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Abstract—Deep learning has recently shown outstanding per-
formance for different applications, including image-to-image
translation by Generative Adversarial Networks (GANs). How-
ever, GAN models are very complex as build with multiple deep
networks and requires huge computational resources for the
training as well as inference. Hence, the real-time deployment
of GAN models is not feasible at present. In this paper, we pro-
pose MobileNet based Efficient Attentive Recurrent Generative
Adversarial Network (MobileAR-GAN) for resource-constrained
Infrared to Visual translation. The proposed model utilizes the
light-weight MobileNet and enhances its capacity using the Atten-
tion and Recurrent modules, leading to an efficient yet effective
model. We consider the Infrared to Visible Image Translation
task to validate the efficiency and performance of the proposed
model. The proposed MobileAR-GAN outperforms most of the
existing GAN models in terms of both the efficiency as well as the
quality of the generated images. We also test the MobileAR-GAN
model over the resource-limited Jetson TX2 board with a very
compelling results. The proposed model shows promising results
over state-of-the-art methods. Compared to light-weight models
such as Pix2pix and GAN-Compression methods, an average
improvement gain of 19.19% and 17.05% is observed by the
proposed model in terms of SSIM metric. It is observed that the
proposed model can be deployed on edge devices to transform
the images taken at night time using infrared camera to the
corresponding visible images with satisfactory performance.

Index Terms—GAN, Attention GAN, Transformation, Mo-
bileNet, Attention networks, Deep Learning, Computer vision,
CNN.

I. INTRODUCTION

The Near Infrared (NIR) camera is used widely for night
vision display. The NIR to Visual RGB domain transformation
is a widely accepted task for surveillance-based systems and
night vision-equipped devices. The NIR is cost-effective tech-
nology and uses near-infrared rays with low-cost LEDs [1].
In contrast, the NIR to visible domain transformation takes
place over night-day scenes transformation, and the limited
computational resources draw the boundary for translation
by using fewer parameters. It is a computer vision problem
related to image generation and synthesis. Computer vision
allows to deal with several tasks associated with image-based
applications like restoration [2], image synthesis [3], transfer
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Fig. 1: Different possible application scenarios of the proposed light-weight MobileAR-
GAN model in real-life.

learning [4], activity detection [5], pose estimation [6], and
many more. We use GAN to generate realistic fair samples
in visible domain from NIR domain. GAN refers to the com-
bination of two CNN networks with adversarial approaches.
These networks oppose each other and learn in an adversarial
fashion. Computer vision problems like image colorization,
segmentation [7], and segmented map to real scene image
generation [8] can be solved efficiently using GANs. Deep
learning methods [9], [10], [I1] categorize into supervised
learning and unsupervised learning. Unsupervised methods
become advantageous over supervised methods in terms of
fewer extensive manual work. GANs with unsupervised learn-
ing approaches gained much attention recently. The advantage
of using the GAN-based method is, it’s unsupervised or
semi-supervised nature. GAN shows better transformations
compared to other machine learning and deep learning-based
methods. Various tasks like image colorization, image super
resolutions, and image style transfer used GAN for effective
results. Various image-to-image transformation methods have
already been proposed for inter-domain transformation [12],
[10], [13], [14]. However, the existing GAN models are quite
extensive in terms of the computational resources. Hence, it is
required to develop the light-weight GAN models for real-time
applications. The proposed method is applicable in various
industry-based methods in measurement and control, such
as surveillance-based security systems, cross-border defense
systems, etc. as depicted in Fig. 1. Moreover, due to the
lightweight nature of the proposed model, it can be integrated
with self-driving cars to tackle the low light visibility problem
as well as robotics devices for obstacle avoidance and object
grasping in low light conditions.

Motivated from the need of light-weight GAN models, we
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make following contributions through this paper:

« We introduce a MobileNet based Efficient Attentive
Recurrent Generative Adversarial Network (MobileAR-
GAN) for image-to-image translation over limited com-
putational devices.

o Our proposed MobileAR-GAN boosts the feature selec-
tion of GAN by combining the attention network in
Mobile-net based inverted residual block with enhanced
attention to problem-specific features.

o The proposed Mobile-GAN’s learning space narrowed
down to optimal learning due to the attention guidance
and the recurrent network’s objective.

o The proposed MobileAR-GAN model is tested using
Nvidia-Jetson board with very satisfactory performance
in real time for NIR to Visible transformation.

The remaining paper is arranged as: a literature survey is
presented in section II; the proposed MobileAR-GAN archi-
tecture is described in section III; network architecture shown
in section III-B; the experimental setting and result analysis
in section IV; Impact of various losses and architectural
modules in section V; and in the end, the concluding remarks
highlighted in section VI.

