
HRel: Filter Pruning based on High Relevance between Activation Maps and Class Labels

CH Sarvani1, Mrinmoy Ghorai1, Shiv Ram Dubey2, SH Shabbeer Basha3

1Computer Vision Group, Indian Institute of Information Technology, Sri City, Chittoor, Andhra Pradesh- 517646, India.
2Computer Vision and Biometrics Laboratory, Indian Institute of Information Technology, Allahabad, Uttar Pradesh- 211015, India.

3DryvAmigo, Banglore, Karnataka, India.

{sarvani.ch, mrinmoy.ghorai}@iiits.in, srdubey@iiita.ac.in, shabbeer.sh@dryvamigo.com

Abstract

This paper proposes an Information Bottleneck theory based filter pruning method that uses a statistical measure called Mutual
Information (MI). The MI between filters and class labels, also called Relevance, is computed using the filter’s activation maps and
the annotations. The filters having High Relevance (HRel) are considered to be more important. Consequently, the least important
filters, which have lower Mutual Information with the class labels, are pruned. Unlike the existing MI based pruning methods,
the proposed method determines the significance of the filters purely based on their corresponding activation map’s relationship
with the class labels. Architectures such as LeNet-5, VGG-16, ResNet-56, ResNet-110 and ResNet-50 are utilized to demonstrate
the efficacy of the proposed pruning method over MNIST, CIFAR-10 and ImageNet datasets. The proposed method shows the
state-of-the-art pruning results for LeNet-5, VGG-16, ResNet-56, ResNet-110 and ResNet-50 architectures. In the experiments, we
prune 97.98 %, 84.85 %, 76.89%, 76.95%, and 63.99% of Floating Point Operation (FLOP)s from LeNet-5, VGG-16, ResNet-56,
ResNet-110, and ResNet-50 respectively. The proposed HRel pruning method outperforms recent state-of-the-art filter pruning
methods. Even after pruning the filters from convolutional layers of LeNet-5 drastically (i.e., from 20, 50 to 2, 3, respectively),
only a small accuracy drop of 0.52% is observed. Notably, for VGG-16, 94.98% parameters are reduced, only with a drop of 0.36%
in top-1 accuracy. ResNet-50 has shown a 1.17% drop in the top-5 accuracy after pruning 66.42% of the FLOPs. In addition to
pruning, the Information Plane dynamics of Information Bottleneck theory is analyzed for various Convolutional Neural Network
architectures with the effect of pruning. The code is available at https://github.com/sarvanichinthapalli/HRel.
This paper is published by Neural Networks, Elsevier. The final paper is available at:
https://www.sciencedirect.com/science/article/pii/S0893608021004962.

1. Introduction

Deep Convolutional Neural Networks (CNN) are being used
to provide successful and reliable solutions in various domains
[2, 9, 15, 51, 52, 64]. In the applications of deep neural net-
works, the requirement for higher memory and power consump-
tion hinders their deployment on low-end devices such as mo-
biles, drones. Hence, it is necessary to decrease energy con-
sumption and memory footprint. To solve it, two types of meth-
ods have been found in literature, namely network compression
and Neural Architecture Search (NAS).

Network compression is an area that accelerates the infer-
ence by reducing the Floating Point Operations (FLOPs) and
decreases the memory requirement by pruning trainable param-
eters using various techniques. Network compression can be
performed by different techniques such as network quantiza-
tion, knowledge distillation, low-rank factorization and network
pruning. Network quantization reduces the number of bits re-
quired to represent the weights [69]. Binarization is an extreme
case of this, where only 1 bit is used for representing weights
[10, 11]. In knowledge distillation methods, a larger teacher
model transfers its knowledge to a computationally less expen-
sive student model [27, 53]. Low-rank factorization methods

aim at reducing the computational requirement by representing
the convolution weight matrix as a product of low-rank matrices
[29]. Network (Parameter) pruning methods, prune the filters in
two different ways, i.e., weight pruning [21, 36] and filter prun-
ing [40, 60]. In weight pruning, the least important weights
across the network are pruned. Therefore, only a few weights
of the filters are pruned by weight pruning methods. Special
hardware libraries are required to accelerate the network com-
pressed by the weight pruning method. On the other hand, filter
pruning methods prune the complete filter and do not require
the support of any special hardware and libraries. Hence, they
are widely used in the research community in recent years.

NAS based compression techniques [14, 19, 41, 44, 61, 71]
are focused on finding the compact structure of neural network
architecture, rather than using a criteria for computing the im-
portance of convolutional filters. NAS methods include chan-
nel configuration i.e., number of channels in each layer into the
search space. Thereby the best channel configuration under var-
ious computational budgets (eg. FLOPS) is selected with less
human interference.

This paper is focused on filter pruning methods which are
broadly classified into two types, namely, Data free - which use
the weight matrices of filters [3, 5, 23, 24, 25, 26, 39, 43, 59, 60,

https://github.com/sarvanichinthapalli/HRel
https://www.sciencedirect.com/science/article/pii/S0893608021004962.

3.0 3.5 4.0 4.5 5.0
I(X; h)

2.0

2.5

3.0

I(h
;Y

)

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Figure 1: Information Plane dynamics of LeNet-5 architecture trained on
MNIST dataset for 20 epochs. The layers are represented with different col-
ors and saturation of each color indicates the progress of training.

65, 66] and Data driven - which use the activation maps gener-
ated by the respective filters [1, 13, 16, 28, 31, 37, 40, 45, 46].
A primitive data free filter pruning approach is proposed by Li
et al. [39] that uses the filter’s `1 norm to determine the signifi-
cance of filters. The filters with the least `1 norm are considered
to be less important and pruned from the model.The correlation
measure between the filters is used to identify and prune the re-
dundant filters [59, 65]. Singh et al. [60] employed a custom
regularizer based on an orthogonality constraint such that the
remaining filters after pruning based on `1 norm were indepen-
dent and designed a mechanism to transfer the knowledge from
the filters to be pruned to the remaining filters. Ayinde et al.
[3] pruned the redundant filters based on the relative cosine dis-
tance among the filters. In the data driven category, Hu et al.
[28] proposed a filter pruning method that prunes filters hav-
ing a greater average number of zeroes in their activations. Lin
et al. [40] pruned filters based on the rank of their respective
activation maps. The rank of a matrix gives the maximum num-
ber of linearly independent column vectors. Both [28, 40] have
identified the significance of filters directly from their activa-
tion maps without considering the class labels (ground truths).
Jordao et al. [31] pruned filters by considering the linear rela-
tionship between filters and class labels. In data-free methods,
it is difficult to capture the amount of relevant information re-
trieved by a filter about the class labels. Only in data-driven
methods, the relation between transformed input (the input af-
ter applying non-linear transformations) at each hidden layer
and the ground truth can be captured by an information the-
oretic quantity called Mutual Information (MI). MI can cap-
ture both linear and non-linear relationships. The pruning tech-
niques [1, 13, 16, 37] which use Mutual Information for their
filter pruning criteria are data-driven methods.

Using Mutual Information measure, Tishby et al. proposed
Information Bottleneck (IB) theory [63] and applied it in the
context of neural networks [56]. IB theory analyzes the learn-
ing of a neural network using the network’s Information Plane
(each hidden layer’s MI with input and true class labels plotted
on X-axis and Y-axis respectively) during the training as shown
in Fig. 1. From the Information Plane (IP) dynamics of IB the-
ory, each hidden layer’s MI with input and class labels increase
gradually and saturate during the training.

This paper proposes a data-driven filter pruning technique for

Train

 Filter selection

Yes

Prune limit
reachedPrune

Original model Compressed
model

Retrain

No

Figure 2: Illustration of complete pruning process: The original heavy model
is initially trained before pruning. The pruning starts by selecting filters that
are least important, followed by a retrain step. The process of pruning and
retraining continues till the desired pruning limit is achieved.

neural network classifiers based on IB theory which defines the
significance of filters using their Relevance. The filters with
the least Relevance from each layer are pruned iteratively. The
overall pruning process is depicted in Fig. 2. Among the other
existing methods that use MI for defining filter’s importance,
only the method [1] observes the significance of individual neu-
rons purely based on their Relevance. However, only fully con-
nected and smaller neural networks are pruned by this strategy.
Contrary to the method [1], our method can prune filters of con-
volutional layers in deeper architectures like VGG-16, ResNet-
56, ResNet-110 and ResNet-50. The proposed method also re-
lies on a non-parametric estimator [67] that is more stable than
the binning method used in [1] for the estimation of MI.
Our contributions are summarized as follows:

• Based on the IB theory, MI between filter’s activation
maps and class labels is proposed as the criterion to de-
cide the filter’s importance.

