
UFKT: Unimportant Filters Knowledge Transfer for CNN Pruning

CH Sarvani1, Shiv Ram Dubey2, Mrinmoy Ghorai1

1Computer Vision Group, Indian Institute of Information Technology, Sri City, Chittoor, Andhra Pradesh- 517646, India.
2Computer Vision and Biometrics Laboratory, Indian Institute of Information Technology, Allahabad, Uttar Pradesh- 211015, India.

sarvani.ch@iiits.in, srdubey@iiita.ac.in, mrinmoy.ghorai@iiits.in

This paper is accepted for publication by Neurocomputing, Elsevier.

Abstract

As the deep learning models have been widely used in recent years, there is a high demand for reducing the model size in terms of
memory and computation without much compromise in the model performance. Filter pruning is a very widely adopted strategy
for model compression. The existing filter pruning methods identify the unimportant filters and prune them without worrying
about information loss. They try to recover the same by fine-tuning the remaining filters, limiting their performance. In this paper,
we tackle this problem by utilizing the knowledge from unimportant filters before pruning to minimize information loss. First,
the proposed method identifies the unimportant and important filters by exploiting the lower and higher importance, respectively,
using the L1-norm of filters. Next, the proposed custom UFKT-Reg regularizer (Ru f kt) transfers the knowledge from unimportant
filters before pruning to remaining filters, notably to a fixed number of important filters. Hence, the proposed method minimizes
information loss due to the removal of unimportant filters. The experiments are conducted using the three benchmark datasets,
including MNIST, CIFAR-10, and ImageNet. The proposed filter pruning method outperforms many recent state-of-the-art filter
pruning methods. An improvement over the baseline in terms of accuracy is observed even after removing 95.15%, 62.28%,
and 62.39% of the Floating Point OPerations (FLOPs) from architectures LeNet-5, ResNet-56, and ResNet-110, respectively.
After pruning 53.25% of FLOPS from ResNet-50, only 1.02% and 0.47% of drops are observed in top-1 and top-5 accuracies,
respectively. The code used in this paper will be publicly available at https://github.com/sarvanichinthapalli/
UFKT.

1. Introduction

Convolutional Neural Networks (CNNs) have provided state-
of-the-art solutions in many areas such as computer vision
[6, 15], speech [2, 33], text [8, 40], medical [13, 19] and many
more [12, 47, 61]. The benefits of CNNs come along with
their heavy computational and memory requirements. There-
fore, compression of the heavy, GPU trained models is re-
quired to effectively deploy them on power-constrained edge
devices. There are many techniques for neural network com-
pression, such as low-rank approximation, weight quantization,
knowledge distillation, network pruning, and Neural Architec-
ture Search methods.

In low-rank approximation, each layer’s weight matrix is re-
placed by a matrix with a lower rank [26]. Weight quantiza-
tion reduces the memory and computation of the deep neural
networks by reducing the number of bits required for weight
matrix representation [16]. Knowledge distillation transfers the
generalization ability of a large DNN model called Teacher to
a compact model called Student [24]. Network pruning meth-
ods remove the DNN components such as weight parameters
and filters with slight or no compromise in the performance of
DNNs. Among all the compression methods, Network prun-
ing works are being widely explored in research and industry

because of their excellent compression and ease of implemen-
tation.

NAS methods include channel configuration, such as the
number of channels in each layer and network depth into the
search space [42, 38]. As a result, the best channel configu-
rations under various computational budgets (e.g., FLOPS) are
selected with less human interference. However, due to the vast
search space, they require more computational budgets than
network pruning methods.

The Network pruning methods can be categorized into
weight pruning, kernel pruning, and filter pruning. Weight
pruning removes the weights across the network by zeroing
them, resulting in unstructured sparsity of the filters in the orig-
inal network. The initial works in network pruning, such as
optimal brain damage [30] and optimal brain surgeon [17], are
based on weight pruning. In these works, the Hessian matrix
of the loss function is used to prune the unimportant weights.
While [17, 30] pruned only shallower networks due to the com-
putational complexity, recent works [55, 66] advanced to prune
deeper neural networks. However, the models compressed by
the weight pruning methods require special libraries like Basic
Linear Algebra Subprograms (BLAS) to accelerate the compu-
tation during inference. Kernel and filter pruning methods are
structured pruning methods and do not require the BLAS li-

https://github.com/sarvanichinthapalli/UFKT
https://github.com/sarvanichinthapalli/UFKT

brary for acceleration. Kernel pruning methods [3, 34] prune
at a more granular level than filter pruning methods. In [34],
feature maps importance is identified by the kernel sparsity and
entropy index. Work [3] locates pruning candidates using a par-
ticle filtering approach that selects the best combination from
several randomly generated masks. However, in this paper, we
aim to explore the filter pruning methods.

Filter pruning works can be classified based on how the im-
portance of a filter is derived, such as pruning criteria and reg-
ularization. Pruning-criteria based works focus on some crite-
ria to select unimportant filters. Their performance depends on
the effectiveness of the pruning criteria. For example pruning-
criteria such as L1-norm of filter weights [31], sparsity in the
output activations of filters [25], geometric median of the filters
norm distribution [23], entropy of feature maps [43], rank of
the feature maps [37], mutual information between filters and
class labels [50], training history based measure [5], correla-
tion between the filters [53] are used. There is little or no sig-
nificance for the regularization term utilized during the training
of pruning-criteria based methods.

On the other hand, the effectiveness of regularization-based
works primarily depends on the regularization mechanism uti-
lized. The regularization-based works [1, 4, 32, 41, 44, 48,
51, 62, 64, 70] train all the weights with a custom regularizer
such that the few filters separate from the remaining ones. Then
the unimportant filters are chosen for pruning based on simple
criteria like L1-norm or L2-norm. Other regularization-based
works [10, 27, 48, 54, 59, 60] first adopt a simple filter selec-
tion criteria such as L1-norm of the weights to select unimpor-
tant filters and then utilize the regularization mechanism. Here,
the regularization is responsible for decreasing the contribution
of unimportant filters to the network before pruning them. In
other words, the penalty is imposed on the filters with a lesser
importance. This makes the model transfer the knowledge from
unimportant filters to the rest of the model, followed by the
pruning of unimportant filters.

Consider the case of knowledge transfer from unimportant
filters to all the remaining filters. Here, a few remaining fil-
ters will again be removed when the model is pruned further in
an iterative manner, resulting in information loss i.e., drop in
the classification performance. Hence, it would be beneficial
if we transfer the knowledge of unimportant filters that will be
pruned to the filters with relatively higher importance among
the remaining filters, as these filters have higher chances of sur-
vival even if the model is pruned further. Therefore, in contrast
to the existing regularization-based approaches, which mainly
focus on unimportant filters, we consider a relatively small set
of filters with higher importance as important filters and utilize
them in the proposed UFKT-Reg regularizer.

Our contributions are summarized as follows,

• We propose a filter pruning approach for CNN model com-
pression by transferring the knowledge of unimportant fil-
ters to filters of higher importance.

• We propose a custom regularizer for knowledge transfer
before pruning unimportant filters, which increases the gap
between the L1-norm of important and unimportant filters.

• We study the effect of the penalty imposed on the custom
regularizer to justify the need for knowledge transfer be-
fore pruning.

• We conduct extensive experiments on various neural net-
work architectures and datasets to show the efficacy of the
proposed pruning strategy and improvement over the re-
cent state-of-the-art methods [10, 27, 31, 37, 39, 48, 51,
53, 56, 57, 59, 60, 62, 64, 68, 69].

The rest of the article is organized as follows. Section 2 dis-
cusses the literature on regularization-based filter pruning. Sec-
tion 3 describes the proposed UFKT pruning method. Section 4
demonstrates the experimental results, and the future directions
are concluded in Section 5.

2. Related Works

This section reviews the current works in regularization-
based filter pruning methods, the recent state-of-the-art, fol-
lowed by their limitations.