II. RELATED WORK

Generative Adversarial Networks (GAN) [15] have emerged
as the latest unsupervised method in deep learning, which
is competent enough for generating new samples within the
limits of training data distribution. Various promising GAN
methods have been proposed for image-to-image translations
[10], [16], [17], which can handle the new sample generation
with pre-specified features. Conditional GAN [18] proposed
generating new samples with some pre-specified features by
embedding a conditional vector for generated image. For
multi-domain image-to-image translation, Coupled Generative
Adversarial Network (CoGAN) [11] was proposed, which
learned the joint distribution of two datasets by using the
marginal distribution of two different datasets. Based on
Conditional GAN, Pix2pix [9] proposed for conditional image
transformation, conditional embedding helps the generator
network to generate samples with some pre-specified prop-
erties in image generation. Pix2pix required paired images
for conditional embedding in the image translation task. To
reduce the extensive manual work for paired data collec-
tion, CycleGAN [10] proposed an unpaired image-to-image
translation technique with cycle-consistency loss (cyclic loss).
Simultaneously, DualGAN [13] proposed for the unpaired
image translation with reconstruction loss very similar to Cy-
cleGAN. In recent literature, it is observed that the utilization
of attention mechanism with GAN can reduce the training
time leading to faster convergence by exploiting the important
regions with higher priority, such as Self-attention GAN [19],
Spatial Attention [20], and Light-weight Attention [21]. The
attention-based method boosts the CNN performance and
learns long-range dependencies by using relatively low com-
putational cost than traditional CNN and attentive to a specific
region. Recently proposed GAN methods used attention-based
networks for image-to-image translation techniques and found
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Fig. 2: Proposed MobileAR-GAN architecture.

improved results with realistic generated samples. Mejjati et
al. [16] presented an attentive Generative Adversarial Network
(AGGAN) for image-to-image translation, which draws the
attention maps by utilizing generators output and secures the
background details by employing inverse attention map. The
AGGAN reported more promising image translation results
than earlier non-attentive models. Tang et al. also presented
the new attention-based image translation method known as
AttentionGAN [17], which utilizes ResNet-based architecture
without additional network integration to calculate the atten-
tion mask. Convergence results of these methods show that
attention-based networks converge faster within fewer training
epochs than traditional networks. PCSGAN [22] proposed by
Babu et al. by using image-to-image translation for NIR-to-
Visual transformation. Infrared Colorization Using Deep Con-
volutional Neural Networks is proposed by Matthias Limmer
et al. [23]. NIR Image Colorization using SPADE Generator
and Grayscale Approximated Self-Reconstruction is done in
[24]. Hickman et al. [25] proposed color fusion for NIR images
using the RGBN fusion scheme, which used color Weight
Map (CWM) to enhance features’ visibility by controlling
color distortion within the scene. However, these GAN models
suffer from the high computational requirement and limited
performance in challenging scenario such as visible image
synthesis from NIR images.

III. PROPOSED MOBILEAR-GAN MODEL

This section presents a novel MobileNet based Effi-
cient Attentive Recurrent Generative Adversarial Network
(MobileAR-GAN) for visual image synthesis from the NIR
scene images the proposed method shown in Fig. 2. The
proposed MobileAR-GAN generator architecture is described
in Fig. 3. A paired dataset P , = (X4, Ys);_, used for
the training purposes, where Xj; and Y denotes NIR and
corresponding RGB scene images in paired manner for the
input source and the target domains. We utilize the cyclic-
synthesized loss [26] within the CycleGAN framework. For
each generator network Recurrent Mobile network integrates
with attention mechanisms. Thus, the proposed MobileAR-
GAN translates the images from source domain (X) to target
domain (Y) and target domain (Y) to source domain (X)
in cyclic manner. We use two Attention Guided Generator
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Networks, Gary, and Gyary, o , 1.€., Gary, to perform image
translation from domain X to domain Y (X — Y) and
Gy to generate the image in domain X from domain
Y (Y — X). The generator networks consist of an inbuilt
attention mechanism by using attention gates. We use auto-
encoder based architecture as the backbone of each generator
network. The decoder part uses the attention gates, which
prioritizes the synthesization in important and specific regions
to improve the quality of the generated images. The proposed
MobileAR-GAN uses other losses, which help to optimize the
learning space by superimposing different curvatures in the
learning space.

A. Proposed Mobile-Net Generator

To reduce the computational parameters, we recursively use
an Inverted residual block with a combination of U-net-based
architecture. In which a Recurrent Mobile Network block uses
a U-net backbone. In the encoding part of the network, we
combine the recurrent mobile network with the max-pool layer
and down-sample it up to bottleneck. While the decoder uses
attention gates additionally to perform the region-specific rep-
resentational learning, the applicability of attention gates helps
in fast convergence and better representational learning. At the
same time, the Mobile block helps the model to reduce the
computational parameters in the Recurrent Mobile network.
Each recurrent mobile network uses only a 1 x 1 Conv2d layer
with a recurrent Mobile block. Each recurrent mobile block
has two times recursion. While for effective computing with
less overhead, the advantage of auto-mixed precision-based
networks is also utilized to optimize data size during training
and testing. However, using attention increases the network
parameters slightly, but increases the computational efficiency
compared to GAN-Compression [27] as highlighted in Tables
V and VI

B. Network Modules

Following are the details of the proposed network:

Recurrent Mobile Network: Firstly 1 x 1 convolution
operation is performed and then output is passed to Recurrent
Mobile block where ¢ = 2 times recursion performed as shown
in Table III. Depthwise separable convolution operation used
in Mobile-Net to reduce the trainable parameters for Generator
architecture. In depthwise separable convolution operation
channel wise spatial operation is performed. Basically, first
pointwise 1 x 1 convolution operation is performed and then
depthwise 3 x 3 convolution takes place. This approach is
termed as Inverted Residual Block (/ R) which is based on the
MobileNet concept used in Mobile Block M B. We propose to
use the M B block in an recurrent fashion leading to Recurrent
Mobile Block. Consider x and z; are the input and output of
Recurrent Mobile Block and ¢ as the number of recursion call,
then z¢ can be given recursively as,

t MB(z),
T = t—1
MB(z+ 7 ),

Note that traditional Residual block uses wide (3 x 3) —
narrow (1 x 1) — wide (3 x 3) approach while Mobile Block

ift=1,

1
ift>1 0
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uses Inverted Residual block [28] consist of narrow (1 x 1) —
wide (3 x 3) — narrow (1 x 1) approach.

Attention Gates: For more elaborating attentive represen-
tation learning we use attention gates in the decoder part
of proposed generator network. Attention gates [29] help to
focus on more important feature learning while transformation
takes place in decoder network. The detailed attention block is
illustrated in Table II, where W _e denotes the encoder layer
input and W _d denotes the decoder layer input for Attention
Gates. The c¢'" channel of attention gate output in k" layer
of decoder is defined as df, = df. x G} where df, is the
cth channel of the input to attention gate and G¥ is the
learnt attention scores. The attention score is computed as
GY = oa(pT(n(WTdE + WTe; + b.)) + by,) where oy is
notation used for ReLU activation function, o represents the
Sigmoid activation function, ¢ represents 1 x 1 convolution
operation followed by batch normalization, d¥ denotes the
k' layer decoder’s output after upscaling, e; is the output of
corresponding encoder layer, W, and W, are the weights of
the conv layers corresponding to decoder and encoder branch,
respectively, b, and b, are the bias terms.

Automatic Mixed Precision: Some operations associated
with the linear and convolutional layers become faster for
float16 data type (half precision), which drastically reduces
the computational cost of most operations performed using
these layers in deep learning. We implement automatic mixed-
precision training [30] using TORCH.CUDA.AMP package
available with the torch library. These operations help in faster
training and testing using limited computational resources.
Additional required packages are provided in Supplementary.
Generator Architecture: The detailed network architecture is
represented in Fig. 3. Generator Architecture is illustrated in
Table I with sub-architectures Recurrent Mobile Block and
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TABLE I: Generator Network Architecture

R1 (Recurrent Mobile Network), in_channel =3, out_channel =64, t=2

MaxPool2d, kernel_size = 2, stride = 2

R2 (Recurrent Mobile Network), in_channel =64, out_channel =128, t=2
MaxPool2d, kernel_size = 2, stride = 2

R3 (Recurrent Mobile Network), in_channel =128, out_channel =256, t=2
MaxPool2d, kernel_size = 2, stride = 2

R4 (Recurrent Mobile Network), in_channel =256, out_channel =512, t=2

UP(1) Upconv, in_channels =512, out_channels=256
Attention_Gates, input = (UP(1), R3)
Concat input = (UP(1), R3)

R5 (Recurrent Mobile Network), in_channel =512, out_channel =256, t=2
UP(2) Upconv, in_channels =256, out_channels=128
Attention_Gates, input = (UP(2), R2)

Concat input = (UP(2), R2)

R6 (Recurrent Mobile Network), in_channel =256, out_channel =128, t=2
UP(3) Upconv, in_channels =128, out_channels=64
Attention_Gates, input = (UP(3), R1)

Concat input = (UP(3), R1)

R7 (Recurrent Mobile Network), in_channel =128, out_channel =64, t=2
Conv2D, in_channels =64, out_channels =3, kernel_size = 1, stride = 1
Tanh

TABLE II: Attention gates

W_e block, input = in
Operation kernel_size |stride
Conv2d + Batch_Norm |1 1
W_d block, input = in
Operation kernel_size |stride | channels in, out
Conv2d + Batch_Norm |1 1 inp, inp/2
Q = ReLU(output(W_d) + output(W_e))
¢ block, input = inp/2
Operation kernel_size |stride
Conv2d + Batch_Norm |1 1
Sigmoid
Out = p(Q) * input((W_d))

channels in, out
inp, inp/2

channels in, out
inp, inp/inp

TABLE III: Recurrent Mobile Network & Upconv Block

Upconv Block (UP)

Input (in_ch), Output (in_ch/2)
Upsample, Scale_factor = 2
Conv2d Kernel =3, stride =1, pad =1
BatchNorm+ReLU6

Recurrent Mobile Network
Input (in_ch)
C = Conv2d 1x1 (in_ch)
Recurrent Mobile Block (MB), t=2
C + MB

TABLE IV: Mobile Block

INPUT (in_ch = h_dim*2)
Conv2d (in_ch, h_dim, 1, 1, 0, bias=False )
Batch_Norm (h_dim), h_swish
Conv2d (h_dim, h_dim, 3, 1, 1, groups= h_dim, bias=False)
Batch_Norm (h_dim) , Identity, h_swish
Conv2d(hidden_dim, in_ch, 1, 1, 0, bias=False), Batch_Norm(in_ch)
Input+Output(Mobile Block)

Mobile Block illustrated in Table III and IV, respectively.
Attention Gates and Up conv blocks illustrated in Table II
and Table III respectively. We use CycleGAN architecture as
baseline for our methods which consists two generator G/,
Gy and two discriminator networks Dx and Dy-.
Discriminator Architecture: We use PatchGAN Discrimina-
tor as proposed in Pix2pix [9]. The detailed architecture of the
same is illustrated in Supplementary under Table 2.