• The Information Plane dynamics of IB theory is shown
along with the effect of pruning, which justifies the pro-
posed filter selection criterion for pruning.

• Extensive experiments show the efficacy of the proposed
approach, with a considerable improvement over the re-
cent state-of-the-art methods [3, 5, 13, 14, 16, 23, 24, 25,
31, 37, 39, 40, 41, 42, 44, 59, 60, 61].

The rest of the article is organized as follows- Section 2 re-
views the background of IB theory and MI estimation by in-
vestigating the limitations in the prior art. Section 3 discusses
proposed HRel method. Section 4 illustrates the experimental
results and Section 5 concludes with the future directions.

2. Related Works

This section discusses the significance of Information Plane
(IP) dynamics in IB theory, limitations of the methods for MI
estimation, and the limitations of the existing works that used
MI for pruning.

In IB theory [56], the learning process of neural networks is
analyzed using the IP dynamics. During the training of neural
networks, two quantities, MI of every hidden layer h with input
X represented as I(X; h) and MI of every hidden layer h with

2

label Y represented as I(h; Y), keep increasing. At a point dur-
ing training, the quantity I(X; h) starts decreasing, while I(h; Y)
continues to increase as shown in Fig. 1. This is called as com-
pression phase [56]. However, both the quantities settle at a
value and do not change on further training of the neural net-
work. There are conflicting views [4, 18, 55] and supporting
views [8, 30, 49] regarding the existence of the compression
phase. The proposed method selects filters using MI between
their activation maps and class labels for pruning based on IB
theory.

MI estimation plays an important role in IB theory, and sev-
eral works based on IB theory [6, 18, 55, 56] use different MI
estimation methods. MI calculation in deep neural networks
requires the joint and marginal probabilities of high dimen-
sional variables, which are difficult to compute. Hence vari-
ous non-parametric estimators [6, 32, 33, 38, 49, 67, 70] have
been proposed. The basic method uses binning [50] to esti-
mate MI, where the neurons’ outputs are discretized. However,
the binning estimate highly depends on the bin size. The non-
parametric estimators based on K-Nearest Neighbours [33], and
kernel density estimation [32, 38] were being widely used be-
fore Mutual Information Neural Estimation (MINE) [6], which
solved the problem of scaling with the sample size and dimen-
sion. An Rényi’s alpha entropy estimator [67] has been pro-
posed using the matrices or tensors, which are basic entities
in deep learning. It has also shown the IP dynamics on larger
architecture (from the perspective of MI estimation) like VGG-
16. The proposed HRel method uses matrix based Rényi’s al-
pha entropy estimator [67] for MI estimation.

In MI based filter pruning methods, Dai et al. [13] used an
upper bound of Relevance as a part of the loss function. With
this modified loss function, MI between every hidden layer and
the corresponding class labels increases, and MI between the
consecutive layers decreases. Ganesh et al. [16] pruned the
filters in a hidden layer with lower Mutual Information with
all the other filters of the subsequent layer. Amjad et al. [1]
have shown that in fully connected neural networks, MI be-
tween neurons in hidden layers and the corresponding class la-
bels is a good selector for layer-wise neuron importance. Min et
al. [46] used the entropy of activations conditioned on the loss
as a criterion for filter’s significance. The filters with higher
conditional entropy, which implies a lower MI, are pruned. Re-
cently, Lee et al. [37] utilized gradients of MI between the acti-
vation maps of BatchNorm layers and final score vectors to the
scaling factor of Batch-Normalization during back propagation
to decide the filter’s importance. The network architecture is
augmented with an MI-subnet, which is responsible for the MI
estimation.

Compared to the existing methods, the proposed HRel
method captures MI between filters and class labels (i.e., Rele-
vance) using a matrix based estimator [67] and uses it for filter
pruning criterion. To the best of our knowledge, effect of prun-
ing on Information plane of various CNNs is analyzed for the
first time. Also, the HRel method is not employing additional
architecture or changes in the loss function, unlike the MI based
filter pruning methods [13, 37].

3. Proposed HRel Pruning Approach

In this section, we propose an HRel filter pruning approach
for convolutional neural networks. The filters are pruned de-
pending on their Relevance in corresponding hidden layers.
The Relevance criterion is chosen based on the IB theory us-
ing the Mutual Information metric. This section describes the
basic definitions and notations, computation of the Relevance
followed by steps of filter pruning.

3.1. Basic Definitions and Notations
Mutual Information (MI) between two random variables U,

V i.e., I(U; V) quantifies the amount of information that can
be inferred about a random variable U by observing the other
random variable V or vice versa, which is expressed as

I(U; V) = H(U) + H(V) − H(U,V) (1)

where H(U) and H(V) denote entropy [12], H(U,V) denotes
joint entropy [12].

Assume a CNN model having c convolutional layers, in
which Li is the ith convolutional layer. The filters of a convo-
lutional layer Li can be represented as FLi = { fi,1, fi,2,, fi,ni},
where ni is the number of filters in layer Li, fi, j ∈ Rni−1×di×di , di

is the kernel size and ni−1 is the number of channels in each fil-
ter which is same as the depth of the activation input. Suppose
there are m mini-batches of input for training the network. For
the kth mini-batch, the activation maps of filters from ith hid-
den layer is denoted by Ak

i = {Ak
i,1, Ak

i,2,.... Ak
i,ni
} ∈ Rni×s×hi×wi ,

where ni is the number of filters, s is the mini-batch size, hi and
wi are the height and width of the activation maps, respectively.
Notably, Ak

j,1 ∈ R
s×hi×wi is the activation map generated by fi, j

for all the samples in kth mini-batch. During pruning, filters in
layer Li are split into Pruned filters PLi = { fi,P1 , fi,P2 ,, fi,Ppi

}

and Remaining filters RLi = { fi,R1 , fi,R2 ,, fi,Rri
}, where pi and

ri are the number of pruned and remaining filters of layer Li.
P j and Rk denote jth, kth filters in pruned and remaining filter
set, respectively. Notably, PLi ∩ RLi = ∅, PLi ∪ RLi = FLi , and
pi + ri = ni.

3.2. The Relevance as Filter Selection Criteria
The proposed HRel pruning method utilizes the Relevance,

which is a key component of Information Plane dynamics used
in IB theory. Though there is an ongoing debate on the exis-
tence of the compression phase, there is no ambiguity in the
increment and saturation of hidden layers’ Relevance (I(Li; Y))
i.e., MI between each hidden layer’s (Li) activation maps and
the class labels (Y) in neural networks, during training. It is
also observed that initially, all the layers have less Relevance
at the beginning of training. But as the training progresses, the
Relevance of each layer also gradually increases and gets satu-
rated, as shown in Fig. 1. So, a higher Relevance gained by the
hidden layers during the training implies that the hidden layers
learned more relevant information about the class labels. Simi-
lar to hidden layers, individual filter’s Relevance (I(fi, j; Y)) i.e.,
MI between each filter’s activation maps and the class labels,
also determines the amount of relevant information extracted by

3

Mini-batch Input

Layer c

Layer 1

0 7

Activation maps - f1,1
f1,2

fc,1
fc,2

n1f1,

A1,1

ncfc,

Mini-batch Labels

MI Estimator

MI Estimator

k

Activation maps - Ac,1
k

I(A1,1 ; Y)k

I(Ac,1 ; Y)k

CNN

Figure 3: The steps involved in calculating the Relevance of Ak
i, j, i.e., activation

map of the jth filter of ith layer from the kth mini-batch.

filter about the class labels. Hence, the Relevance of filters is
employed in the proposed method to determine the significance
of the filters across each layer. For kth mini-batch of training
data, the Relevance between the activation maps of filters and
class labels Y given by I(Ak

i, j; Y) is obtained as shown in Fig. 3.
The proposed method estimates two (Relevance) quantities

I(Li; Y) and I(fi, j; Y), which are utilized in IP dynamics and
filter pruning, respectively. The computation of I(fi, j; Y) uses
the activation maps generated by each filter from a hidden layer,
whereas computation of I(Li; Y) uses the complete output of a
hidden layer. Estimation of MI between the activation maps and
class labels in the proposed method is similar to [67].