Initially, the idea of regularizers is utilized in classical sig-
nal processing [58]. Later they were adopted in neural net-
works for compression. There are many regularization tech-
niques such as Lasso or L1-norm [18], L2-norm [9], Group
Lasso or L2,1-norm [67], Sparse Group Lasso or L2,1-norm +
L1-norm [14], Hierarchical Group Lasso [45], Self-Weighted
Lasso [63], and Adaptive Lasso [71]. However, only the regu-
larizers [14, 18, 45, 67] are widely utilized in the literature on
regularization-based filter pruning works. Wen et al. initially
utilized group lasso to regularize multiple DNN structures such
as filters, channels, filter shapes, and layer depth [62]. Alvarez
et al. utilized Sparse Group Lasso regularizer to jointly learn
the parameters and number of filters in each layer [1]. Jiang
et al. imposed regularization only on the specific filters se-
lected by a pruning mask, rather than all the filters of the model
[27]. Singh et al. proposed Adaptive Filter Pruning utilizing an
orthogonality-based regularization term [54]. This also trained
the model by penalizing the L1-norm of unimportant filters, and
it brought a clear distinction between important and unimpor-
tant weights before pruning them. Li et al. trained the models
with a regularizer that takes into account the correlations be-
tween the successive layers [32]. The importance criterion for
filters is also based on statistical information of two consecu-
tive layers. Instead of regularization of filters, Liu et al. [41],
and Ye et al. [65] utilized regularization on the scaling factors
of the batch norm layers. The filters from convolutional layers
of the corresponding least significant scaling factors are chosen
for pruning. Recently Tessier et al. also utilized weight decay
and L2 regularization on the batch norm layers [56]. Shao et
al. proposed a parallel pruning scheme where the best results
of regularizing the batch norm scaling factors and filters with
lower entropy are selected in every iteration [51]. These works
use either the weights of all the filters or only the unimportant
ones in the regularizer.

Few works also divide the filters into important and unimpor-
tant ones, which are our primary concern in this paper. Auto-
balanced filter pruning (AFP) proposed by Ding et al. divided

2

Filter
Selection

Train with
UFKT-Reg Prune

f1,1 f1,2

f2,1 f2,2

fn,1 fn,1

c1f1,

c2f2,

cnfn,

1

2 3 4

Trained DNN

Pruned
DNN

Fine-tune

5

Figure 1: Depiction of whole pruning procedure: Before pruning, the original heavy model is first trained (histograms represent L1-norm distributions of filters in
each layer). Then the pruning starts by selecting the least important filters, followed by training with the proposed UFKT Regularizer (UFKT-Reg). This reduces
the L1-norm of unimportant filters (indicated by grey colored blocks), as depicted by red bars in the histogram, with a slight change in the loss. For instance, here,
the accuracy got changed from 75.60 to 75.63 after applying UFKT-Reg. Finally, a fine-tuning step is used to recover the information loss due to the pruning of
unimportant filters. The pruning and fine-tuning process continue until the desired pruning limit is achieved.

filters into important and unimportant based on their L1-norms
[10]. L2 regularization is utilized where a positive penalty is
imposed on unimportant filters, and a negative penalty is im-
posed on important filters. The penalty factors are kept con-
stant thought out the training. Wang et al. proposed Incremen-
tal Regularization (IncReg), which penalizes the important and
unimportant filters similar to AFP but uses group lasso regu-
larization and updates the penalty factors throughout the train-
ing [59]. Growing Regularization (GReg) proposed by Wang
et al. [60] also divides filters into important and unimportant
to utilize them in the regularization, similar to AFP. However,
the penalty imposed on unimportant filters is incremented by a
constant value during the training, and a constant penalty factor
is utilized for all the remaining filters. Another recent work by
Lin et al. [36] also identifies important and unimportant filters
based on the distribution difference with the other filters using
KL-divergence. Then, each of the retained filters is expressed
as a linear combination of all original filters. This is a non-
regularization method, unlike UFKT, AFP [10], IncReg [59],
and GReg [60].

Unlike AFP, Greg, and IncReg, instead of considering all the
remaining filters other than unimportant ones as important, we
choose a few filters with higher L1-norm from the remaining
filters as important. This division is based on the fact that if
all the filters other than unimportant are considered important,
and knowledge is transferred to them, it can end up in updating
all the remaining filters with similar importance. However, the
filters with lower L1-norm among the remaining filters will be
pruned in further pruning iterations. Hence, we utilize a fixed
number of important filters in the custom regularizer to transfer
knowledge to them when the model is iteratively pruned. We
utilize L1-norm regularization in UFKT with a fixed penalty
factor throughout the filter pruning steps, which increases the
relative gap between the L1-norm of important and unimportant
filters.

The proposed method is found to be more effective than
existing similar regularization-based works, including AFP,

GReg, and IncReg, which is evident from the experimental re-
sults in Section 4. Next, we present the proposed UFKT prun-
ing method in detail.

3. Proposed UFKT Pruning Method

This section presents a custom regularizer based filter prun-
ing strategy for convolutional neural networks. The main idea
is to use the customized regularizer to transfer the useful knowl-
edge of the unimportant filters to others, especially the impor-
tant filters, before pruning them. The basic definitions and nota-
tions are explained in this section, followed by the filter pruning
steps in the proposed UFKT pruning method.

3.1. Basic Notations

Let W = {WL1 ,WL2 , ...,WLn } denotes the trainable weights
of a CNN model with n Convolutional layers where WLi ∈

Rci×ci−1×d×d is a 4-dimensional tensor and denotes the weight
of ith convolutional layer Li, d denotes kernel size of the filters.
ci and ci−1 denote out-channels (i.e., number of filters) and in-
channels in weight matrix respectively in layer Li. Let ri and
ki denote the pruning ratio and the number of important filters
of ith layer. Let U = {U1,U2, ...,Un} and I = {I1, I2, ..., In} de-
note the set of Unimportant and Important filters of all the n
layers, respectively, where, Ui and Ii denote the unimportant
and important filters in the ith layer with Ui ∩ Ii = ∅. Let
Fi = { fi,1, fi,2, ... fi,ci } denotes the set of all filters in the ith layer,
where fi, j denotes jth filter in layer Li.

3.2. Method Description

This section focuses on the steps involved in pruning a model
from the baseline. UFKT is an iterative filter pruning method
as depicted in Fig. 1, where stages denoted by numbers 2, 3, 4,
and 5 are repeated until the final pruned model is obtained. The
whole process is also described in the Algorithm 1.

3

Algorithm 1 The proposed Unimportant Filters Knowledge Transfer (UFKT) filter pruning
Input: CNN model with trainable parameters W, pruning-ratio ri of each layer i ∈ [1, L], number of important filters ki of ith layer,
and continue pruning = True. (ci denotes out-channels in layer i)
Output: Pruned model

1: while continue pruning == True do
2: for each layer i ∈ [1, n] do
3: if ci <= ki then
4: continue pruning← False
5: end if
6: end for
7: if continue pruning == True then
8: for each layer i, i ∈ 1, 2,n do
9: F sorted

i ← sort filters { fi,1, fi,2, ... fi,ci } based on {Mi,1,Mi,2, ...Mi,ci } values
10: Ui ← least ri% filters from F sorted

i
11: Ii ← top ki filters from F sorted

i
12: compute the custom regularizer (Ru f kt) using Equation 4 for layer i
13: end for
14: Train the model using Equation 3
15: Prune filters in Ui, i ∈ [1, n]
16: Fi ← Fi − Ui

17: end if
18: Fine-tune the pruned model using Equation 1
19: end while

3.2.1. Initial Training
The model with trainable parameters W is initialized with

Kaiming initialization [20] and trained until the baseline accu-
racy is achieved. In this step, the generic optimization objective
function E(W) is used to minimize the loss as follows,

E(W) = Loss(W) + λR(W) (1)

Where Loss denotes general loss function, and R denotes
common regularization. In UFKT, the cross-entropy loss and
weight-decay are used for loss and regularization, respectively.
λ is a hyperparameter and is typically set to 5e-4 or 2e-4 in the
experiments.