C. Objective Function

Adversarial Loss (Al): Adversarial loss evaluates between
generator network and discriminator network during adver-
sarial training of both the networks. The Generator network
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generates artificially synthesized image samples. The discrim-
inator network labeled the artificially synthesized image as
fake/real by evaluating the data distribution of synthesized
images and their correlation with corresponding actual image
data distribution. In the training, the samples z,y obtained
through domains X and Y respectively. Adversarial loss for
X — Y translation described as below,

Lcan(Guyy,Dy) = Ming,,  Mazp, =
Epr(iata(y) [IOg Dy (y)]+E1’NPdam(z) [log(l_DY (GMXY (T)))]

Same as above, the adversarial loss for opposite domain
Y — X transformation defined as (Loan (Gary s Dx))-
Cycle-consistency Loss (Cl): For the Cyclic training of
the images, Cycle-consistency loss [10] used to reduce the
domain gap between the reconstructed and input images,
computed through the L1 distance measurement among the
real image and the artificially synthesized cyclic image (re-
constructed image) for forward and opposite of it, backward
cycle-consistency loss calculated. For z € X and y € Y,
cycle-consistency loss during forward cyclic transformation
described as Lcyc, and for the backward transformation
cycle-consistency loss described as Lcy.,, illustrated below.

EC@ICF = ||'T - GMYX (GJWXY (I))Hl
‘CCyCB = Hy - GMXY (GMYX (y))Hl

Synthesized Loss (SI): Synthesized loss is calculated as
L, distance between the artificially synthesized images and
corresponding ground truth images. The synthesized losses for
the domains X and Y are defined as,

Lsix = ||r — Gy ()1
Lsiy = ||y = Guxy (7)1

Cycle-Synthesized Loss (Csl): The cycle-synthesized loss
[26] helps to reduce the gap between pixels of the artifi-
cially synthesized images and the reconstructed images ob-
tained through cyclic training in the opposite domain. Cycle-
synthesized loss is computed as an L; distance measure
between the images. The cycle-synthesized loss computed as,

L:Csh = HGMYX (GA[XY(x)) - GMYX (y)Hl
Lcost, = |Gy (Gyx (Y) — Guxy (7)1

where Gy,  (y) and Gy, (z) are the synthesized images
and Gy (Gryy (2)) and Gayyy (Gary« (y)) are the cyclic
reconstructed images.

Feature Reconstruction Loss (FR): To reduce the feature
gap between artificially synthesized images and the target
images, we compute the loss among similar feature repre-
sentations for each domain. Detailed FR loss is described
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in Supplementary. Below are feature reconstruction losses
computed among different domains:

LITE(X) = 120 (@, Gargy ()

LISEY) = 1200, Gary x ()

LX) = 1500,(2, Gty (Gargy (2)))
L) =100, Grrey Gty (1))
LEREX) = 1720,(Crty x (1), Gaty x (Gargy (7))

LYLV) =172 (Cory (@), Gty (Gary (1))

Final Objective Function: The final objective function for
the proposed MobileAR-GAN is illustrated as below:

L(GpriyysGryx,Dx,Dy) =

Laan + Loye + Lost + Lsi + Lrr Where

Laan = Ag(Laan(Gryy, Dy) + Laan(Guy: Dx))
Loye = Acye(Loyer + Loyer)

Losi = Aesi(Leost, + Lesty)

Lsi = Asi(Lsix + Lsiy )
Lrr = Mear (LI (X) +

real

£C’L/Cl€( )

real

Efake( )+£(yrle( )+

real real

+ LELX) + LE(Y).

IV. EXPERIMENTAL RESULTS AND OBSERVATIONS

In this section, first we describe the experimental settings
and then quantitative results and analysis followed by quali-
tative results comparison. Finally, we justify the efficiency of
the proposed model in terms of the computational performance
and inference time.

A. Experimental Settings

Evaluation Metrics: For the quantitative analysis of
the results with previous methods, we use the standard
evaluation measures, such as Structural Similarity Index
(SSIM), Color_loss, Learned Perceptual Image Patch Similar-
ity (LPIPS), Peak-to-Signal-Noise Ratio (PSNR), and Visual
Information Fidelity (Vif). More information about these mea-
sures can be found in the Supplementary under section named
as Evaluation metrics.

