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The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly, the

sources have been given due credit appropriately. However,

there is a chance of missing out some original primary sources.

The authors of this material do not claim any copyright of such

material.
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• SEARCH is the big one.  
• Everything else just calls SEARCH and then does some small 

O(1)-time operation.
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Time = O(height of tree)

Trees have 
depth O(log(n)).  

Done!

How long does search take?

Wait a 
second…
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How long do these operations take in BST?
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• This is a valid binary search tree.

• The version with n nodes has 
depth n, not O(log(n)).
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Search might take time O(n) in BST



• Goal: Fast SEARCH/INSERT/DELETE

• All these things take time O(height)

• And the height might be big!!! 

• Idea 0:
• Keep track of how deep the tree is getting.
• If it gets too tall, re-do everything from scratch.

• At least Ω(n) every so often….

• Turns out that’s not a great idea.  Instead we turn to…

How often is “every so 
often” in the worst case?  
It’s actually pretty often!
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What to do?



Self-Balancing 
Binary Search Trees
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• Maintain Binary Search Tree (BST) property, while moving 
stuff around.
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CLAIM: 
this still has BST property.

No matter what lives underneath 
A,B,C, this takes time O(1).  (Why?)
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Idea 1: Rotations
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This seems helpful



• Whenever something seems unbalanced, do rotations until 
it’s okay again.

This is pretty vague.  

What do we mean by 
“seems unbalanced”?  

What’s “okay”?
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Strategy?



• Maintaining perfect balance is too hard.

• Instead, come up with some proxy for balance:
• If the tree satisfies [SOME PROPERTY], then it’s pretty balanced.
• We can maintain [SOME PROPERTY] using rotations.

There are actually several ways to 
do this, but we’ll see:
1. AVL Tree (In this course)
2. Multiway-Search Tree (2-4 Tree)
3. Red-Black Tree
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Idea 2: have some proxy for balance



These two examples demonstrate how we can correct for 
imbalances:  starting with this tree, add 1:

Prototypical Examples
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This is more like a linked list; however, we can fix this…

Prototypical Examples
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Promote 2 to the root, demote 3 to be 2’s right child, and 1 
remains the left child of 2

Prototypical Examples
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The result is a perfect, though trivial tree

Prototypical Examples
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Alternatively, given this tree, insert 2 

Prototypical Examples

15
15



Again, the product is a linked list; however, we can fix this, too

Prototypical Examples
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Promote 2 to the root, and assign 1 and 3 to be its children

Prototypical Examples
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The result is, again, a perfect tree

These examples may seem trivial, but they are the basis for 
the corrections in the next data structure we will see:  AVL 
trees

Prototypical Examples
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We will focus on the first strategy:  AVL trees

• Named after Adelson-Velskii and Landis

Balance is defined by comparing the height of the two sub-
trees

Recall:

• An empty tree has height –1

• A tree with a single node has height 0

AVL Trees
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A binary search tree is said to be AVL balanced if:

• The difference in the heights between the left and right 
sub-trees is at most 1, and

• Both sub-trees are themselves AVL trees

AVL Trees
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AVL trees with 1, 2, 3, and 4 nodes:

AVL Trees
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Here is a larger AVL tree (42 nodes):

AVL Trees
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The root node is AVL-balanced:

• Both sub-trees are of height 4:

AVL Trees
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All other nodes are AVL balanced

• The sub-trees differ in height by at most one

AVL Trees
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• By the definition of complete trees, any complete binary 
search tree is an AVL tree

• Thus an upper bound on the number of nodes in an AVL 
tree of height h a perfect binary tree with 2h + 1 – 1 nodes

• What is an lower bound?

Height of an AVL Tree
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Let F(h) be the fewest number of nodes in a tree of height h

From a previous slide:

F(0) = 1

F(1) = 2

F(2) = 4

Can we find F(h)?

Height of an AVL Tree
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The worst-case AVL tree of height h would have:

• A worst-case AVL tree of height h – 1 on one side,

• A worst-case AVL tree of height h – 2 on the other, and

• The root node

We get:  F(h) = F(h – 1) + 1 + F(h – 2)

Height of an AVL Tree
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This is a recurrence relation:

The solution?
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Height of an AVL Tree
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• Fact: The height of an AVL tree storing n keys is O(log n).

• Proof: Let us bound n(h): the minimum number of internal nodes of an 
AVL tree of height h.

• We easily see that n(1) = 1 and n(2) = 2

• For n > 2, an AVL tree of height h contains the root node, one AVL 
subtree of height h-1 and another of height h-2.