3.2.2. Filter Selection
The filters Fi in each layer from the trained model are sorted

based on a criterion. Various criteria such as L1-norm, Rank,
Entropy, and Average Percentage of Zeroes in feature maps
(APoZ) can be used. However, we consider the L1-norm of each
filter weight, which is generally used by existing regularization-
based filter pruning methods to decide the importance of filters
[10, 59, 60]. LetMi, j denotes L1-norm of jth filter in ith layer
which is represented as,

Mi, j = ∥ fi, j∥1. (2)

The Unimportant and Important filters are chosen as follows:
First, for each layer Li, the ri percent of filters from Fi are cho-
sen as unimportant filters Ui. Then, ki number of filters from
Li with the highest L1-norm are chosen as Important filters, i.e.,
Ii. The same is mentioned in steps 9 - 11 of Algorithm 1. Both
ri and ki are not considered high values to avoid overlapping of

important and unimportant filters. As the pruning progresses,
when the number of filters in each layer becomes lesser, based
on the pruning ratio, the number of unimportant filters selected
also decreases, so that important and unimportant filters do not
overlap. The proposed method can be further improved by com-
bining it with NAS methods to decide the layer-wise pruning
ratio.

3.2.3. Custom Regularizer for Unimportant Filters Knowledge
Transfer

Once the important and unimportant filters from each
layer are selected, prior to removing the unimportant filters,
the model is trained with a custom regularizer (UFKT-Reg)
to transfer the useful knowledge of the unimportant filters.
Knowledge here means a filter’s contribution to the model’s
performance by its ability to extract some essential features
from the previous layer’s activation maps. We determine filters’
knowledge with the L1-norm of their weights in the proposed
method. The custom regularizer reduces the difference between
the L1-norms of combined (both important and unimportant) fil-
ters and important filters so that the contribution of unimportant
filters in the model is decreased further. And then, the model
would be less affected by removing unimportant filters, which
implies minimizing information loss. Similarly, we also intend
to increase the contribution of important filters utilizing their
L1-norms in the regularizer. So the custom regularizer utilizing
both important and unimportant filters is defined as follows,

E(W ′) = Loss(W ′) + λu
∑n

i=1 Ru f kt(W ′i) (3)

Where W ′ denotes the trained weights of the model from Equa-
tion 1 (i.e., current weights of layer i) and Ru f kt(W ′i) denotes the

4

7 8 9 100.0%

10.0%

20.0%

30.0%

40.0%

(a) Before Ru f kt in LeNet-5
(Accuracy:99.39)

8 9 10 110%

10%

20%

30%

40%

50%

(b) Before Ru f kt in VGG-16
(Accuracy:93.50)

10 12 140.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

(c) Before Ru f kt in ResNet-56
(Accuracy:93.81)

5 6 7 80.0%

10.0%

20.0%

30.0%

40.0%

(d) Before Ru f kt in ResNet-110
(Accuracy:93.41)

16 18 200%

10%

20%

30%

40%

50%

(e) Before Ru f kt in ResNet-50
(Accuracy:75.22)

2 4 6 8 100.0%

10.0%

20.0%

30.0%

40.0%

(f) After Ru f kt in LeNet-5
(Accuracy:99.31)

2 4 6 8 100%

10%

20%

30%

40%

50%

(g) After Ru f kt in VGG-16
(Accuracy:93.06)

6 8 10 12 140.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

(h) After Ru f kt in ResNet-56
(Accuracy:93.87)

4 6 80.0%

10.0%

20.0%

30.0%

40.0%

(i) After Ru f kt in ResNet-110
(Accuracy:93.44)

10 15 200%

10%

20%

30%

40%

50%

(j) After Ru f kt in ResNet-50
(Accuracy:75.23)

Figure 2: The L1-norm distribution for various architectures (LeNet-5, VGG-16, ResNet-56, ResNet-110, and ResNet-50) before and after the custom regularization
along with their accuracy values

. The X-axis represents the range of L1-norm values, and Y-axis represents the percentage of filters having L1-norm in a specific
range. The unimportant filters separated from the distribution after regularization.

proposed custom regularizer, UFKT-Reg applied on W ′
i . The

penalty factor λu is a hyperparameter. The Ru f kt(W ′i) is given
as,

Ru f kt(W ′i) = Ni − Pi (4)

where
Ni =

∑
f ′i, j∈[Ii∪Ui]

∥ f ′i, j∥1 (5)

and
Pi =

∑
f ′i, j∈Ii

∥ f ′i, j∥1. (6)

The regularizer pushes the L1-norm of unimportant filters to
a lower value. Whereas for important filters, the L1-norm is
intended to increase. However, only increasing the L1-norm
for important filters throughout the process makes their L1-
norm values too high, degrading the model’s performance as
observed empirically in Section 4.8.2. Hence the L1-norms of
important filters are also decreased by the regularizer. More-
over, the model’s performance is not affected much by the cus-
tom regularizer as it is utilized only if

E(W) ∼ E(W ′) < δ (7)

where δ is a small value. In other words, the model’s accu-
racy is least affected by applying Ru f kt, as depicted in Fig. 2.
This means that the knowledge from the unimportant filters is
not lost even after their L1-norms are decreased. Thus pro-
posed regularizer inherently minimizes the L1-norm of unim-
portant filters leading to knowledge transfer (Refer to the proof
of Lemma 3.1).

Fig. 2 shows the L1-norm distribution of the filters in a given
architecture before and after applying the proposed regularizer,
where the unimportant filters are clearly shifted to the left with
a minor change in the models’ accuracies. Usually, the L1-

norms of filters are driven to zero by applying the regulariza-
tion. However, with simple L1-norm regularization, the model
performance is observed to degrade if a few filters are driven
to zero value when compared to minimizing them to a smaller
non-zero value as discussed in Section 4.8.1. Overall, the pro-
posed regularization decreases the loss due to the removal of
unimportant filters by making them less contributive prior to
pruning and transferring their useful knowledge to the selected
important filters.

Lemma 3.1. The minimization of the objective function E using
the proposed regularizer Ru f kt leads to knowledge transfer from
unimportant filters (U) to important filters (I).

Proof. Let us assume that the L1-norm of a filter represents the
quality of the filter and encodes its knowledge. The proposed
regularizer aims to minimize the L1-norm between the com-
bined filters and important filters (i.e., to be retained filters) as
follows,

min(Ru f kt(W ′i)) = min(Ni−Pi) = min(
∑

f ′i, j∈[Ii∪Ui]

∥ f ′i, j∥1−
∑
f ′i, j∈Ii

∥ f ′i, j∥1)

(8)
Note that initially Ni > Pi, i.e.,∑

f ′′i, j∈[Ii∪Ui]

∥ f ′′i, j∥1 >
∑
f ′′i, j∈Ii

∥ f ′′i, j∥1. (9)

However after the regularization Ni ≈ Pi, which leads to,∑
f ′′i, j∈[Ii∪Ui]

∥ f ′′i, j∥1 ≈
∑
f ′′i, j∈Ii

∥ f ′′i, j∥1 (10)

Where f ′′ is the updated filter values after regularization. Also,
from Equation 7, the performance of the model before regular-
ization is similar to the performance after regularization. So,

5

it can be concluded that as the L1-norm of unimportant filters
f ′′i, j ∈ [Ui] decreases, their representative knowledge has been
transferred to the remaining important filter.

3.3. Pruning and Fine-Tuning

The unimportant filters in the set U from the model regu-
larized using Ru f kt are pruned. When a layer is pruned along
with the out-channels of the current layer, the next batch norm
layer and in-channels of the succeeding convolutional layer are
also pruned. The trainable weights W ′′ of the recently pruned
model contains only a portion of weights from W ′ and are given
as follows,

W ′′ = W ′ \ {U}. (11)

The new compressed model with weights W ′′ is trained using
Equation 1. The filter selection, training with UFKT-Reg, prun-
ing, and fine-tuning is done iteratively until any layer i has less
than ki filters. Each such iteration is called a prune step. Once
any of the layers reach their respective ki value (i.e., the num-
ber of important filters), no unimportant filters can be chosen
from that layer. Therefore instead of UFKT-Reg, which re-
quires unimportant filters, weight-decay is utilized finally, and
the pruning is stopped.