Datasets Used: We test the proposed model over two
benchmark datasets: RGB-NIR Scene Dataset and Outdoor
Multispectral Images with Vegetation (OMSIV) dataset for
scene synthesis. The RGB-NIR Scene and OMSIV datasets
contain the NIR and corresponding RGB images. RGB-NIR
Scene Dataset ! contains 477 images of 9 categories in NIR
and RGB domains, out of which we use 333 image pairs for
training and 144 image pairs for testing. We refer this dataset
as NIR-RGB scene dataset as we use it for NIR to RGB
domain translation. The Outdoor Multispectral Images with
Vegetation (OMSIV)? dataset consists the NIR and multispec-
tral images. For the OMSIV dataset we use 400 images for
training and 100 images for testing.

Uhttps://ivilwww.epfl.ch/supplementary material/cvpr1 1/index.html
Zhttps://github.com/xavysp/ssmid-dataset
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Parameter Settings: For both datasets, training and testing
images are resized to 256 x 256. Cyclic architecture is used
with pool size of 50 as initially proposed in CycleGAN [10].
We use diffGrad optimizer [31] with learning rate 0.0002 and
momentum values as 51 = 0.5, S = 0.999. For comparison
with baseline methods, Pix2pix is used with its original
implementation. The same is also applied for CycleGAN and
DualGAN. Also, for a fair comparison, CycleGAN is trained in
a paired manner. For comparative analysis of different methods
with the proposed MobileAR-GAN, each non-attentive method
is used to train for 200 epochs. Attention-based approaches
like AGGAN, AttentionGAN, and MobileAR-GAN are re-
quired to train for comparatively fewer epochs, i.e., 100 show-
ing a higher convergence rate compared to non-attention based
methods. We train the proposed MobileAR-GAN in a Cyclic
manner, but test it for NIR to Visible transformation based
on the application. The proposed MobileAR-GAN and GAN-
Compression(Mobile-ResNet)) models are tested for NIR to
Visible transformation, for fair comparison we tested both
models without knowledge distillation [32]. The loss weight
hyper-parameters are considered from the source papers and
empirical observations and set in the final objective function as
1,10, 1, 15, and 1 for Adversarial loss (\,), Cycle-Consistency
loss (Acye), Cycle-Synthesized loss (Acs), Synthesized loss
(As1), and Feature reconstruction loss (Agpg), respectively. All
the testing operations as mentioned in Tables V and VI are
performed on same machine having Tesla V100 GPU with
Xeon-processor 2.40 GHz.

B. Quantitative Result Analysis

The proposed method is compared with recent state-of-
the-art non-attention-based method such as Pix2Pix [9], Cy-
cleGAN [10], DualGAN [13], PCSGAN [22], Thermal GAN
[33], and GAN-Compression [27] with Mobile-ResNet model
[27] as well as attention-based methods such as AGGAN
[16] and AttentionGAN [17]. MobileAR-GAN shows more
realistic and natural-looking images compared to the state-of-
the-art attention and non-attention-based GAN models. The
near infrared to visual color synthesis quantitative results using
the proposed MobileAR-GAN and state-of-the-art methods are
reported in Table V for the NIR-RGB Scene dataset and Table
VI for the OMSIV dataset. It can be seen MobileAR-GAN
performs better than the state-of-art methods in terms of the
SSIM, LPIPS, Color_Loss and Vif for both NIR-RGB Scene
and OMSIV datasets. Following are the observations:

o The proposed method reported gain in SSIM score over
NIR-RGB Scene dataset is {19.15%, 15.02%, 59.45%,
0.12%, 4.97%, 7.93%, 23.74%, 15.19%} compared to
non-attentive approaches such as Pix2Pix, CycleGAN,
DualGAN, PCSGAN and attention-based approaches
such as AGGAN, Attention-GAN, as well as recent state-
of-the-art non-attentive approaches like Thermal-GAN,
GAN-Compression(Mobile-ResNet), respectively (Refer
Table V).

e The gain reported in PSNR score over NIR-RGB Scene
dataset is {0.39%, 0.56%, 1.00%, 0.14%, 1.03%, 0.92%,
0.42%, 0.74%} higher than non-attentive approaches
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sion(Mobilc)

AttentionGAN ThermalGAN | Gan-Compres OURs

Fig. 4: Qualitative comparison by observational analysis of NIR-Scene to Visible Scene transformation, using NIR-RGB Scene dataset over different methods. As shown above the
proposed MobileAR-GAN generates better quality real-looking and fair images.

NIR Ground Pix2pix CycleGAN DualGAN PCSGAN AGGAN AttentionGAN Thermal GAN Gan-Compres OURs
‘Truth sion(Mobile)

Fig. 5: Qualitative comparison by observational analysis of NIR-Scene to Visible Scene transformation, using OMSIV dataset over different methods. As shown above the proposed
MobileAR-GAN generates better quality real-looking and fair images.

TABLE V: We show the empirical test results of various state-of-the-art methods, including Pix2pix, CycleGAN, DualGAN, PCSGAN, AGGAN, Attention-GAN, ThermalGAN,
and GAN-compression(Mobile-ResNet) models along with our proposed MobileAR-GAN to show a comparative quantitative analysis over the NIR-RGB Scene dataset.