For a given mini-batch of size s with the activation maps gen-
erated X = {x1, x2..., xs}, the Gram matrix G of size s × s is
calculated using Gaussian kernel as Gi,j = e−

1
σ2 ‖xi−x j‖

2
F where

G ∈ Rs×s for all i, j ∈ [1, s], σ denotes kernel width, and ‖ . ‖F
denotes Frobenius Norm. As presented in [48], entropy is con-
sequently calculated using the Eigen values of the normalized
Gram matrix N as

H(N) = −

m∑
i=1

λi log2 λi (2)

Where Ni,j = 1
s

Gi,j√
Gi,iGj,j

, N ∈ Rs×s for all i, j ∈ [1, s], and λi is the

ith eigen value of N.
The joint entropy between random variables U, V is calcu-

lated using Hadamard product (◦) of their normalized Gram
matrices NU, NV, respectively [17] as

H(U,V) = H(NU ◦ NV) (3)

The Relevance is calculated using the Equations 1, 2 and 3.
Unlike rank, the Relevance of activation maps generated by fil-
ters changes with the mini-batches, as each filter can share a
different amount of information with different classes as shown
in Fig. 4. Slight variations in the Relevance values of filters

Algorithm 1 : HRel pruning of a layer Li for a pruning iteration

Inputs: RLi - Set of remaining filters in Li, prune ratioi - The
percentage of filters to prune in each pruning iteration, ri -
The number of remaining filters of layer Li, limiti-Number of
filters to be retained in layer Li of final compressed model

Output: Updated RLi

1: if first pruning iteration then
2: RLi ← FLi

ri ← ni

3: end if
4: if ri > limiti then
5: for each mini-batch k of total m mini-batches, k ∈

1,2,...,m do
6: for each filter fi, j ∈ RLi do
7: compute I(Ak

i, j; Y) using subsection 3.2
8: end for
9: end for

10: for Each filter fi, j ∈ RLi do

11: I(fi, j; Y)←
∑m

k=1 I(Ak
i, j;Y)

m
12: end for
13: ti ← dri × prune ratioi/100e
14: Sort RLi in ascending order ;
15: Rsorted

Li
← { fi,R1 , fi,R2 ,, fi,Rri

}; R1,R2, ...Rri is a permu-
tation of filters in RLi : I(fi,R1 ; Y) ≤ I(fi,R2 ; Y) ≤ ... ≤
I(fi,Rti

; Y) ≤ ... ≤ I(fi,Rri
; Y)

16: R
prune
Li

← { fi,R1 , fi,R2 ,, fi,Rti
}

17: RLi ← RLi − R
prune
Li

18: ri ← ri − ti
19: end if

over mini-batches in an epoch can also be observed. Therefore
the mean value of the Relevance of filters measured across the
mini-batches of training data is considered. The averaged Rele-
vance values across the mini batches for the filters in Fig. 4 are
discussed in subsection 4.G and depicted in Fig. 7. It is also
observed that in Fig. 4 for each architecture except ResNet-50
from top to bottom, the color saturation of the plots gradually
moved towards the brighter side.

3.3. Filter Pruning Steps

The pruning of filters involves three main stages. Firstly, the
neural network is trained till the baseline accuracy is achieved.
Secondly, each filter’s Relevance is computed and filters with
low Relevance are pruned. Thirdly, the network is retrained.
The filter pruning and retraining are done iteratively.

3.3.1. Initial Training
The network parameters (Θ) are initialized and updated until

the model convergence. Training of network with each mini-
batch of data is called training iteration. During network train-
ing, the kernel width σi for each hidden layer Li is computed
for all mini-batches.

4

(a) LeNet-5: 50 Filters (b) VGG-16: 512 Filters (c) ResNet-56: 16 Filters (d) ResNet-110: 32 Filters (e) ResNet-50: 128 Filters

(f) LeNet-5: 21 Filters (g) VGG-16: 175 Filters (h) ResNet-56: 13 Filters (i) ResNet-110: 26 Filters (j) ResNet-50: 80 Filters

(k) LeNet-5: 5 Filters (l) VGG-16: 71 Filters (m) ResNet-56: 10 Filters (n) ResNet-110: 20 Filters (o) ResNet-50: 65 Filters

Figure 4: The Relevance of the remaining filters from convolution layers of different architectures (the number of remaining filters are specified for each sub-figure).
For each sub-figure, X-axis denotes all the remaining filters in a convolutional layer at different pruning iterations. Y-axis (bottom to top) denotes the mini-batches of
the training data. The first row depicts the architectures before pruning. Rows 2, 3 indicate the Relevance of filters during specific pruning iterations. Convolutional
layers 2, 9, 13, 37 and 34 of LeNet-5, VGG-16, ResNet-56, ResNet-110, and ResNet-50 respectively are used.

20

40

60

80

100

120

si
gm

a

layer 1
layer 2

(a) LeNet-5 on MNIST

0

25

50

75

100

125

si
gm

a

layer 2
layer 3
layer 4
layer 6
layer 7

layer 9
layer 10
layer 12
layer 13
layer 15

(b) VGG-16 on CIFAR10

0

200

400

600

800

si
gm

a

layer 1
layer 15
layer 37
layer 53
layer 54

(c) ResNet-56 on CIFAR10

0

20

40

60

80

si
gm

a layer 1
layer 37
layer 70

layer 108
layer 109

(d) Resnet-110 on CIFAR10

0

5

10

15

20

25

30

si
gm

a

layer 4
layer 13

layer 22
layer 40

(e) Resnet-50 on ImageNet

Figure 5: Kernel width σi for different layers denoted by sigma across the pruning iterations for different architecture + dataset combinations. The X-axis denotes
training iterations from left to right (each vertical line in the sub-figures denotes a pruning iteration).

3.3.2. Filter Selection and pruning

After initial training, pruning, and retraining of the network
are performed iteratively, where each iteration is called pruning
iteration. In each pruning iteration, the filters selected using
Algorithm 1 are pruned, and the network is retrained. To select
the filters to be pruned from each layer Li, two hyperparameters
are required. One is the final number of filters to be retained
denoted by limiti, and the other is the percentage of remaining
filters to be pruned at each iteration of pruning identified by
prune ratioi. The training data is processed batch-wise and the
Relevance of each filter in a given mini-batch k i.e., I(Ak

i, j; y), is
calculated using steps 2-6 in Algorithm 1. I(fi, j; y) is then ob-
tained by averaging I(Ak

i, j; y) across the mini-batches, for all fil-
ters in each layer as shown in steps 7-9. Next, the filters in each
layer are sorted based on I(fi, j; y) value and top prune ratioi %
of the filters in each layer Li given by ti are pruned. Step 11
in Algorithm 1 can be skipped if a fixed number of filters are
removed from each layer by directly specifying ti value. The
remaining filters and their count are updated using steps 14-16
in Algorithm 1.

3.3.3. Retraining

This section focuses on improving the model performance
lost due to the pruning of filters. After pruning the selected
filters from the network with c convolutional layers, the model
contains a reduced set of the trainable parameters Θ

′

compared

to the original model Θ.

Θ
′

= Θ \ {PLi | i ∈ 1, 2, . . . , c} (4)

The network is then fine-tuned by retraining each architecture
for a certain number of epochs to regain the accuracy drop.

It has been observed that the kernel width σi calculated for
each layer along with the initial training saturates after a few
epochs as shown in Fig. 5 (i.e., before the pruning iterations
begin). Therefore, its calculation is deterred in further training.
In our work, we observed σi values across the pruning itera-
tions and found that despite pruning, the values did not fluctu-
ate much, as shown in Fig. 5. Hence the computation of σi is
not done during the retraining of the network after pruning. The
final obtained kernel width of hidden layers during pruning is
used for both hidden layers and the corresponding filters across
the pruning iterations.