4. Experiments and Analysis

This section demonstrates the efficacy of the proposed UFKT
method by comparing it with the state-of-the-art filter pruning
techniques in subsections 4.1, 4.2, 4.3, 4.4 and 4.5. The ac-
curacy measure is utilized to demonstrate the effectiveness of
UFKT. Next, the effect of the regularizer on filters of a convo-
lutional layer at various stages of pruning is depicted in subsec-
tion 4.6. Finally, an ablation study is performed in Section 4.8
to analyze the effect of the penalty factor λu and other custom
regularization methods.

Datasets and Architectures: The UFKT is experimented on
different benchmark dataset + architecture combinations used
in the existing pruning methods, such as MNIST [29] + LeNet-
5 [29], CIFAR10 [28] + VGG-16 [52], CIFAR10 + ResNet-
56 [21], CIFAR10 + ResNet-110 [21], and ImageNet [49] +
ResNet-50 [21].

Evaluation Metrics: The experimental results on various ar-
chitectures are provided in Tables 1, 2, 3, 4, and 5. The gen-
eral metrics for evaluating speed and compression are number
of Floating Point OPerations (FLOPs) and number of Train-
able Parameters (Parameters), respectively. For a fair compar-
ison with the other methods, FLOPs and Parameters are ob-
served only for the Convolutional and Fully Connected layers.
The FLOPs remaining after pruning are denoted by column
FLOPs in Tables 1, 2, 3, 4, and 5. The percentage of pruned
FLOPs and pruned Parameters are indicated in columns F%
and P%, respectively. We have used “thop.profile” package1

for the calculation of FLOPS and Parameters. Baselineacc(%)

1https://github.com/Lyken17/pytorch-OpCounter/

and Prunedacc(%) denote the accuracy of the model before and
after pruning, respectively. The drop in accuracy value is given
by column Accdrop. In Table 5, Baselinetop−#, Prunedtop−# and
Accdrop top# denote top-1 or top-5 accuracy before pruning, af-
ter pruning, and difference between them, respectively. Note
that UFKT-# represents UFKT results at various percentages of
pruned FLOPS.

Configuration: The proposed UFKT filter pruning method
is implemented using PyTorch framework [46]. A batch size
of 100 is used in all architectures except ResNet-50, where the
batch size of 80 is used. For ResNet-56 and ResNet-110, Nes-
terov momentum [7] is also added. In UFKT method, ri and
ki are the hyperparameters for each layer i in the model. For
simplicity, we have used the same ki values for all the layers
within a model but different across various models. The hy-
perparameter values and training schedules for each model are
detailed in their respective results sections. The penalty factor
λu for custom regularizer is fixed by grid search over the values
{1e-1,1e-2,1e-3,1e-4}. The value of λu is set to 1e-2 for sim-
ple architectures LeNet-5 and VGG-16, and, 1e-3 for complex
architectures ResNet-56, ResNet-110, and ResNet-50.

4.1. LeNet-5 using MNIST Dataset

MNIST is a handwritten digits dataset that consists of images
with dimensions 28× 28× 1 belonging to 10 classes. There are
60,000 train images and 10,000 test images. The LeNet-5 ar-
chitecture contains 2 convolutional layers followed by 3 Fully
connected (FC) layers. There are 20 and 50 filters in the first 2
convolutional layers with the filter size of 5 × 5. There are 800,
500, and 10 neurons in 3 FC layers, respectively. The model
is trained for 28 epochs with a weight decay of 5e−4. Train-
ing begins with a learning rate of 1e-2, which decreases to 1e-3
after 10 epochs to achieve the baseline accuracy. As observed
empirically, pruning initial layers more slowly than final layers
yielded better results than pruning all the layers with an equal
pruning ratio. Thus, in each prune step, the first convolutional
layer is pruned with 4% and the second convolutional layer with
10%. Before pruning, the unimportant and important filters are
identified. For each layer, 3 important filters are selected. Then
the model is regularized with the proposed Ru f kt custom regu-
larization for 15 epochs with a learning rate of 1e-4. During
fine-tuning, the model is trained for 30 epochs with a weight
decay of 5e-4. Initially, a learning rate of 1e-1 is used for 10
epochs, and 1e-2 is used for further epochs. For comparison
with the other methods, the FLOPS of only convolutional lay-
ers are considered for LeNet-5.

UFKT-1 achieves improvement over baseline accuracy even
after pruning 95.15% of FLOPS. This is also the best accu-
racy after pruning, as depicted in Table 1. Compared to AFP,
a regularization-based method, UFKT-2 achieves higher accu-
racy after pruning even with lower baseline accuracy than AFP.
It is also observed that UFKT-2 leads to only a slight accuracy
drop even after reducing the filters of the first 2 convolutional
layers from {20,50} to {3,4}, respectively.

6

Table 1: Comparison of filter pruning methods on LeNet-5 architecture using MNIST dataset. The entries are arranged in increasing order of F%.

Method Baselineacc(%) Prunedacc(%) Accdrop Filters FLOPs F%

SSL [62] 99.10 99.00 0.10 3,12 - 94.57
UFKT-1 99.02 99.16 -0.14 4,5 0.09M 95.15
GAL [39] 99.20 98.99 0.21 2,15 0.10M 95.60
AFP [10] 99.17 97.79 1.38 3,5 - -
UFKT-2 99.02 99.00 0.02 3,4 0.06M 96.62
CFP [53] 99.17 98.23 0.94 2,3 0.08M 97.98

Table 2: Comparison of filter pruning methods on VGG-16 architecture over CIFAR-10 dataset. The entries are arranged in increasing order of F%.

Method Baselineacc(%) Prunedacc(%) Accdrop FLOPs F% P%
L1 [31] 93.25 93.40 -0.15 206.00M 34.30 64.00
GAL [39] 93.96 90.78 3.18 171.89M 45.20 82.20
RUFP [69] 93.53 93.80 -0.27 158.00M 49.68 -
MaskSparsity [27] 93.86 94.24 -0.38 - 52.21 -
PBT [57] 93.96 93.33 0.63 107.23M 65.95 86.33
EFG [64] 93.31 93.05 0.26 - 68.35 -
DPFPS [48] 93.85 93.52 0.33 - 70.85 93.32
CLF-RNF [35] 93.02 93.32 -0.30 - 74.10 -
KPGP [68] 94.27 92.36 1.91 80.40M 74.40 74.90
Shao et al. [51] 93.90 93.16 0.74 79.85M 74.54 93.80
UFKT-1 93.96 93.53 0.43 75.89M 75.81 88.98
White-Box [70] 93.02 93.47 -0.45 - 76.40 -
HRank [37] 93.96 91.23 2.73 73.70M 76.50 92.00
AFP [10] 92.92 92.94 -0.02 63.70M 79.69 -
UFKT-2 93.96 93.40 0.56 56.87M 81.87 93.38
CFP [53] 93.49 92.90 0.59 56.70M 81.93 -

Table 3: Comparison of filter pruning methods on ResNet-56 architecture over CIFAR-10 dataset. The entries are arranged in increasing order of F%.

Method Baselineacc(%) Prunedacc(%) Accdrop FLOPs F% P%
L1 [31] 93.04 93.06 -0.02 90.90M 27.60 14.10
PBT [57] 93.41 93.12 0.29 - 43.09 47.19
UFKT-1 93.53 93.85 -0.32 62.97M 49.82 49.94
IncReg [59] 93.00 93.30 -0.30 - 52.30 -
SFP [22] 93.59 93.35 0.24 59.40M 52.60 -
Shao et al. [51] - 93.09 - 59.66M 52.86 63.5
DPFPS [48] 93.81 93.20 0.61 - 52.86 46.84
ResRep [11] 93.71 93.71 0.00 - 52.91 -
MaskSparsity [27] 94.50 94.19 0.31 - 54.88 -
White-Box [70] 93.26 93.54 -0.28 - 55.60 -
KPGP [68] 93.75 93.25 0.50 56.20M 55.60 55.90
CLF-RNF [35] 93.26 93.27 -0.01 - 57.30 -
RUFP [69] 93.05 93.17 -0.12 53.70M 57.70 -
GReg [60] 93.36 93.36 - - 60.00 -
GAL [39] 93.26 90.36 2.90 49.99M 60.20 65.90
AFP [10] 93.93 92.94 0.99 49.99M 60.86 -
CFP [53] 93.57 93.32 0.25 48.50M 61.51 -
UFKT-2 93.53 93.55 -0.02 47.38M 62.28 62.42
HRank [37] 93.26 90.72 2.54 32.52M 74.10 68.10

Table 4: Comparison of filter pruning methods on ResNet-110 architecture over CIFAR-10 dataset. The entries are arranged in increasing order of F%.