Method Pix2pix CycleGAN |DualGAN |PCSGAN AGGAN AttentionGAN | ThermalGAN Gan-compr- MobileAR-
ession(Mob) GAN

SSIM 0.5796 0.6004 0.4331 0.6898 0.6579 0.6398 0.5581 0.5995 0.6906

PSNR 28.17 28.12 28.00 28.24 27.99 28.02 28.21 28.07 28.28

LPIPS 0.179 0.177 0.263 0.130 0.162 0.187 0.202 0.174 0.133

Vif 0.7919 0.7905 0.7902 0.7931 0.7826 0.7890 0.7925 0.7901 0.7932

Color_loss 35.56 42.13 45.31 34.46 45.50 44.69 145.23 42.63 32.58

Generator-Param | 5441 M 11.38 M 84.61 M 11.38M 1145 M 11.82 M 66.99 M 20M 248 M

Computational_Per| 18.15 GMac | 56.86 GMac | 25.77 GMac | 56.86 GMac |45.32 GMac |71.48 GMac 57.80 GMac | 18.39 GMac 18.00 GMac

Testing_Time 75 Secs 89 Secs 55 secs 54 Secs 40 secs 293 Secs 84 Secs 18 Secs 19 Secs

TABLE VI: We show the empirical test results of various state-of-the-art methods, including Pix2pix, CycleGAN, DualGAN, PCSGAN, AGGAN, Attention-GAN, ThermalGAN,
and GAN-compression(Mobile-ResNet) models along with our proposed MobileAR-GAN to show a comparative quantitative analysis over the OMSIV Scene dataset.

Method Pix2pix CycleGAN |DualGAN |PCSGAN AGGAN AttentionGAN | ThermalGAN Gan-Compr- | MobileAR-
ession(Mob) GAN
SSIM 0.5874 0.5888 0.3914 0.6446 0.2201 0.5847 0.5532 0.5890 0.7004
PSNR 28.60 28.20 28.14 28.62 27.89 28.11 28.58 28.26 28.74
LPIPS 0.140 0.161 0.238 0.127 0.393 0.177 0.170 0.161 0.108
Vif 0.8049 0.7928 0.7930 0.8072 0.7846 0.7908 0.8043 0.7933 0.8052
Color_loss 27.90 43.71 46.70 26.31 80.19 49.71 112.19 41.38 24.40
Generator-Param | 54.41 M 11.38 M 84.61 M 11.38M 1145 M 11.82 M 66.99M 2.0M 248 M
Computational_Per| 18.15 GMac | 56.86 GMac |25.77 GMac | 56.86 GMac |45.32 GMac |71.48 GMac |57.80 GMac | 18.39 GMac 18.0 GMac
Testing_Time 53 Secs 69 Secs 38 Secs 40 Secs 33 secs 227 Secs 61 Secs 13 Secs 14 Secs

such as Pix2Pix, CycleGAN, DualGAN, PCSGAN and
attention-based approaches such as AGGAN, Attention-
GAN, as well as recent non-attention based Thermal-
GAN, GAN-Compression(Mobile-ResNet), respectively,
as reported in Table V.

The gain in SSIM score over OMSIV dataset (as
reported in Table VI) is {19.23%, 18.95%, 78.94%,
8.65%, 218.22%, 19.78%, 26.60%, 18.91%} higher

Compression(Mobile-ResNet), respectively.

The gain in PSNR score over OMSIV dataset (see Table
VD) is {0.48%, 1.91%, 2.13% , 0.41%, 3.04%, 2.42%,
0.55%, 1.69%} higher than non-attention-based methods
such as Pix2Pix, CycleGAN, DualGAN, PCSGAN and
attention-based methods such as AGGAN, Attention-
GAN, as well as recent non-attention based Thermal-
GAN, GAN-Compression(Mobile-ResNet), respectively.

than non-attention-based methods such as Pix2Pix,  Op the other hand, the proposed MobileAR-GAN shows lower

CycleGAN, DualGAN, PCSGAN and attention-based  score for LPIPS and Color_loss for both NIR-RGB Scene and
methods such as AGGAN, AttentionGAN, as well  QMSIV multispectral vegetation datasets.

as recent non-attention based ThermalGAN, GAN- e The proposed MobileAR-GAN shows reduction for
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LPIPS as reported in Table V, over NIR-RGB Scene
dataset by {25.69%, 24.85%, 49.42%, —2.30% 17.90%,
28.87%, 34.15%, 23.56%} than Pix2Pix, CycleGAN,
DualGAN, PCSGAN, AGGAN, AttentionGAN, as well
as recent non-attention based ThermalGAN, GAN-
Compression(Mobile-ResNet), respectively.

e The proposed MobileAR-GAN shows reduction for
LPIPS as reported in Table VI, over OMSIV dataset by
{22.85%, 32.91%, 54.62%, 14.96%, 72.51%, 38.98%,
36.47%, 32.91%} than Pix2Pix, CycleGAN, Dual-
GAN, PCSGAN, AGGAN, AttentionGAN, as well
as recent non-attention based ThermalGAN, GAN-
Compression(Mobile-ResNet), respectively.

e The proposed MobileAR-GAN shows reduction for
Color_loss as reported in Table V, over NIR-RGB
Scene dataset by {8.38%, 22.66%, 28.09%, 5.49%,
28.39%, 27.09%, 77.56%, 23.57%} than Pix2Pix, Cycle-
GAN, DualGAN, PCSGAN, AGGAN, AttentionGAN, as
well as recent non-attention based Thermal GAN, GAN-
Compression(Mobile-ResNet), respectively.

e The proposed MobileAR-GAN shows reduction for
Color_loss as reported in Table VI, over OMSIV
dataset by {12.54%, 44.17%, 47.75%, 7.25%, 69.57%,
50.91%, 78.38%, 41.03%} than Pix2Pix, CycleGAN,
DualGAN, PCSGAN, AGGAN, AttentionGAN, as well
as recent non-attention based ThermalGAN, GAN-
Compression(Mobile-ResNet), respectively.

