108

Let the node that needs rebalancing be j.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of j.
2. Insertion into right subtree of right child of j.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of j.
4. Insertion into left subtree of right child of j.

The rebalancing is performed through four separate rotation
algorithms.

Insertion: Summary

109
109

Outside Case

Left subtree of left child

Inside Case

Right subtree of left child

Single “right” Rotation “left-right” Double Rotation

Outside and Inside Cases

110
110

j

k

X Y

Z
h

hh

Inside Case Recap

111
111

Consider the structure
of subtree Y…

j

k

X
Y

Z
h

h+1h

AVL Insertion: Inside Case

112
112

j

k

X

V

Z

W

i

h

h+1h

h or h-1

AVL Insertion: Inside Case

113
113

j

k

X

V

Z

W

i

We will do a left-right
“double rotation” . . .

AVL Insertion: Inside Case

114
114

j

k

X V

Z
W

i

left rotation complete

Double rotation: first rotation

115
115

j

k

X V

Z
W

i

Now do a right rotation

Double rotation: second rotation

116
116

jk

X V ZW

i

right rotation complete

Balance has been restored

hh h or h-1

Double rotation: second rotation

117
117

balance (1,0,-1)
key

rightleft

• No need to keep the height; just the difference in height, i.e. the
balance factor; this has to be modified on the path of insertion even if
you don’t perform rotations

• Once you have performed a rotation (single or double) you won’t need
to go back up the tree

Implementation

118
118

• Insert at the leaf (as for all BST)
• only nodes on the path from insertion point to root node

have possibly changed in height
• So after the Insert, go back up to the root node by node,

updating heights
• If a new balance factor (the difference hleft-hright) is 2 or –2,

adjust tree by rotation around the node

Correctness: Rotations preserve inorder traversal ordering

Insertion in AVL Trees

119
119

Removing a node from an AVL tree may cause more than
one AVL imbalance

• Like insert, erase must check after it has been
successfully called on a child to see if it caused an
imbalance

• Unfortunately, it may cause multiple imbalances that must
be corrected

• Insertions will only cause one imbalance that must be
fixed

Deletion

120
120

Consider the following AVL tree

Deletion

121
121

Suppose we erase the front node: 1

Deletion

122
122

While its previous parent, 2, is not unbalanced, its
grandparent 3 is

• The imbalance is in the right-right subtree

Deletion

123
123

We can correct this with a simple balance

Deletion

124
124

The node of that subtree, 5, is now balanced

Deletion

125
125

Recursing to the root, however, 8 is also unbalanced

• This is a right-left imbalance

Deletion

126
126

Promoting 11 to the root corrects the imbalance

Deletion

127
127

At this point, the node 11 is balanced

Deletion

128
128

Still, the root node is unbalanced

• This is a right-right imbalance

Deletion

129
129

Again, a simple balance fixes the imbalance

Deletion

130
130

The resulting tree is now AVL balanced

Deletion

131
131

Pros:
1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to

the speed of insertion.

Cons:
1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and

use other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run

time for many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees

132
132

• Stanford University

• University of Waterloo

133

Acknowledgement

Thank You

134

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Self-Balancing Binary Search Trees
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134: Thank You