Method Baselineacc(%) Prunedacc(%) Accdrop FLOPs F% P%
L1 [31] 93.53 93.30 0.23 155.00M 38.70 32.6
SFP [22] 93.68 93.38 0.30 - 40.80 -
GAL [39] 93.35 92.55 0.80 - 48.50 44.80
PBT [57] 93.63 93.84 -0.21 130.20M 49.41 49.59
UFKT-1 93.25 93.33 -0.08 110.89M 56.15 56.21
KPGP [68] 93.76 93.69 0.07 113.00M 55.70 56.00
ResRep [11] 94.64 94.62 0.02 - 58.21 -
HRank [37] 93.50 93.36 0.14 105.70M 58.20 59.20
UFKT-2 93.25 93.28 -0.03 95.11M 62.39 62.46
MaskSparsity [27] 94.70 94.72 -0.02 - 63.03 -
White-Box [70] 93.50 94.12 -0.62 - 66.00 -
CLF-RNF [35] 93.57 93.71 -0.14 - 66.00 -

7

Table 5: Comparison of filter pruning methods on ResNet-50 architecture over ImageNet dataset. The entries are arranged in increasing order of F%.

Method Baselinetop−1 Prunedtop−1 Accdrop top1 Baselinetop−5 Prunedtop−5 Accdrop top5 F% P%
CLF-RNF [35] 76.01 74.85 1.16 92.96 92.31 0.65 40.38 -
SFP [22] 76.15 62.14 14.01 92.87 84.60 8.27 41.80 -
PBT [57] 76.15 74.80 1.35 - - - 42.54 -
HRank [37] 76.15 74.98 1.17 92.87 92.33 0.54 43.76 36.67
KPGP [68] 76.15 75.58 0.57 - - - 44.20 44.00
UFKT-1 76.06 75.54 0.52 92.91 92.66 0.25 44.65 43.84
DPFPS [48] 76.15 75.55 0.60 92.87 92.54 0.33 46.20 -
White-Box [70] 76.15 75.32 0.83 92.96 92.43 0.53 45.60 -
CFP [53] - - - 92.20 91.40 0.80 49.60 -
SWD [56] 75.70 73.90 1.80 - - - - 50.00
IncReg [59] 75.60 72.47 3.13 92.78 91.05 1.73 50.00 -
UFKT-2 76.06 75.04 1.02 92.91 92.44 0.47 53.25 51.86
Shao et al. [51] 76.15 72.02 4.13 92.87 90.69 2.18 55.01 55.25
ResRep [11] 76.15 75.97 0.18 92.87 92.75 0.12 56.11 -
GReg [60] 76.03 74.93 1.10 - - - 60.93 -

4.2. VGG-16 using CIFAR-10 Dataset

CIFAR-10 dataset consists images of dimension 32 × 32 × 3
belonging to 10 classes. There exist 50,000 train images and
10,000 test images. VGG-16 architecture consists of 13 convo-
lutional layers followed by 2 FC layers. Each of the 13 convolu-
tional layers contain 64, 64, 128, 128, 256, 256, 256, 512, 512,
512, 512, 512 and 512 filters, respectively. Each convolutional
layer is followed by a batch norm layer and ReLU activation.
The last 2 fully connected layers contain 512 and 10 neurons,
respectively. To achieve the baseline accuracy, the model is
trained for 295 epochs with a weight decay of 5e-4. Initially, the
model uses a learning rate of 1e-1, which is divided by 10 after
80, 140, and 230 epochs. Here also, the initial layers are pruned
at a slower rate than later layers. Consequently, the pruning ra-
tio for convolutional layers 1 and 2 is 2%, convolutional layers
3 and 4 is 4%, convolutional layers 5, 6, and 7 is 5%, and for
the remaining convolutional layers is 10%. The value of ki is
40, i.e., for each layer, 40 important filters are selected in every
pruning step. The model is regularized with Ru f kt for 15 epochs
with a learning rate of 1e-4 before pruning. During fine-tuning,
the model is retrained for 70 epochs with a weight decay of 5e-
4. Initially, a learning rate of 1e-2 is used, which is divided by
10 after 40 epochs.

Using VGG-16 architecture over the CIFAR-10 dataset,
UFKT-2 achieves 93.40% accuracy even after pruning 93.38%
of parameters which is the best accuracy compared to all the
methods at a higher pruning rate as shown in Table 2. In terms
of accuracy drop UFKT achieves third best result at higher
pruning ratios, but achieves better accuracy after pruning than
White-Box [70] and AFP [10]. These results confirm that the
proposed pruning method can retain more information in fewer
filters by transferring the knowledge from the pruned filters.

4.3. ResNet-56 using CIFAR-10 Dataset

Unlike VGG-16, which is a plain architecture, ResNet-56
contains shortcut connections between the layers. There are 3
blocks of 18 convolutional layers each in ResNet-56. There are
shortcut connections after every 2 convolutional layers. Each
convolutional layer is followed by a batch norm layer. There are
16, 32, and 64 filters in convolutional layers from each of the 3

blocks, respectively. To achieve baseline accuracy, the model is
trained for 180 epochs with the weight decay of 2e-4. Training
begins with a learning rate of 1e-1 and decreases to 1e-2 and
1e-3 after 91 and 136 epochs. Similar to [50, 53] we remove 1,
2, and 4 filters from the first convolutional layers between the
shortcut connections in each of the 3 blocks. For each layer, 6
important filters are selected in every pruning step. Then the
model is regularized with Ru f kt for 15 epochs with a learning
rate of 1e-4 before pruning. During fine-tuning, the model is
trained for 80 epochs with a weight decay of 2e-4. Fine-tuning
begins with a learning rate of 1e-2, which decreases to 1e-3 and
1e-4 after 20 and 70 epochs.

The pruning results using ResNet-56 model over CIFAR-
10 dataset is shown in Table 3. It is observed that UFKT-1
achieves the lowest accuracy drop of -0.32 compared to all the
other methods. UFKT-1 also achieves the highest accuracy of
93.85% even after pruning 49.94% of parameters. Hence, it is
noted that for the ResNet-56 model over the CIFAR-10 dataset,
the proposed UFKT pruning method outperforms all the other
pruning-criteria based as well as regularization-based methods.

4.4. ResNet-110 using CIFAR-10 Dataset

ResNet-110 is a deeper architecture with identity shortcuts.
There are 3 blocks of 36 convolutional layers and a shortcut
connection after every 2 convolutional layers. Each convolu-
tional layer is followed by a batch norm layer. There are 16, 32
and 64 filters in convolutional layers from each of the 3 blocks,
respectively. To achieve baseline accuracy, the model is trained
for 170 epochs with a weight decay of 2e-4. Training begins
with a learning rate of 1e-1 and decreases to 1e-2 and 1e-3 after
88 and 160 epochs. Similar to [50, 53], we remove 1, 2, and
4 filters from the first convolutional layers between the short-
cut connections in each of the 3 blocks. Similar to ResNet-56,
6 important filters are selected in each layer for every pruning
step. Then the model is regularized with Ru f kt for 15 epochs
with a learning rate of 1e-4 before pruning. During fine-tuning,
the model is trained for 80 epochs with a weight decay of 2e-4.
Fine-tuning begins with a learning rate of 1e-2 and decreases to
1e-3 and 1e-4 after 30 and 70 epochs.

Using the ResNet-110 model over the CIFAR-10 dataset,

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
prune step

0

2

4

6

8

10

12

L 1
 n

or
m

Without Rufkt

With Rufkt

Figure 3: Comparison of L1-norm distributions of filters at every prune step of
VGG-16 architecture with and without using custom regularizer.