• That is, n(h) = 1 + n(h-1) + n(h-2)

• Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
• n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),
• n(h) > 2in(h-2i)

• Solving the base case we get: n(h) > 2 h/2-1

• Taking logarithms: h < 2log n(h) +2

• Thus the height of an AVL tree is O(log n)

3

4
n(1)

n(2)

Height of an AVL Tree
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To maintain AVL balance, observe that:

• Inserting a node can increase the height of a tree by at 
most 1

• Removing a node can decrease the height of a tree by 
at most 1

Maintaining Balance
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Consider this AVL tree

Maintaining Balance
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Maintaining Balance
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Consider inserting 15 into this tree

• In this case, the heights of none of the trees change



The tree remains balanced

Maintaining Balance
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Consider inserting 42 into this tree

• In this case, the heights of none of the trees change

Maintaining Balance
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If a tree is AVL balanced, for an insertion to cause an 
imbalance:

• The heights of the sub-trees must differ by 1

• The insertion must increase the height of the deeper sub-
tree by 1

Maintaining Balance
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Suppose we insert 23 into our initial tree

Maintaining Balance
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The heights of each of the sub-trees from here to the 
root are increased by one

Maintaining Balance
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However, only two of the nodes are unbalanced:  17 
and 36

Maintaining Balance
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However, only two of the nodes are unbalanced:  17 
and 36

• We only have to fix the imbalance at the lowest node

Maintaining Balance
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We can promote 23 to where 17 is, and make 17 the left 
child of 23

Maintaining Balance
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Thus, that node is no longer unbalanced

• Incidentally, neither is the root now balanced again, 
too

Maintaining Balance
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Consider adding 6:

Maintaining Balance
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The height of each of the trees in the path back to the 
root are increased by one

Maintaining Balance
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The height of each of the trees in the path back to the 
root are increased by one

• However, only the root node is now unbalanced

Maintaining Balance
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We may fix this by rotating the root to the right

Note: the right subtree of 12 became the left subtree of 36

Maintaining Balance
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Consider the following setup

• Each blue triangle represents a tree of height h

Case 1 setup

47
47



Insert a into this tree:  it falls into the left subtree BL of b

• Assume BL remains balanced

• Thus, the tree rooted at b is also balanced

Left subtree of left child

Maintaining Balance: Case 1
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The tree rooted at node f is now unbalanced

• We will correct the imbalance at this node

Maintaining Balance: Case 1
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We will modify these three pointers:

Maintaining Balance: Case 1
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Specifically, we will rotate these two nodes around the root:

• Recall the first prototypical example

• Promote node b to the root and demote node f to be the 
right child of b

Maintaining Balance: Case 1
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Make f the right child of b

Maintaining Balance: Case 1
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Assign former parent of node f to point to node b

Make BR left child of node f

Maintaining Balance: Case 1
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The nodes b and f are now balanced and all remaining 
nodes of the subtrees are in their correct positions

Maintaining Balance: Case 1
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Additionally, height of the tree rooted at b equals the original 
height of the tree rooted at f

• Thus, this insertion will no longer affect the balance of any 
ancestors all the way back to the root

Maintaining Balance: Case 1
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More Examples
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Alternatively, consider the insertion of c where b < c < f into 
our original tree

Maintaining Balance: Case 2
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Assume that the insertion of c increases the height of BR

• Once again, f becomes unbalanced

Right subtree of left child

Maintaining Balance: Case 2
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Here are examples of when the 
insertion of 14 may cause this
situation when h = –1, 0, and 1

Maintaining Balance: Case 2
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Unfortunately, the previous correction does not fix the 
imbalance at the root of this sub-tree:  the new root, b, 
remains unbalanced

Maintaining Balance: Case 2
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In our three sample cases
with h = –1, 0, and 1,
doing the same thing
as before results in
a tree that is still 
unbalanced…

• The imbalance is just
shifted to the other
side

Maintaining Balance: Case 2
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Lets start over …

Maintaining Balance: Case 2
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Re-label the tree by dividing the left subtree of f into a 
tree rooted at d with two subtrees of height h – 1

Maintaining Balance: Case 2
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Now an insertion causes an imbalance at f

• The addition of either c or e will cause this

Maintaining Balance: Case 2
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We will reassign the following pointers

Maintaining Balance: Case 2
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Specifically, we will order these three nodes as a perfect tree

• Recall the second prototypical example

Maintaining Balance: Case 2
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To achieve this, b and f will be assigned as children of 
the new root d

Maintaining Balance: Case 2
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We also have to connect the two subtrees and original 

parent of f

Maintaining Balance: Case 2
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Now the tree rooted at d is balanced

Maintaining Balance: Case 2
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Again, the height of the root did not change

Maintaining Balance: Case 2
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14

Maintaining Balance: Case 2
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In our three sample cases
with h = –1, 0, and 1, the
node is now balanced
and the same height
as the tree before the
insertion



There are two symmetric cases to those we have examined:

• Insertions into the right-right sub-tree

-- Insertions into either the right-left sub-tree 

Maintaining Balance: Summary
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Consider this AVL tree

More Examples: Insertion
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Insert 73

Insertion
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The node 81 is unbalanced

• A left-left imbalance

Insertion

75
75



Insertion

76
76

The node 81 is unbalanced

• A left-left imbalance



Insertion
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The node 81 is unbalanced

• A left-left imbalance



The node 81 is unbalanced

• A left-left imbalance

• Promote the intermediate node to the imbalanced node

• 75 is that node

Insertion
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Insertion
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The node 81 is unbalanced