4. Experiments and Analysis

To demonstrate the potency of the proposed HRel pruning
method, the following dataset + architecture combinations -
MNIST [35] + LeNet-5 [35], CIFAR10 [34]+ VGG-16 [58],
CIFAR10 + ResNet-56 [22], CIFAR10 + ResNet-110 [22],
ImageNet[54] + ResNet-50 [22] are used. Experimental re-
sults are analyzed in terms of accuracy, IP dynamics, and the
Relevance distribution. Subsections 4.A, 4.B, 4.C, 4.D and 4.E
compare the pruning results with state-of-the-art methods. Fur-
thermore, the subsection 4.F analyzes the IP dynamics related

5

to IB theory and finally, the subsection 4.G examines the dis-
tribution of the Relevance values of filters across the pruning
iterations.

The percentage of filters to be removed from each layer and
the number of filters to be retained in the final network are the
hyperparameters for each of the architectures. The same CNNs
as in the recent work based on the rank of activation maps [40],
are utilized for verifying the efficacy of the proposed filter prun-
ing method. The batch size is modified to 80 in ResNet-50 and
100 in rest of the architectures. Nesterov momentum [7] is used
for ResNet-56 and ResNet-110. Same settings as in [67] are
used for MI estimation by using an input kernel of width 8 and
a label kernel of width 0.1. During the calculation of filters’
Relevance batch size of 128 in ResNet-50 and 100 in rest of the
architectures are used. The kernel width of each hidden layer
for every dataset + architecture combination is evaluated until
the baseline accuracy is achieved. The hyperparameters such
as learning rate, learn rate schedule for training and pruning it-
erations are specified for each architectures in subsections 4.A,
4.B, 4.C, 4.D and 4.E.

In our experimental setting, we have evaluated the proposed
method in terms of FLOPs- Floating Point Operations and
Trainable Parameters for all the models. For a fair comparison
with the other methods, parameters and FLOPs corresponding
to Convolutional and Fully Connected layers alone are consid-
ered. FLOPs and Params in the results table (Table 1, 2, 3,
4, and 5) denote remaining FLOPs and remaining parameters
after pruning, respectively. M denotes Millions (106) and B
denotes Billions (109) in the columns of FLOPs and Params.
The percentage of pruned FLOPs and pruned Parameters are
denoted by P f % and Pp%, respectively. The baseline accu-
racy and the accuracy after pruning (in percentage) is denoted
by Accbaseline% and Accpruned% respectively. Accuracy Drop is
denoted by Acc↓. For ResNet-50 Top-1,Top-5 implies Top-1
and Top-5 baseline accuracies. Top-#pruned% and Top-#↓ de-
note corresponding accuracy and accuracy drop, after pruning.

4.A. LeNet-5 on MNIST Dataset

MNIST is a handwritten digits dataset, that contains 60,000
training images and 10,000 test images, each of size 28×28×1.
LeNet-5 architecture contains 2 convolutional layers, having 20
and 50 filters with the spatial dimension of 5 × 5, followed by
3 fully connected layers with 800, 500, and 10 neurons, respec-
tively. The network is trained for 40 epochs with the initial
learning rate of 0.1, which is divided by 10 at epoch numbers
20 and 30 to achieve the baseline accuracy. For the proposed
HRel method, rather than pruning an equal percentage of filters
from each layer, better results are observed empirically if ini-
tial layers are pruned at a lower rate compared to final layers.
Thus, in each pruning iteration, 4% and 12% of the filters are
pruned from the first and second convolutional layers, respec-
tively. After pruning, the network is retrained for 40 epochs
beginning with a learning rate of 0.1, which is divided by 10 at
epochs 10 and 20. LeNet-5 pruning results are compared with
benchmark methods in Table 1. Note that HRel-# represents
HRel at different pruning limits.

HRel method achieves a higher FLOPs reduction percentage,
i.e., 97.98%, with the accuracy of 98.78%, and accuracy drop
of 0.52, outperforming CFP [59] and HBFP [5] methods, for
an equal FLOPs reduction percentage. While PP-OC [60] has
the least accuracy drop, the HRel method achieved the higher
test accuracy when {20, 50} filters are pruned to {4, 5} filters
in the first and second convolution layers, respectively. Though
VIB [13] method had a lesser number of remaining FLOPs, i.e.,
0.09M, the authors have mentioned that they considered half the
number of FLOPs. Hence, it would account for 0.18M to com-
pare with all the other methods. Inspite of having more baseline
accuracy than CFP and HBFP the accuracy drop is considerably
less.

4.B. VGG-16 on CIFAR-10 Dataset

CIFAR-10 dataset consists of 50,000 training images and
10,000 test images belonging to 10 classes. The image size is
32×32×3. The proposed HRel method is applied to VGG-16 ar-
chitecture 64-64-128-128-256-256-256-512-512-512-512-512-
512-512-10 with 13 convolutional layers and 2 fully connected
layers to prune the filters from convolutional layers. The net-
work is trained for 300 epochs with the initial learning rate of
0.1 divided by 10 at epoch numbers 80, 140, and 230 to achieve
the baseline accuracy. Similar to LeNet-5, a lower pruning ra-
tio is used for initial layers compared to final layers. Conse-
quently, 2% of filters from layers 1 and 2 (layers with 64 filters
initially), 4% of filters from layers 3 and 4 (layers with 128 fil-
ters initially), 5% of filters from layers 5, 6 and 7 (layers with
256 filters initially), and 10% of filters from the rest of the lay-
ers (layers with 512 filters initially) are pruned in each pruning
iteration. After pruning, the network is retrained for 90 epochs
beginning with a learning rate of 0.01, which is divided by 10 at
epochs 40, and 70. The pruning results for HRel-1 and HRel-2
(specified in Table 2) are obtained for VGG-16 with 21-48-64-
64-95-107-107-175-71-71-44-44-56 and 20-48-64-64-95-107-
107-175-71-71-44-44-56 remaining filters, from each convolu-
tional layer respectively.

The HRel method achieves the accuracy of 93.54% when
84.70% of the FLOPS pruned%, which is better than all the
other methods. In terms of accuracy drop HRel is observed to
have second best result next to PP-OC. Also, a very promising
trade-off is observed between the accuracy and number of re-
maining FLOPs using the proposed HRel method as compared
to the existing methods. It shows the capability of the proposed
pruning method to prune a deeper plain model.

4.C. ResNet-56 on CIFAR-10 Dataset

ResNet-56 is a deeper and complex architecture compared to
VGG-16. ResNet-56 has 55 convolutional layers and 1 Fully
connected layer in total. Except for the first one, all convolu-
tional layers are grouped into three different blocks, with each
block having 18 convolutional layers. The number of filters
in 1st, 2nd and 3rd blocks is 16, 32 and 64, respectively. The
network is trained for 180 epochs with the initial learning rate
of 0.1, which is divided by 10 at epoch numbers 91 and 136
to achieve the baseline accuracy. For pruning ResNet-56, we

6

Table 1: Pruning results of LeNet-5 architecture over MNIST dataset. F here
denotes number of remaining filters in convolutional layers 1 and 2 respectively.

Method Accbaseline% Accpruned% Acc↓ F FLOPs P f %

VIB [13] - 99.00 - - 0.09M -
GAL [42] 99.20 98.99 0.21 2, 15 0.10M 95.60
PP-OC [60] 99.17 99.20 -0.03 4, 5 0.19M 95.56
HRel-1(ours) 99.30 99.23 0.07 4, 5 0.19M 95.56
HRel-2(ours) 99.30 99.16 0.14 3, 5 0.15M 96.41
HRel-3(ours) 99.30 98.99 0.31 3, 4 0.13M 96.84
CFP [59] 99.17 98.23 0.94 2, 3 0.08M 97.98
HBFP [5] 99.17 98.60 0.57 2, 3 0.08M 97.98
HRel-4(ours) 99.30 98.78 0.52 2, 3 0.08M 97.98

follow the same approach as in [59], i.e., pruning 1, 2 and 4
filters from every convolutional layer belonging to 1st, 2nd and
3rd blocks, respectively. After pruning, the network is retrained
for 100 epochs beginning with a learning rate of 0.01, which
is divided by 10 at epochs 20 and 70. The remaining number
of filters in convolutional layers of each block are 10, 20, 38
for HRel-1 and 8, 15, 30 for HRel-2. As shown in Table 3, af-
ter pruning 62.06% of the FLOPs, the proposed HRel method
achieves 93.19% accuracy, higher than GAL [42] method. In
HRel-2 the highest percentage of parameters i.e., 77.83% and
FLOPs i.e., 76.89% are pruned, and the accuracy can be ob-
served to be better than HRank, CFP, and HBFP methods. PP-
OC has the least accuracy drop. CFP and HRel methods have
the next best accuracy drops with higher P f % than PP-OC.
Also, HRel-2 has a lesser accuracy drop compared to Hrank
and HBFP methods.