UFKT showed improvement over the baseline accuracy even
after pruning 62.39% of FLOPS. UFKT shows third and fourth
best accuracy drops among the filter pruning methods that
pruned more than 50% of the FLOPS as presented in Table 4.

4.5. ResNet-50 using ImageNet Dataset

ImageNet is a larger and more complex dataset consisting of
images of varying sizes belonging to 1000 classes. Therefore,
all the images are resized to 224 × 224. There are 1.2 mil-
lion train images and 50,000 test images. ResNet-50 is a com-
plex architecture with projection shortcuts. Convolutional lay-
ers with kernel size 1×1 , 3×3 and 1×1 are repeated throughout
the architecture. The Convolutional layers in ResNet-50 are di-
vided into 4 blocks. Pre-trained ResNet-50 model in PyTorch is
used and trained using a learning rate of 1e-4 and weight decay
of 2e-4 for 3 epochs. The first 2 convolutional layers between
the shortcut connections are pruned. Convolutional layers in
the first 3 blocks are pruned with an 8% prune ratio and the
last block with a 9% prune ratio in every pruning step. Before
pruning, the model is regularized with Ru f kt for 5 epochs with
a learning rate of 1e-5 and 33 important filters. After pruning,
the model is trained for 28 epochs with a weight decay of 2e-4.
Fine-tuning begins with a learning rate of 1e-3 and decreases to
1e-4 and 1e-5 after 10 and 25 epochs.

We present the pruning results of ResNet-50 over ImageNet
dataset in Table 5. The proposed UFKT pruning method out-
performs all the other methods except ResRep in terms least
top-1 accuracy drop and top-5 accuracy drop. UFKT outper-
forms the similar regularizer-based works GReg and IncReg.
Even after pruning 44.65% of FLOPs negligible drop in top-5
accuracy i.e., 0.25% is observed. The ImageNet being a large
scale dataset, these results confirm the superiority of the pro-
posed unimportant filters knowledge transfer to increase the
useful information in the retained filters leading to a com-
pressed ResNet-50 model for faster inference.

4.6. Analysis of Custom Regularizer

Fig. 3 shows the L1-norm distribution of the filters in a
convolutional layer across the pruning steps with and without
the proposed regularization (Ru f kt). The mean of the L1-norm

distribution with the proposed custom regularization follows a
similar path as the model without regularization. Nevertheless,
the unimportant filters’ L1-norm decreases when the regulariza-
tion is applied. Also, in most of the pruning steps, the important
filters can be clearly distinguished from the rest of the filters
when Ru f kt is used compared to the case without regularization.
This analysis justifies that the contribution of unimportant fil-
ters in the network is decreased drastically before pruning them,
and their knowledge is transferred to remaining filters, notably
to the important filters. Hence, the proposed pruning method
results in less accuracy drop even at a higher pruning ratio.

4.7. Robustness of Custom Regularizer
This section shows the robustness of the proposed method by

comparing the performances of the model pruned by the UFKT
method and the original model on the transformed test data.
Experimental results from Sections 4.1, 4.2, 4.3, 4.4, and 4.5
showed that the UFKT method pruned the models without af-
fecting their accuracy much. Pruning even resulted in better
performance for a few architectures like LeNet-5, ResNet-56,
and ResNet-110. Now the performance of the original heavy
model and UFKT pruned model is observed when a certain por-
tion of test data is transformed by randomly cropping, flipping,
and color jittering to show the robustness of the pruned models.
Experimental results on VGG-16 and ResNet-56 architectures
using the CIFAR-10 dataset are specified in Table 6. Both the
original heavy VGG-16 and pruned VGG-16 with 24.19% of
the original FLOPs show similar performance when a certain
portion (5% or 10% or 25%) of test data is transformed. Pruned
Resnet-56 with 50.18% of the original FLOPS showed slightly
better accuracy than the original model with 5% and 10% of the
transformed test data. Hence, it is observed that original heavy
models and models pruned by the UFKT method show simi-
lar performance on transformed test data, indicating the pruned
models’ robustness.

Table 6: Results of baseline and UFKT pruned models VGG-16 and ResNet-56
over transformed test data of CIFAR-10 dataset.

Model
Test set altered 0% 5% 10% 25%

VGG-16 (0% pruned) 93.96 92.11 89.92 83.90
VGG-16 (75.81% pruned) 93.53 91.87 89.73 83.36
ResNet-56 (0% pruned) 93.53 91.42 89.36 83.55
ResNet-56 (49.82% pruned) 93.85 91.87 89.60 83.49

4.8. Ablation Study
This section showcases the effect of the penalty factor and

other regularization methods.

4.8.1. Effect of the Penalty Factor
The penalty factor λu indicates the extent of the regulariza-

tion effect on the model. The penalty factor utilized for each
architecture is mentioned in the earlier corresponding subsec-
tions. However, this section shows the effect of penalty factors
on the performance of the proposed pruning method. Fig. 4

9

5 6 7 8 90%

10%

20%

30%

40%

50%

(a) Before regularization

0 2 4 6 8 100%

10%

20%

30%

40%

50%

(b) λu=1e-1

0 2 4 6 8 100%

10%

20%

30%

40%

50%

(c) λu=1e-2

6 8 100%

10%

20%

30%

40%

50%

(d) λu=1e-3

7 8 9 100%

10%

20%

30%

40%

50%

(e) λu=1e-4

Figure 4: The L1-norm distribution of filters in a convolutional layer from VGG-16 architecture with different regularization strength values (λu) for the proposed
Ru f kt regularizer. The X-axis represents the range of L1-norm values, and Y-axis represents the percentage of filters having L1-norm in a specific range.

0.0 2.5 5.0 7.5 10.00.0%

10.0%

20.0%

30.0%

40.0%

(a) Before regularization

0.0 2.5 5.0 7.5 10.00.0%

10.0%

20.0%

30.0%

40.0%

(b) Reg1

0 50 100 1500%

20%

40%

60%

80%

(c) Reg2

0.0 2.5 5.0 7.5 10.00.0%

10.0%

20.0%

30.0%

40.0%

(d) UFKT-Reg

Figure 5: The L1-norm distribution of filters in a convolutional layer from VGG-16 architecture with various custom regularizers. The X-axis represents the range
of L1-norm values, and Y-axis represents the percentage of filters having L1-norm in a specific range.

Table 7: Results of various penalty factors (i.e., regularization strength for
the proposed Ru f kt regularization, λu) on VGG-16 and ResNet-56 architectures
over CIFAR-10 dataset.

Model
λu 1e-1 1e-2 1e-3 1e-4

VGG-16 93.07 93.40 93.25 92.88
ResNet-56 93.09 93.18 93.55 93.23

shows the effect of various penalty factors on the L1-norm dis-
tribution of filters. Fig. 4a is the L1-norm distribution of the fil-
ters of a convolutional layer in VGG-16 baseline model. Figs.
4b - 4e are the resulting distributions of the same convolutional
layer after applying the proposed custom regularizer with de-
creasing penalty factors, i.e., 1e-1, 1e-2, 1e-3, and 1e-4, respec-
tively. With a higher penalty (Fig. 4b), the unimportant filters
are driven to much smaller values, usually zero. Therefore, a
linear relationship between the penalty factor and the regular-
ization effect is observed. With a lower penalty factor (Fig. 4e),
the overall effect of the proposed regularizer is minimized, and
not much reduction in the L1-norm of unimportant filters is ob-
served. It is observed that both lower and higher penalty factors
resulted in lower accuracies, as specified in Table 7. Hence the
optimal penalty factor plays a key role in the UFKT method as
chosen empirically for different models.

4.8.2. Effect of the Custom Regularizers
This study utilizes two more custom regularizers, ‘Reg1’ and

‘Reg2’, which are the general form of regularizers adapted in
regularization-based filter pruning methods. Works AFP, GReg,
and IncReg used different penalty factors for either different
layers or different epochs during training. Nevertheless, we per-
form this study using constant and common penalty factors for
all layers as used in UFKT. Similar to Ru f kt the equations for
Reg1 are given as,

Table 8: Result of various custom regularizers on VGG-16 and ResNet-56 ar-
chitectures over CIFAR-10 dataset.