• A left-left imbalance

• Promote the intermediate node to the imbalanced node

• 75 is that node



The tree is AVL balanced

Insertion
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Insert 77

Insertion

81
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The node 87 is unbalanced
• A left-right imbalance

Insertion
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Insertion
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The node 87 is unbalanced
• A left-right imbalance



Insertion
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The node 87 is unbalanced
• A left-right imbalance



Insertion
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The node 87 is unbalanced
• A left-right imbalance

• Promote the intermediate node to the imbalanced node

• 81 is that value



Insertion
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The node 87 is unbalanced
• A left-right imbalance

• Promote the intermediate node to the imbalanced node

• 81 is that value



The tree is balanced

Insertion
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Insert 76

Insertion
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88



The node 78 is unbalanced

• A left-left imbalance

Insertion
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The node 78 is unbalanced

• Promote 77

Insertion

90
90



Again, balanced

Insertion
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Insert 80

Insertion

92
92



The node 69 is unbalanced

• A right-left imbalance

• Promote the intermediate node to the imbalanced node

Insertion
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The node 69 is unbalanced

• A left-right imbalance

• Promote the intermediate node to the imbalanced node

• 75 is that value

Insertion
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Again, balanced

Insertion
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Insert 74

Insertion
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The node 72 is unbalanced

• A right-right imbalance

• Promote the intermediate node to the imbalanced node

Insertion
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The node 72 is unbalanced

• A right-right imbalance

• Promote the intermediate node to the imbalanced node

Insertion
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Again, balanced

Insertion
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Insert 55

Insertion
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The node 69 is imbalanced

• A left-left imbalance

• Promote the intermediate node to the imbalanced node

Insertion
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The node 69 is imbalanced

• A left-left imbalance

• Promote the intermediate node to the imbalanced node

• 63 is that value

Insertion
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Insert 55

• No imbalances

Insertion
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Insert 67

Again, balanced

Insertion
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Insert 70

Insertion
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The root node is now imbalanced

• A right-left imbalance

• Promote the intermediate node to the root

Insertion
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The root node is imbalanced

• A right-left imbalance

• Promote the intermediate node to the root

• 63 is that node

Insertion
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The result is balanced

Insertion
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Let the node that needs rebalancing be j.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of j.
2. Insertion into right subtree of right child of j.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of j.
4. Insertion into left subtree of right child of j.

The rebalancing is performed through four separate rotation 
algorithms.

Insertion: Summary
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Outside Case

Left subtree of left child

Inside Case

Right subtree of left child

Single “right” Rotation “left-right” Double Rotation 

Outside and Inside Cases
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j

k

X Y

Z
h

hh

Inside Case Recap
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Consider the structure
of subtree Y…

j

k

X
Y

Z
h

h+1h

AVL Insertion: Inside Case
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j

k

X

V

Z

W

i

h

h+1h

h or h-1

AVL Insertion: Inside Case
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j

k

X

V

Z

W

i

We will do a left-right 
“double rotation” . . .

AVL Insertion: Inside Case
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j

k

X V

Z
W

i

left rotation complete

Double rotation: first rotation
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j

k

X V

Z
W

i

Now do a right rotation

Double rotation: second rotation
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jk

X V ZW

i

right rotation complete

Balance has been restored

hh h or h-1

Double rotation: second rotation
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balance (1,0,-1)
key

rightleft

• No need to keep the height; just the difference in height, i.e. the 
balance factor; this has to be modified on the path of insertion even if 
you don’t perform rotations

• Once you have performed a rotation (single or double) you won’t need 
to go back up the tree

Implementation
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• Insert at the leaf (as for all BST)
• only nodes on the path from insertion point to root node 

have possibly changed in height
• So after the Insert, go back up to the root node by node, 

updating heights
• If a new balance factor (the difference hleft-hright) is 2 or –2, 

adjust tree by rotation around the node

Correctness:  Rotations preserve inorder traversal ordering  

Insertion in AVL Trees

119
119



Removing a node from an AVL tree may cause more than 
one AVL imbalance

• Like insert, erase must check after it has been 
successfully called on a child to see if it caused an 
imbalance

• Unfortunately, it may cause multiple imbalances that must 
be corrected

• Insertions will only cause one imbalance that must be 
fixed

Deletion
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Consider the following AVL tree

Deletion
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Suppose we erase the front node:  1

Deletion
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While its previous parent, 2, is not unbalanced, its 
grandparent 3 is

• The imbalance is in the right-right subtree

Deletion
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We can correct this with a simple balance

Deletion
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The node of that subtree, 5, is now balanced

Deletion
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Recursing to the root, however, 8 is also unbalanced

• This is a right-left imbalance

Deletion
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Promoting 11 to the root corrects the imbalance 

Deletion
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At this point, the node 11 is balanced

Deletion

128
128



Still, the root node is unbalanced

• This is a right-right imbalance

Deletion
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Again, a simple balance fixes the imbalance

Deletion
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The resulting tree is now AVL balanced

Deletion
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Pros:
1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to 

the speed of insertion.

Cons:
1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and 

use other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run 

time for many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees
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• Stanford University

• University of Waterloo
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