C. Computational Analysis

For the Network analysis we perform Computational-
parameter analysis over the state-of-the-art non-attention-
based methods such as Pix2Pix [9], CycleGAN [10], Du-
alGAN [13], PCSGAN [22], ThermalGAN [33], GAN-
Compression(Mobile-ResNet) [27], as well as attention-based
method models such as AGGAN [16] and AttentionGAN
[17]. It can be seen in the Table V and VI, MobileAR-
GAN takes less computational parameters and testing time
compared to Pix2Pix, CycleGAN, DualGAN, PCSGAN, AG-
GAN, AttentionGAN and ThermalGAN. While at the same
time, we observe either superior or very much compa-
rable efficiency by the proposed model as compared to
GAN-Compression(Mobile-ResNet) in terms of Generator-
Parameters and Testing time.

o The proposed MobileAR-GAN shows reduction for gen-
erator parameters by {95.44%, 78.20%, 43.91%, 78.20%,
78.34%, 79.01%, 96.29%} than Pix2Pix, CycleGAN,
DualGAN, PCSGAN, AGGAN, AttentionGAN and Ther-
malGAN, respectively, as reported in Table V and VI

o The proposed MobileAR-GAN shows reduction for test-
ing time over NIR-RGB Scene dataset as reported in
Table V by {74.66%, 78.65%, 65.45%, 64.81%, 52.50%,
93.51%, 77.38%, —5.55%} than Pix2Pix, CycleGAN,
DualGAN, PCSGAN, AGGAN, AttentionGAN, Ther-
malGAN, and GAN-Compression(Mobile-ResNet), re-
spectively.

e The proposed MobileAR-GAN shows reduction for test-
ing time over OMSIV Multi-spectral dataset as reported
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in Table VI by {73.58%, 79.71%, 63.15%, 65.00%,
57.57%, 93.83%, 77.04%, —7.69%} than Pix2Pix, Cy-
cleGAN, DualGAN, PCSGAN, AGGAN, AttentionGAN,
ThermalGAN, and GAN-Compression(Mobile-ResNet),
respectively.

o The proposed MobileAR-GAN shows reduction for com-
putational performance in terms of GMac by {0.82%,
68.34%, 30.15%, 68.34%, 60.28%, 74.81%, 68.85%,
2.12%} than Pix2Pix, CycleGAN, DualGAN, PCSGAN,
AGGAN, AttentionGAN , ThermalGAN, and GAN-
Compression(Mobile-ResNet), respectively, as reported
in Table V and VI.

D. Qualitative Result Analysis

The empirical test results analysis between the gen-
erated images and ground truth images using the pro-
posed MobileAR-GAN and other compared sate-of-the-art
GAN models (i.e., Pix2Pix, CycleGAN, DualGAN, PCS-
GAN, AGGAN, AttentionGAN, ThermalGAN and GAN-
Compression(Mobile-ResNet)) is shown in Fig. 4 and 5 for the
sample images from NIR-RGB Scene and OMSIV datasets,
respectively. It is evident in Fig. 4, the proposed MobileAR-
GAN results better than existing state-of-the-art methods on
the NIR-RGB Scene dataset. A similar observation is also
made in Fig. 5 that MobileAR-GAN results are visually much
better over OMSIV dataset.

Moreover, the MobileAR-GAN model produces better and
visually appealing results corresponding to the non-attention-
based approaches like Pix2Pix, CycleGAN, DualGAN, PCS-
GAN, and ThermalGAN as the proposed model able to focus
on the essential visual characteristics in a better way with
the help of attention module. On the other hand, the existing
attention-based models such as AGGAN and AttentionGAN
fail to produce the qualitative images with color consistency.
However, the proposed method is able to tackle this issue with
the help of inverted residual block with attention modules and
performs better even in fewer epochs of training as compared
to the existing methods.

V. IMPACT OF DIFFERENT LOSSES AND ARCHITECTURAL
MODULES.

Impact of Different Losses: In order to justify the require-
ment and impact of the used losses in the proposed approach,
we execute an ablation study by evaluating the different
combinations of loss functions. The qualitative comparison of
various losses is shown in Supplementary for the samples from
NIR-RGB Scene and OMSIV datasets, respectively. For NIR-
RGB Scene dataset, the proposed MobileAR-GAN reports
better results in terms of the SSIM, Vif, PSNR, LPIPS and
Color_loss in % when adversarial loss, cycle loss, synthesized
loss, feature reconstruction loss and Cycle synthesized loss
are combined. We gain an increment of {304.56%, 1.47%,
0.48%} for SSIM, PSNR, and Vif, respectively, and reduction
of {57.09%, 56.57%} for LPIPS and Color_loss, respectively,
by the proposed MobileAR-GAN model when compared to
only adversarial loss as reported in Table VII. MobileAR-GAN
shows an increment of {17.58%, 0.92%, 0.69%} in SSIM,
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TABLE VII: The quantitative analysis of different loss combinations over the proposed MobileAR-GAN model for the NIR-RGB Scene dataset and OMSIV Scene dataset.