Model
loss Reg1 Reg2 UFKT-Reg

VGG-16 93.03 92.80 93.40
ResNet-56 93.10 93.28 93.55

Reg1(W ′i) = NReg1
i (12)

where
NReg1

i =
∑

f ′i, j∈Ui

∥ f ′i, j∥1. (13)

Similarly, Reg2 is given as,

Reg2(W ′i) = NReg2
i − PReg2

i (14)

where
NReg2

i =
∑

f ′i, j∈Ui

∥ f ′i, j∥1 (15)

and
PReg2

i =
∑
f ′i, j∈Ii

∥ f ′i, j∥1. (16)

While Reg1 utilizes only unimportant filters, Reg2 utilizes both
important and unimportant filters separately. The L1-norm dis-
tribution of a convolutional layer in VGG-16 before regular-
ization is shown in Fig. 5a. The L1-norm distribution of the
same layer after one pruning step with different regularizers
is depicted in Figs. 5b - 5d. The results of Reg1 and Reg2
are compared with UFKT-2 results of VGG-16 and ResNet-56
with the same percentage of pruned FLOPs in Table 8. This
result clearly shows the performance advantage of UFKT over
Reg1 and Reg2 regularizers. Moreover, in UFKT, important fil-

10

ters are also penalized along with unimportant filters so that the
L1-norm does not scale to a very high value (see Fig. 5d) as
observed for Reg2 in Fig. 5c.

4.9. Visualization of Feature Maps

In this subsection, the pruned models are compared with the
baseline model by visualizing their feature maps as depicted in
Fig. 6. The feature maps are generated by the same convo-
lutional layer from the first block of ResNet-50 architecture at
various prune steps. Initially, there are 64 filters as represented
by the activation maps from Fig. 6b. In further pruning steps,
the number of filters are reduced to 41 and 35 represented by
the activation maps from Fig. 6c and Fig. 6d, respectively. The
experimental results at these pruning steps are given in Table 5.
Even after pruning ResNet-50, it is observed that the meaning-
ful feature maps that contain basic outlines persist in the net-
work. This shows the ability of the proposed UFKT pruning
method to retain the filters that can extract the most representa-
tive information.

(a) Test Image (b) Feature maps of unpruned ResNet-50

(c) Feature maps of pruned ResNet-50
with 41 filters

(d) Features of pruned ResNet-50 with 35
filters

Figure 6: The feature maps of different filters from ResNet-50 architecture. (a)
Test image from ImageNet dataset. Feature maps generated for the test image
by a convolutional layer in the the first block of ResNet-50 model (b) without
pruning (64 filters) (c) pruning 23 filters and (d) pruning 29 filters.

5. Conclusion

In this paper, we proposed a filter pruning method based on
a custom regularizer. The proposed pruning method first se-
lects some of the filters in the important and unimportant cat-
egory based on their L1-norm and transfers the knowledge of
unimportant filters to the important filters using the proposed
Ru f kt regularization method. The experiments are conducted
using different CNN models, including LeNet-5 on the MNIST

dataset, VGG-16, ResNet-56, ResNet-110 on the CIFAR-10
dataset, and ResNet-50 on the ImageNet dataset. A superior
performance using the proposed UFKT pruning method is ob-
served over the recent state-of-the-art pruning methods. The
proposed regularizer is analyzed by comparing with other regu-
larization methods and visualizing the L1-norm distribution and
network features. The future work includes the extension of the
proposed custom regularizer for the Fully Connected layers.

Acknowledgements

We are grateful to Nvidia for donating the TITAN X and
GeForce GTX 1080 GPUs used in this study.

References

[1] Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons
in deep networks. Advances in Neural Information Processing Systems,
29, 2016. 2

[2] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang
Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang
Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end speech recog-
nition in english and mandarin. In International conference on machine
learning, pages 173–182. PMLR, 2016. 1

[3] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning
of deep convolutional neural networks. ACM Journal on Emerging Tech-
nologies in Computing Systems (JETC), 13(3):1–18, 2017. 2

[4] Michel Barlaud and Frédéric Guyard. Learning sparse deep neural net-
works using efficient structured projections on convex constraints for
green ai. In 2020 25th International Conference on Pattern Recognition
(ICPR), pages 1566–1573. IEEE, 2021. 2

[5] SH Basha, Mohammad Farazuddin, Viswanath Pulabaigari, Shiv Ram
Dubey, and Snehasis Mukherjee. Deep model compression based on the
training history. arXiv preprint arXiv:2102.00160, 2021. 2

[6] SH Shabbeer Basha, Sravan Kumar Vinakota, Viswanath Pulabaigari,
Snehasis Mukherjee, and Shiv Ram Dubey. Autotune: Automatically tun-
ing convolutional neural networks for improved transfer learning. Neural
Networks, 133:112–122, 2021. 1

[7] Aleksandar Botev, Guy Lever, and David Barber. Nesterov’s accelerated
gradient and momentum as approximations to regularised update descent.
In 2017 International Joint Conference on Neural Networks (IJCNN),
pages 1899–1903. IEEE, 2017. 6

[8] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Ko-
ray Kavukcuoglu, and Pavel Kuksa. Natural language process-
ing (almost) from scratch. Journal of machine learning research,
12(ARTICLE):2493–2537, 2011. 1

[9] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. L2 regular-
ization for learning kernels. arXiv preprint arXiv:1205.2653, 2012. 2

[10] Xiaohan Ding, Guiguang Ding, Jungong Han, and Sheng Tang. Auto-
balanced filter pruning for efficient convolutional neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018. 2, 3, 4, 7, 8

[11] Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han,
Yuchen Guo, and Guiguang Ding. Resrep: Lossless cnn pruning via de-
coupling remembering and forgetting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4510–4520, 2021.
7, 8

[12] Shiv Ram Dubey. A decade survey of content based image retrieval us-
ing deep learning. IEEE Transactions on Circuits and Systems for Video
Technology, 2021. 1

[13] Zixiang Fei, Erfu Yang, David Day-Uei Li, Stephen Butler, Winifred
Ijomah, Xia Li, and Huiyu Zhou. Deep convolution network based emo-
tion analysis towards mental health care. Neurocomputing, 388:212–227,
2020. 1

[14] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization
paths for generalized linear models via coordinate descent. Journal of
statistical software, 33(1):1, 2010. 2

11

[15] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 580–587, 2014. 1

[16] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015. 1

[17] Babak Hassibi and David Stork. Second order derivatives for network
pruning: Optimal brain surgeon. Advances in neural information pro-
cessing systems, 5, 1992. 1

[18] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical
learning with sparsity. Monographs on statistics and applied probabil-
ity, 143:143, 2015. 2

[19] Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard,
Aaron Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, and
Hugo Larochelle. Brain tumor segmentation with deep neural networks.
Medical image analysis, 35:18–31, 2017. 1

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classifi-
cation. In Proceedings of the IEEE international conference on computer
vision, pages 1026–1034, 2015. 4

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016. 6

[22] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft
filter pruning for accelerating deep convolutional neural networks. arXiv
preprint arXiv:1808.06866, 2018. 7, 8

[23] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning
via geometric median for deep convolutional neural networks accelera-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4340–4349, 2019. 2

[24] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2(7), 2015. 1

[25] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network
trimming: A data-driven neuron pruning approach towards efficient deep
architectures. arXiv preprint arXiv:1607.03250, 2016. 2

[26] Yerlan Idelbayev and Miguel A Carreira-Perpinán. Low-rank compres-
sion of neural nets: Learning the rank of each layer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8049–8059, 2020. 1

[27] Nanfei Jiang, Xu Zhao, Chaoyang Zhao, Yongqi An, Ming Tang, and
Jinqiao Wang. Pruning-aware sparse regularization for network pruning.
arXiv preprint arXiv:2201.06776, 2022. 2, 7

[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009. 6

[29] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
2010. 6

[30] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Ad-
vances in neural information processing systems, 2, 1989. 1