4.D. ResNet-110 on CIFAR-10 Dataset

ResNet-110 contains 109 convolutional layers and 1 Fully
connected layer in total. Similar to ResNet-56, except for the
first convolutional layer, all the remaining convolutional layers
are grouped into three different blocks, but each block contains
36 convolutional layers, with 16, 32 and 64 filters, respectively.
The network is trained for 240 epochs with the initial learning
rate of 0.1, which is divided by 10 at epoch numbers 88, 160,
and 190 to achieve the baseline accuracy. Similar to ResNet-
56, 1, 2, and 4 filters are pruned from each convolutional layer
of 1st, 2nd, and 3rd blocks, respectively. Note that similar to
other methods, the first convolutional layer is not pruned. After
pruning, the network is retrained for 70 epochs beginning with
a learning rate of 0.01, which is divided by 10 at epochs 30
and 50. The remaining filters in the convolutional layer of each
block for HRel-1 are 10, 20, and 38 and for HRel-2 are 8,15,
and 30. HRel-1 reduces 62.1% of the FLOPs and achieves an
accuracy of 93.03%, while Jordao et al. [31] and ABCPruner
obtained better accuracies of 93.75% and 93.79% by pruning
a slightly lesser percentage of filters i.e., 60.17% and 60.30 re-
spectively. NAS based method TAS achieves the highest ac-
curacy of 94.33%. ABCPruner and LFPC have less accuracy
drop compared to other methods with nearby P f % values. In
HRel-2, with 76.95% pruned FLOPs and 77.86% pruned pa-
rameters, higher accuracy and lower accuracy drop than HRank
and HBFP methods are observed.

4.E. ResNet-50 on ImageNet

ImageNet dataset consists of 1.2 million training images and
50,000 test images belonging to 1000 classes. ResNet-50 has 49
convolutional layers and 1 Fully connected layer in total. Ex-
cept for the first one, all convolutional layers are grouped into
four different blocks, with each block having two 1×1 convolu-
tional layers and one regular convolutional layer (i.e., 3×3 ker-
nel size). The network is initialized with the pre-trained weights
on the ImageNet dataset and trained for 3 epochs with a learning
rate of 0.0001 (to learn the kernel width required for estimating
MI at different layers). The 8% of the convolutional layers from
the first 3 blocks and 9% from the last block are pruned in every
pruning iteration. Similar to other approaches first two convo-
lutional layers from every block are pruned. After pruning, the
network is retrained for 33 epochs beginning with a learning
rate of 0.001, divided by 10 at epochs 10 and 25. The remain-
ing filters for HRel-1, HRel-2 and HRel-3 from the convolu-
tional layers in each block are [41,80,158,288], [33,60,117,203]
and [27,48,92,154], respectively. After pruning 58.88% of the
FLOPs, the proposed HRel method achieves 74.54% Top-1 ac-
curacy and 92.12% Top-5 accuracy, with the least accuracy drop
of 0.68 among the network compression methods shown in Ta-
ble 5. In HRel-3 the highest percentage of parameters i.e.,
64.40% and FLOPs i.e., 66.42% are pruned and Top-1 accu-
racy of 73.67% and Top-5 accuracy of 91.70% are observed.
HRel method shows comparable performance with MetaPrun-
ing and LFPC in terms of Top-1 and Top-5 accuracies. How-
ever, it achieves higher Top-1 and Top-5 accuracies than SFP,
ASFP, GAL, HRank, PP-OC, CFP and ABCPruner for com-
parable P f %. In terms of accuracy drop, the HRel method has
the lowest Top-1 accuracy drop and second-best Top-5 accuracy
drop than other network compression methods with comparable
P f %. Compared to all the methods, HRel has the second-best
accuracy drop next to DMCP.

The results observed using ResNet-56, ResNet-110, and
ResNet-50 on CIFAR-10 and ImageNet datasets point out that
the proposed HRel pruning method can prune the residual net-
works with very promising performance in terms of the accu-
racy as well as pruned FLOPs and parameters. Note that the
proposed method has also shown very appealing performance
for shallow (LeNet-5) and deep (VGG-16) plain models over
different datasets. Overall, it can be deduced from the above
experimental results that the proposed HRel pruning approach
can retain the filters that are having high Relevance which leads
to better accuracy even after pruning. The proposed pruning
method is robust since high Relevance is used as the criterion
in modeling the proposed HRel pruning strategy with the help
of the IB theory.

4.F. Analysis of Information Plane Dynamics

IP dynamics for the architectures LeNet-5, VGG-16, and
ResNet-56 are plotted using I(X; Li) and I(Li; Y) from the be-
ginning of the training. Whereas for ResNet-110, values from
the last ten epochs before reaching the baseline accuracy are
observed due to its complex architecture. For ResNet-50, the
values are observed only from the last epoch during the initial

7

Table 2: Pruning results of VGG-16 architecture over CIFAR-10 dataset. Note that the entries are sorted based on the P f % in increasing order.

Method Accbaseline% Accpruned% Acc↓ FLOPs P f % Params Pp%
`1-norm [39] 93.25 93.40 -0.15 206.00M 34.30 5.40M 64.00
Ayinde et al. [3] 93.80 93.67 0.13 - 40.50 - 78.10
GAL [42] 93.96 90.78 3.18 171.89M 45.20 2.67M 82.20
CPGMI [37] - 93.86 - 151.00M 51.80 1.99M 86.70
ABCPruner [41] 93.02 93.08 -0.06 82.81M 73.68 1.67M 88.68
CafeNet-E [61] - 93.67 - 76.00M - 1.40M -
HRank [40] 93.96 91.23 2.73 73.70M 76.50 1.78M 92.00
VIB [13] - 91.50 - 70.63M 77.48 - -
MINT [16] 93.98 93.43 0.55 - - - 83.43
CFP [59] 93.49 92.90 0.59 56.70M 81.93 -
HBFP [5] 93.96 91.99 1.97 51.90M 83.42 2.40M 83.77
PP-OC [60] 93.49 93.43 0.06 48.80M 84.50 0.86M 94.30
HRel-1(ours) 93.90 93.54 0.36 47.98M 84.70 0.75M 94.98
HRel-2(ours) 93.90 93.40 0.50 47.51M 84.85 0.75M 94.98
Jordao et al. [31] 93.30 91.80 1.50 - 90.66 - -

Table 3: Pruning results of ResNet-56 architecture over CIFAR-10 dataset.

Method Accbaseline% Accpruned% Acc↓ FLOPs P f % Params Pp%
`1-norm [39] 93.04 93.06 -0.02 90.90M 27.60 0.73M 14.10
Ayinde et al. [3] 93.39 93.12 0.27 90.70M 27.90 0.65M 23.70
MINT [16] 92.55 93.02 -0.47 - - - 55.39
SFP [25] 93.59 92.26 1.33 59.40M 52.60 - -
ASFP [24] 93.59 92.44 1.15 59.40M 52.60 - -
TAS [14] - 93.69 0.77 59.50M 52.70 - -
LFPC [23] 93.59 93.34 0.25 59.10M 52.90 - -
ABCPruner [41] 93.26 93.23 0.03 58.54M 54.13 0.39M 54.20
Jordao et al. [31] - 93.71 - - 57.06 - -
GAL[42] 93.26 90.36 2.90 49.99M 60.20 0.29M 65.90
HRel-1(ours) 93.80 93.19 0.61 47.57M 62.06 0.30M 63.76
PP-OC [60] 93.10 93.15 -0.05 - 68.40 - -
Hrank [40] 93.26 90.72 2.54 32.52M 74.10 0.27M 68.10
CFP [59] 93.57 92.63 0.93 29.50M 76.59 - -
HBFP [5] 93.26 91.42 1.84 27.10M 78.43 0.19M 76.97
HRel-2(ours) 93.80 92.70 1.10 28.99M 76.89 0.18M 77.83

Table 4: Pruning results of ResNet-110 architecture over CIFAR-10 dataset.