NIR-RGB Scene dataset OMSIYV Scene dataset
Method SSIM |PSNR | Vif |LPIPS |Color_loss | SSIM [PSNR | Vif |[LPIPS | Color_loss
Al 0.1707 | 27.87 [0.7894 | 0.310 75.03 0.0910 | 27.90 | 0.7794 | 0.399 89.58
Al+Cl 0.5873 | 28.02 [ 0.7877 | 0.201 45.35 0.5659 | 28.17 | 0.7925 | 0.179 43.94
Al+Cl1+S1 0.6301 | 28.18 [0.7905 | 0.167 34.21 0.6354 | 28.51 | 0.8006 | 0.141 27.74
Al+CI1+S1+Csl [ 0.6378 | 28.16 [0.7917 | 0.165 34.73 0.6506 | 28.50 | 0.8015 | 0.130 26.59
Al+Cl+S1+Csl+FR | 0.6906 | 28.28 | 0.7932| 0.133 32.58 0.7004 | 28.74 | 0.8052 | 0.108 24.40

TABLE VIII: The quantitative analysis of different modules combinations over the proposed MobileAR-GAN model for NIR-RGB Scene dataset and OMSIV Scene dataset.

NIR_RGB Scene dataset OMSIYV Scene dataset
Method SSIM | PSNR | Vif |LPIPS | Color_loss | SSIM |PSNR | Vif |LPIPS | Color_loss
U-Net (1x1 Conv only) 0.4800 | 28.07 |0.7924 | 0.203 38.87 0.4260 | 28.20 [0.7950 | 0.192 39.03
U-Net + Recurrent Mobile 0.5852 | 28.20 |0.7907 | 0.168 35.05 0.6492 | 28.68 |0.8064 | 0.111 25.02
(U-Net + Recurrent Mobile + Attention) Proposed | 0.6906 | 28.28 |0.7932 | 0.133 32.58 0.7004 | 28.74 | 0.8052 | 0.108 24.40

PSNR and Vif scores, respectively, and reduction of {33.83%,
28.15%} in LPIPS and Color_loss scores, respectively, as
compared with the combination of adversarial loss and cycle
loss, as depicted in Table VII. The proposed MobileAR-
GAN gains {9.60%, 0.35%, 0.34%} in terms of the SSIM,
PSNR and Vif, respectively, with a reduction of {20.35%,
4.76%} in terms of the LPIPS and Color_loss, respectively,
as compared to the combination of adversarial loss, cycle loss
and synthesized loss (Refer Table VII). However, MobileAR-
GAN achieves {8.27%, 0.42%, 0.18%} improvements using
the SSIM, PSNR and Vif, respectively while leads to reduction
of {19.39%, 6.19%} in the LPIPS and Color_loss scores,
respectively as compared to the combination of adversarial
loss, cycle loss, synthesized loss and cycle-synthesized loss
is considered, as illustrated in Table VII. The similar trend
of importance of different losses used is also observed over
OMSIV dataset as illustrated in Table VII. The findings from
this experiment justify the inclusion of relevant losses in the
proposed model.

Impact of different Architectural Modules: In order to
justify the combination of different modules and their effect
on the performance of the proposed MobileAR-GAN model,
we perform a comparison with only U-Net and only U-Net+
Recurrent Mobile module based models in Table VIII. We
found that the performance of the proposed model is better
when all the modules such as U-Net, Recurrent Mobile and
Attention are utilized. Basically, without attention the model
is not able to exploit the gradients from essential regions.
Thus, the performance improves when attention is integrated
into the network. We report the saliency map in Fig. 2
in Supplementary which also justify the need of different
modules in the proposed model.

VI. CONCLUSION

The proposed MobileAR-GAN method shows outstanding
performance in terms of visual quality in the generated visible
images from NIR images. At the same time, it is very efficient
to be used with computational-limited devices. The utilization
of Attention and Recurrent modules with MobileNet based
generator network leads to higher quality images with small
number of parameters. It is observed that the proposed model
outperforms the state-of-the-art GAN models for NIR to
visible translation. An ablation study on loss functions justify

the utilization of relevant objective functions for the proposed
model. For the fair comparison we compared all the methods
without knowledge distillations. The proposed MobileAR-
GAN shows better computational efficiency compared to state-
of-the-art Pix2pix and GAN-Compression methods with im-
provement of 0.82% and 2.12% respectively, in terms of the
no. of operations. In order to demonstrate the efficiency of
the proposed model, we have successfully deployed it on
edge computing NVIDIA Jetson device and observed very
promising processing speed in real time. Hence, the proposed
MobileAR-GAN model has a huge potential for real time
measurement and processing of visual data for image-to-image
translation applications.
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