[31] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Pe-
ter Graf. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016. 2, 7

[32] Jiashi Li, Qi Qi, Jingyu Wang, Ce Ge, Yujian Li, Zhangzhang Yue, and
Haifeng Sun. Oicsr: Out-in-channel sparsity regularization for compact
deep neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7046–7055, 2019. 2

[33] Shuzhen Li, Xiaofen Xing, Weiquan Fan, Bolun Cai, Perry Fordson, and
Xiangmin Xu. Spatiotemporal and frequential cascaded attention net-
works for speech emotion recognition. Neurocomputing, 448:238–248,
2021. 1

[34] Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David Doer-
mann, Yongjian Wu, Feiyue Huang, and Rongrong Ji. Exploiting kernel
sparsity and entropy for interpretable cnn compression. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
pages 2800–2809, 2019. 2

[35] Mingbao Lin, Liujuan Cao, Yuxin Zhang, Ling Shao, Chia-Wen Lin, and
Rongrong Ji. Pruning networks with cross-layer ranking & k-reciprocal
nearest filters. IEEE Transactions on Neural Networks and Learning Sys-
tems, 2022. 7, 8

[36] Mingbao Lin, Rongrong Ji, Bohong Chen, Fei Chao, Jianzhuang Liu,
Wei Zeng, Yonghong Tian, and Qi Tian. Training compact cnns for
image classification using dynamic-coded filter fusion. arXiv preprint
arXiv:2107.06916, 2021. 3

[37] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang,

Yonghong Tian, and Ling Shao. Hrank: Filter pruning using high-rank
feature map. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 1529–1538, 2020. 2, 7, 8

[38] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian
Wu, and Yonghong Tian. Channel pruning via automatic structure search.
arXiv preprint arXiv:2001.08565, 2020. 1

[39] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao,
Qixiang Ye, Feiyue Huang, and David Doermann. Towards optimal struc-
tured cnn pruning via generative adversarial learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2790–2799, 2019. 2, 7

[40] Gang Liu and Jiabao Guo. Bidirectional lstm with attention mechanism
and convolutional layer for text classification. Neurocomputing, 337:325–
338, 2019. 1

[41] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan,
and Changshui Zhang. Learning efficient convolutional networks through
network slimming. In Proceedings of the IEEE international conference
on computer vision, pages 2736–2744, 2017. 2

[42] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang,
Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta learning for auto-
matic neural network channel pruning. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 3296–3305, 2019. 1

[43] Jian-Hao Luo and Jianxin Wu. An entropy-based pruning method for cnn
compression. arXiv preprint arXiv:1706.05791, 2017. 2

[44] Kakeru Mitsuno and Takio Kurita. Filter pruning using hierarchical group
sparse regularization for deep convolutional neural networks. In 2020
25th International Conference on Pattern Recognition (ICPR), pages
1089–1095. IEEE, 2021. 2

[45] Kakeru Mitsuno, Junichi Miyao, and Takio Kurita. Hierarchical group
sparse regularization for deep convolutional neural networks. In 2020
International Joint Conference on Neural Networks (IJCNN), pages 1–8.
IEEE, 2020. 2

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32,
2019. 6

[47] Nehul Rangappa, Y Raja Vara Prasad, and Shiv Ram Dubey. Lednet:
Deep learning-based ground sensor data monitoring system. IEEE Sen-
sors Journal, 22(1):842–850, 2021. 1

[48] Xiaofeng Ruan, Yufan Liu, Bing Li, Chunfeng Yuan, and Weiming Hu.
Dpfps: Dynamic and progressive filter pruning for compressing convolu-
tional neural networks from scratch. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pages 2495–2503, 2021. 2, 7,
8

[49] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, et al. Imagenet large scale visual recognition challenge. In-
ternational journal of computer vision, 115(3):211–252, 2015. 6

[50] CH Sarvani, Mrinmoy Ghorai, Shiv Ram Dubey, and SH Shabbeer Basha.
Hrel: Filter pruning based on high relevance between activation maps and
class labels. Neural Networks, 2021. 2, 8

[51] Linsong Shao, Haorui Zuo, Jianlin Zhang, Zhiyong Xu, Jinzhen Yao,
Zhixing Wang, and Hong Li. Filter pruning via measuring feature map
information. Sensors, 21(19):6601, 2021. 2, 7, 8

[52] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014. 6

[53] Pravendra Singh, Vinay Kumar Verma, Piyush Rai, and Vinay Nambood-
iri. Leveraging filter correlations for deep model compression. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 835–844, 2020. 2, 7, 8

[54] Pravendra Singh, Vinay Kumar Verma, Piyush Rai, and Vinay P Nam-
boodiri. Acceleration of deep convolutional neural networks using adap-
tive filter pruning. IEEE Journal of Selected Topics in Signal Processing,
14(4):838–847, 2020. 2

[55] Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order
approximation for neural network compression. Advances in Neural In-
formation Processing Systems, 33:18098–18109, 2020. 1

[56] Hugo Tessier, Vincent Gripon, Mathieu Léonardon, Matthieu Arzel,
Thomas Hannagan, and David Bertrand. Rethinking weight decay for
efficient neural network pruning. Journal of Imaging, 8(3):64, 2022. 2, 8

[57] Guanzhong Tian, Jun Chen, Xianfang Zeng, and Yong Liu. Pruning by

12

training: a novel deep neural network compression framework for image
processing. IEEE Signal Processing Letters, 28:344–348, 2021. 2, 7, 8

[58] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society: Series B (Methodological),
58(1):267–288, 1996. 2

[59] Huan Wang, Xinyi Hu, Qiming Zhang, Yuehai Wang, Lu Yu, and Haoji
Hu. Structured pruning for efficient convolutional neural networks via
incremental regularization. IEEE Journal of Selected Topics in Signal
Processing, 14(4):775–788, 2019. 2, 3, 4, 7, 8

[60] Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via
growing regularization. In International Conference on Learning Repre-
sentations, 2021. 2, 3, 4, 7, 8

[61] Jinrui Wang, Shunming Li, Zenghui An, Xingxing Jiang, Weiwei Qian,
and Shanshan Ji. Batch-normalized deep neural networks for achieving
fast intelligent fault diagnosis of machines. Neurocomputing, 329:53–65,
2019. 1

[62] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learn-
ing structured sparsity in deep neural networks. Advances in neural in-
formation processing systems, 29, 2016. 2, 7

[63] Xinshuang Xiao, Yitian Xu, Ying Zhang, and Peiwei Zhong. A novel self-
weighted lasso and its safe screening rule. Applied Intelligence, pages
1–13, 2022. 2

[64] Zhihong Xie, Ping Li, Fei Li, and Changyi Guo. Pruning filters base on
extending filter group lasso. IEEE Access, 8:217867–217876, 2020. 2, 7

[65] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-
norm-less-informative assumption in channel pruning of convolution lay-
ers. In International Conference on Learning Representations, 2018. 2

[66] Xin Yu, Thiago Serra, Shandian Zhe, and Srikumar Ramalingam. The
combinatorial brain surgeon: Pruning weights that cancel one another in
neural networks. arXiv preprint arXiv:2203.04466, 2022. 1

[67] Ming Yuan and Yi Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 68(1):49–67, 2006. 2

[68] Guanqun Zhang, Shuai Xu, Jing Li, and Alan JX Guo. Group-based
network pruning via nonlinear relationship between convolution filters.
Applied Intelligence, pages 1–15, 2022. 2, 7, 8

[69] Ke Zhang, Guangzhe Liu, and Meibo Lv. Rufp: Reinitializing unimpor-
tant filters for soft pruning. Neurocomputing, 483:311–321, 2022. 2, 7

[70] Yuxin Zhang, Mingbao Lin, Chia-Wen Lin, Jie Chen, Yongjian Wu,
Yonghong Tian, and Rongrong Ji. Carrying out cnn channel pruning in
a white box. IEEE Transactions on Neural Networks and Learning Sys-
tems, 2022. 2, 7, 8

[71] Hui Zou. The adaptive lasso and its oracle properties. Journal of the
American statistical association, 101(476):1418–1429, 2006. 2

13