Method Accbaseline% Accpruned% Acc↓ FLOPs P f % Params Pp%
`1 - norm [39] 93.53 93.30 0.23 155.00M 38.70 1.16M 32.60
Ayinde et al. [3] 93.65 93.27 0.38 154.00M 39.10 1.13M 34.20
SFP [24] 93.68 93.38 0.30 150.00M 40.80 - -
GAL [42] 93.35 92.55 0.80 130.20M 48.50 0.95M 44.80
ASFP [24] 93.68 93.10 0.58 121.00M 52.30 - -
Jordao et al. [31] - 93.75 - - 60.17 - -
TAS [14] - 94.33 0.64 119.00M 53.00 - -
LFPC [23] 93.68 93.79 -0.11 101.00M 60.30 - -
HRel-1(ours) 93.50 93.03 0.47 095.72M 62.14 0.62M 63.80
ABCPruner [41] 93.50 93.58 -0.08 089.87M 65.04 0.56M 67.41
HRank [40] 93.50 92.65 0.85 079.30M 68.60 0.53M 68.70
HBFP [5] 93.50 91.96 1.54 063.30M 74.95 0.43M 74.92
HRel-2(ours) 93.50 92.71 0.79 058.20M 76.95 0.38M 77.86

Table 5: Pruning results of ResNet-50 architecture over ImageNet dataset.

Method Top-1 Top-1pruned% Top-1↓ Top-5 Top-5pruned% Top-5↓ FLOPs P f % Params Pp%
SFP [25] 76.15 62.14 14.01 92.87 84.60 08.27 - 41.80 - -
ASFP [24] 76.15 75.53 00.62 92.87 92.73 00.14 - 41.80 - -
GAL [42] 76.15 71.95 04.20 92.87 90.94 01.93 02.33B 43.03 21.20M 16.86
HRank [40] 76.15 74.98 01.17 92.87 92.33 00.54 02.30B 43.76 16.15M 36.80
TAS [14] - 76.20 01.26 - 93.07 0.48 02.31B 43.50 - -
DMCP [19] 76.60 76.20 00.40 - - - 02.20B 46.47 - -
HRel-1(ours) 76.15 75.47 00.68 92.87 92.60 00.27 02.11B 48.66 13.23M 48.24
CafeNet-E [61] 77.80 76.90 00.90 - 93.10 - 02.00B 51.33 18.40M 27.84
MetaPruning [44] 76.60 75.40 01.20 - - - 02.00B 51.33 - -
PP-OC [60] - - - 92.20 92.10 00.10 - - 15.70M 44.10
CFP [59] - - - 92.20 91.40 00.80 - - - 49.60
ABCPruner [41] 76.01 73.52 02.49 92.96 91.51 01.45 01.79B 56.61 11.24M 56.01
HRel-2(ours) 76.15 74.54 01.61 92.87 92.12 00.75 01.69B 58.88 10.82M 57.67
LFPC [23] 76.15 74.46 01.69 92.87 92.04 00.83 - 60.80 - -
HRel-3(ours) 76.15 73.67 02.48 92.87 91.70 01.17 01.38B 66.42 09.10M 64.40

8

3.0 3.5 4.0 4.5 5.0
I(X; Li)

1.75

2.00

2.25

2.50

2.75

3.00

3.25

I(L
i;Y

)

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

(a) LeNet-5 Without pruning

3.0 3.5 4.0 4.5 5.0
I(X; Li)

1.75

2.00

2.25

2.50

2.75

3.00

3.25

I(L
i;Y

)

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

(b) LeNet-5 With pruning

3 4 5 6
I(X; Li)

1.0

1.5

2.0

2.5

3.0

I(L
i;Y

)

Layer 2
Layer 3
Layer 4
Layer 6
Layer 7
Layer 9
Layer 10
Layer 12
Layer 13
Layer 15

(c) VGG-16 Without pruning

3 4 5 6
I(X; Li)

1.0

1.5

2.0

2.5

3.0

I(L
i;Y

)

Layer 2
Layer 3
Layer 4
Layer 6
Layer 7
Layer 9
Layer 10
Layer 12
Layer 13
Layer 15

(d) VGG-16 With pruning

0 1 2 3 4 5 6
I(X; Li)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

I(L
i;Y

)

Layer 1
Layer 15
Layer 37
Layer 53
Layer 54

(e) ResNet-56 Without pruning

0 1 2 3 4 5 6
I(X; Li)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
I(L

i;Y
)

Layer 1
Layer 15
Layer 37
Layer 53
Layer 54

(f) ResNet-56 With pruning

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4
I(X; Li)

2.9

3.0

3.1

3.2

I(L
i;Y

)

Layer 1
Layer 37
Layer 70
Layer 108
Layer 109

(g) ResNet-110 Without pruning

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4
I(X; Li)

2.9

3.0

3.1

3.2

I(L
i;Y

)

Layer 1
Layer 37
Layer 70
Layer 108
Layer 109

(h) ResNet-110 With pruning

5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35
I(X; Li)

5.00

5.05

5.10

5.15

5.20

5.25

5.30

5.35

I(L
i;Y

)

Layer 4
Layer 13
Layer 22
Layer 40

(i) ResNet-50 Without pruning

5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35
I(X; Li)

5.00

5.05

5.10

5.15

5.20

5.25

5.30

5.35

I(L
i;Y

)

Layer 4
Layer 13
Layer 22
Layer 40

(j) ResNet-50 With pruning

Figure 6: Information Plane (IP) dynamics of LeNet-5, VGG-16, ResNet-56, ResNet-110, and ResNet-50 architectures. The left column corresponds to the IP
dynamics of each architecture without pruning, and the right column shows the IP dynamics after pruning for the corresponding architecture. The layers are
represented with different colors and saturation of each color indicates the progress of training.

9

(a) LeNet-5 with 50 Filters (b) VGG-16 with 512 Filters (c) ResNet-56 with 16 Filters (d) ResNet-110 with 32 Filters (e) ResNet-50 with 128 Filters

(f) LeNet-5 with 21 Filters (g) VGG-16 with 175 Filters (h) ResNet-56 with 13 Filters (i) ResNet-110 with 26 Filters (j) ResNet-50 with 80 Filters

(k) LeNet-5 with 5 Filters (l) VGG-16 with 71 Filters (m) ResNet-56 with 10 Filters (n) ResNet-110 with 20 Filters (o) ResNet-50 with 65 Filters

Figure 7: Distribution of the Relevance values of remaining filters from convolutional layers of different architectures across the pruning iterations (the number of
remaining filters is specified for each sub-figure). For each sub-figure, X-axis denotes the range of the Relevance values. Y-axis denotes the percentage of filters
having a corresponding Relevance value range. Convolutional layers 2, 9, 15, 37, and 34 of LeNet-5, VGG-16, ResNet-56, ResNet-110, and ResNet-50 respectively
are used.

training due to comparatively more mini-batches for the Ima-
geNet dataset. After initial training, for every pruning iteration,
the last one epoch for ResNet-50 and the last ten epochs for the
rest of the architectures are used to estimate the values I(X; Li)
and I(Li; Y). From the IP dynamics of each architecture after
pruning, i.e., in the second column in Fig. 6, a slight decrease in
the Relevance value of the final layers is observed compared to
the architecture’s IP dynamics without pruning (which is very
less in the case of ResNet-50), is observed. This means that
the network layers lose slight information concerning the class
labels. This can be related to the small accuracy drop resulted
from the pruning of filters. Though we preserve the filters with
high Relevance, based on “Partial information decomposition”
of MI [68, 73], the unique information (i.e., the information
provided individually by few pruned filters) and their synergy
(i.e., joint information provided only by the combination of few
filters) is lost.

The MI estimator [67] used in the HRel method highly de-
pends on the optimal kernel bandwidth of the dataset [62].
The original work [67] and a few related works [72, 73] using
this estimator have used only the smaller datasets like CIFAR-
10, MNIST, Fruits 360 [47], MADELON [20] etc. In these
datasets, kernel bandwidth is chosen either by Silverman’s rule
of thumb [57] or by empirical evaluation over a range of values.
Due to high dimensionality and more data samples in the Ima-
geNet dataset, it is not feasible to obtain optimal kernel band-
width for ImageNet using these methods. Hence, the same ker-
nel bandwidth values specified in the MI estimator are used for

input and class labels of the ImageNet dataset. Though similar
and saturated values are observed for all layers in the Infor-
mation Plane before and after pruning ResNet-50, the filters’
Relevance values have shown enough variation among them as
shown in Fig. 4, facilitating the selection of filters during prun-
ing iterations. The optimal bandwidth for input and class labels
of the ImageNet dataset can produce a better projection of the
Information Plane of ResNet-50.

Overall, the IP dynamics indicate some information loss
while pruning the filters, which is minimal for the proposed
HRel method, as indicated by the experimental results. Thus,
minimal information loss is acceptable as the complexity of the
model is reduced drastically to facilitate the deployment of deep
learning models over resource-constrained devices.

4.G. Analysis of Progression of Pruning using the Relevance
Distribution

The distribution of the Relevance values of each architecture
at the beginning of certain pruning iterations is shown in Fig.
7. Each column represents the Relevance value distribution for
all the remaining filters in a given layer of the architecture. The
first row is the distribution of the Relevance value before the
beginning of the first pruning iteration. Subsequent rows can
be identified by the remaining filters mentioned for each archi-
tecture. Note that the plot in Fig. 7 shows the percentage (%)
of remaining filters for different ranges of Relevance values.
From the Fig. 7a - 7d, 7f - 7n and 7k - 7n it is observed that
in each column, with the increase in the pruning iterations, the

10

0 2 4 6 8 10 12 14
Pruning iterations

0.04

0.08

0.12

0.16

0.20
Av

er
ag

e
Re

le
va

nc
e

LeNet-5
VGG-16
ResNet-56
ResNet-110
ResNet-50

Figure 8: The average Relevance of all the layers across the pruning iterations
for various architectures.

lowest Relevance value among the remaining filters increased.
Also, in few architectures such as ResNet-56 and ResNet-110,
though the lowest Relevance value did not change much, the
percentage of filters having the lowest Relevance value is com-
paratively decreased after pruning.

It can be noticed that the distribution is slightly shifted to-
wards the right side in most of the cases across the pruning it-
erations, which shows that the Relevance of the majority of the
remaining filters is high. From Fig. 8. it can be observed that
the average Relevance across the pruning iterations increased
continuously for LeNet-5 and VGG-16. However, for ResNet-
56 and ResNet-110 the average Relevance decreased initially
for few pruning iterations and then increased. This observation
further supports the proposed idea of utilization of high Rele-
vance in the HRel pruning method. For ResNet-50 there is no
much increment observed even after few pruning iterations in
Fig. 8. The Relevance distribution values are also shifted to the
left for ResNet-50 in Fig. 7. The Relevance distribution values
can also be more accurate if the optimal kernel bandwidth is
used.

4.H. Ablation study

An ablation study is conducted to understand the effect of
global filter pruning based on Relevance values and the effect
of batch size during the estimation of filters’ Relevance.

1) Global pruning: The filters are compared globally based
on their Relevance values in the global pruning method. As
shown in Fig. 7, filters’ Relevance values keep changing with
the pruning iterations. Thus, in every pruning iteration, the es-
timated Relevance values of all the remaining filters across the
layers are sorted and the maximum value from the least T% of
the values is considered as the threshold. A new threshold value
based on the filters’ Relevance is used at every pruning itera-
tion. Consequently, the filters with Relevance below the thresh-
old are pruned. The experiments are conducted on ResNet-56
architecture using CIFAR-10 dataset with the values 5, 10, 20,
25, 40, and 45 for T. In the global pruning method, the lower T
values resulted in better accuracy, as shown in Fig. 9. However,
it can be observed that none of the global pruning results have
achieved comparable accuracy with the proposed HRel method,
where filters are ranked layer-wise based on their Relevance.
Even the recent work [1] concludes that it is not suggested to
compare the filters’ Relevance across layers. However, it is a
good estimator for the filter’s importance when compared layer-
wise. The global pruning method in [1] prunes the filters at a

0 10 20 30 40 50 60
Flops pruned (percentage)

92.6

92.8

93.0

93.2

93.4

93.6

93.8

94.0

94.2

Ac
cu

ra
cy

Baseline
HRel
T=0.05
T=0.10
T=0.20
T=0.25
T=0.40
T=0.45

Figure 9: Accuracy of ResNet-56 architecture on CIFAR10 dataset when filters
are globally pruned.

0 34 62
Flops pruned (percentage)

93.0

93.2

93.4

93.6

93.8

94.0

Ac
cu

ra
cy

batch size=64
batch size=100
batch size=128
batch size=256
batch size=512

Figure 10: Accuracy of ResNet-56 architecure on CIFAR10 dataset for various
batchsizes.

higher rate from the layers with relatively low Relevance filters.
A similar observation is found in our ablation study. Filters are
selectively pruned from a few layers at a higher rate, due to
which more accuracy drop is observed, as depicted in Fig. 9.

2) Effect of batch size: Here, the effect of batch size dur-
ing the computation of Relevance of filters is analyzed. Batch
sizes of 64, 100, 128, 256, and 512 are used with ResNet-56 on
CIFAR-10 dataset. The results obtained using the HRel method
with a batch size of 100 for ResNet-56 are reported in Table 3.
As illustrated in Fig. 10, it is observed that the batch size 64
resulted in comparatively lower accuracy. At the initial pruning
iterations, the first and second-best performances are obtained
with the batch size of 512 and 100, respectively. However, for
higher pruned FLOPs, all the batch sizes produced similar re-
sults. Hence, the batch size during the estimation of filters’
Relevance has less effect on the final performance of the HRel
method.

5. Conclusion

In this paper, filters in CNNs are pruned based on their Rel-
evance value. The Relevance measure is chosen based on IB
theory, which is measured using the mutual information (MI)
between the activations maps of the respective filters and the
ground truths. The proposed HRel pruning method is evaluated
on MNIST, CIFAR-10, and ImageNet datasets using LeNet-
5, VGG-16, ResNet-56, ResNet-110, and ResNet-50 models.
The pruning results obtained using the HRel method are supe-
rior compared to the current state-of-the-art pruning methods.
The IP dynamics show the significance of the pruning crite-
ria. The analysis of IP plane dynamics before and after pruning
for the different CNNs suggests that the information loss after

11

pruning is negligible. The filters’ Relevance is observed to in-
crease from initial pruning iteration to final iteration except for
ResNet-50 on ImageNet. The deployment of lightweight mod-
els that are pruned using the HRel method on edge devices such
as drones, mobiles may be potential future research.

Acknowledgements

We thank Nvidia for donating two Titan X GPUs, which are
used to perform the experiments of this research.

References

[1] RA Amjad, K Liu, and BC Geiger. Understanding neural networks and in-
dividual neuron importance via information-ordered cumulative ablation.
IEEE Transactions on Neural Networks and Learning Systems, 2021. 2,
3, 11

[2] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang
Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang
Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end speech recog-
nition in english and mandarin. In International conference on machine
learning, pages 173–182. PMLR, 2016. 1

[3] Babajide O Ayinde, Tamer Inanc, and Jacek M Zurada. Redundant fea-
ture pruning for accelerated inference in deep neural networks. Neural
Networks, 118:148–158, 2019. 1, 2, 8

[4] Emilio Rafael Balda, Arash Behboodi, and Rudolf Mathar. An informa-
tion theoretic view on learning of artificial neural networks. In 2018 12th
International Conference on Signal Processing and Communication Sys-
tems (ICSPCS), pages 1–8. IEEE, 2018. 3

[5] SH Basha, Mohammad Farazuddin, Viswanath Pulabaigari, Shiv Ram
Dubey, and Snehasis Mukherjee. Deep model compression based on the
training history. arXiv preprint arXiv:2102.00160, 2021. 1, 2, 6, 7, 8

[6] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil
Ozair, Yoshua Bengio, Aaron Courville, and Devon Hjelm. Mutual in-
formation neural estimation. In International Conference on Machine
Learning, pages 531–540. PMLR, 2018. 3

[7] Aleksandar Botev, Guy Lever, and David Barber. Nesterov’s accelerated
gradient and momentum as approximations to regularised update descent.
In 2017 International Joint Conference on Neural Networks (IJCNN),
pages 1899–1903. IEEE, 2017. 6

[8] Ivan Chelombiev, Conor Houghton, and Cian O’Donnell. Adaptive es-
timators show information compression in deep neural networks. arXiv
preprint arXiv:1902.09037, 2019. 3

[9] Zezhou Cheng, Qingxiong Yang, and Bin Sheng. Deep colorization. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 415–423, 2015. 1

[10] Matthieu Courbariaux, Yoshua Bengio, and J. David. Binaryconnect:
Training deep neural networks with binary weights during propagations.
In NIPS, 2015. 1

[11] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bi-
naryconnect: Training deep neural networks with binary weights dur-
ing propagations. In Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’15, page
3123–3131, Cambridge, MA, USA, 2015. MIT Press. 1

[12] Thomas M. Cover and Joy A. Thomas. Elements of Information The-
ory (Wiley Series in Telecommunications and Signal Processing). Wiley-
Interscience, USA, 2006. 3

[13] Bin Dai, Chen Zhu, Baining Guo, and David Wipf. Compressing neural
networks using the variational information bottleneck. In International
Conference on Machine Learning, pages 1135–1144. PMLR, 2018. 2, 3,
6, 7, 8

[14] Xuanyi Dong and Yi Yang. Network pruning via transformable architec-
ture search. arXiv preprint arXiv:1905.09717, 2019. 1, 2, 8

[15] Haytham M Fayek, Margaret Lech, and Lawrence Cavedon. Evaluating
deep learning architectures for speech emotion recognition. Neural Net-
works, 92:60–68, 2017. 1

[16] Madan Ravi Ganesh, Jason J Corso, and Salimeh Yasaei Sekeh. Mint:
Deep network compression via mutual information-based neuron trim-
ming. arXiv preprint arXiv:2003.08472, 2020. 2, 3, 8

[17] Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C Principe. Mea-
sures of entropy from data using infinitely divisible kernels. IEEE Trans-
actions on Information Theory, 61(1):535–548, 2014. 4

[18] Ziv Goldfeld, Ewout van den Berg, Kristjan Greenewald, Igor Melnyk,
Nam Nguyen, Brian Kingsbury, and Yury Polyanskiy. Estimating infor-
mation flow in deep neural networks. arXiv preprint arXiv:1810.05728,
2018. 3

[19] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan. Dmcp: Differ-
entiable markov channel pruning for neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1539–1547, 2020. 1, 8

[20] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result anal-
ysis of the nips 2003 feature selection challenge. Advances in neural in-
formation processing systems, 17, 2004. 10

[21] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both
weights and connections for efficient neural network. In NIPS, 2015. 1

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016. 5

[23] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and
Yi Yang. Learning filter pruning criteria for deep convolutional neural
networks acceleration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2009–2018, 2020. 1, 2, 8

[24] Yang He, Xuanyi Dong, Guoliang Kang, Yanwei Fu, Chenggang Yan,
and Yi Yang. Asymptotic soft filter pruning for deep convolutional neural
networks. IEEE transactions on cybernetics, 50(8):3594–3604, 2019. 1,
2, 8

[25] Y He, G Kang, X Dong, Y Fu, and Y Yang. Soft filter pruning for accel-
erating deep convolutional neural networks. In IJCAI International Joint
Conference on Artificial Intelligence, 2018. 1, 2, 8

[26] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning
via geometric median for deep convolutional neural networks accelera-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4340–4349, 2019. 1

[27] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowl-
edge in a neural network. In NIPS Deep Learning and Representation
Learning Workshop, 2015. 1

[28] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network
trimming: A data-driven neuron pruning approach towards efficient deep
architectures. arXiv preprint arXiv:1607.03250, 2016. 2

[29] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding
up convolutional neural networks with low rank expansions. CoRR,
abs/1405.3866, 2014. 1

[30] Hlynur Jónsson, Giovanni Cherubini, and Evangelos Eleftheriou. Con-
vergence behavior of dnns with mutual-information-based regularization.
Entropy, 22(7):727, 2020. 3

[31] Artur Jordao, Fernando Yamada, and William Robson Schwartz. Deep
network compression based on partial least squares. Neurocomputing,
406:234–243, 2020. 2, 7, 8

[32] Artemy Kolchinsky and Brendan D Tracey. Estimating mixture entropy
with pairwise distances. Entropy, 19(7):361, 2017. 3

[33] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating
mutual information. Physical review E, 69(6):066138, 2004. 3

[34] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009. 5

[35] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
2010. 5

[36] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage.
In Advances in neural information processing systems, pages 598–605,
1990. 1

[37] Min Kyu Lee, Seunghyun Lee, Sang Hyuk Lee, and Byung Cheol Song.
Channel pruning via gradient of mutual information for light-weight con-
volutional neural networks. In 2020 IEEE International Conference on
Image Processing (ICIP), pages 1751–1755. IEEE, 2020. 2, 3, 8

[38] Nikolai Leonenko, Luc Pronzato, Vippal Savani, et al. A class of rényi in-
formation estimators for multidimensional densities. Annals of statistics,
36(5):2153–2182, 2008. 3

[39] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Pe-
ter Graf. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016. 1, 2, 8

[40] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang,
Yonghong Tian, and Ling Shao. Hrank: Filter pruning using high-rank
feature map. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1529–1538, 2020. 1, 2, 6, 8

12

[41] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian Wu,
and Yonghong Tian. Channel pruning via automatic structure search. In
Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 673 – 679, 2020. 1, 2, 8

[42] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao,
Qixiang Ye, Feiyue Huang, and David Doermann. Towards optimal struc-
tured cnn pruning via generative adversarial learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2790–2799, 2019. 2, 7, 8

[43] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan,
and Changshui Zhang. Learning efficient convolutional networks through
network slimming. In Proceedings of the IEEE international conference
on computer vision, pages 2736–2744, 2017. 1

[44] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang,
Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta learning for auto-
matic neural network channel pruning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3296–3305, 2019.
1, 2, 8

[45] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning
method for deep neural network compression. In Proceedings of the IEEE
international conference on computer vision, pages 5058–5066, 2017. 2

[46] Chuhan Min, Aosen Wang, Yiran Chen, Wenyao Xu, and Xin Chen.
2pfpce: Two-phase filter pruning based on conditional entropy. arXiv
preprint arXiv:1809.02220, 2018. 2, 3

[47] Horea MURESAN and Mihai OLTEAN. Fruit recognition from images
using deep learning. Acta Univ. Sapientiae, 10(1):26–42, 2018. 10

[48] Michael A Nielsen and Isaac Chuang. Quantum computation and quan-
tum information, 2002. 4

[49] Morteza Noshad, Yu Zeng, and Alfred O Hero. Scalable mutual informa-
tion estimation using dependence graphs. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2962–2966. IEEE, 2019. 3

[50] Sri Purwani, Julita Nahar, and Carole Twining. Analyzing bin-width ef-
fect on the computed entropy. In AIP Conference Proceedings, volume
1868, page 040008. AIP Publishing LLC, 2017. 3

[51] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7263–7271, 2017. 1

[52] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. arXiv
preprint arXiv:1506.01497, 2015. 1

[53] A. Romero, Nicolas Ballas, S. Kahou, Antoine Chassang, C. Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. CoRR, abs/1412.6550,
2015. 1

[54] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, et al. Imagenet large scale visual recognition challenge. In-
ternational journal of computer vision, 115(3):211–252, 2015. 5

[55] Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy
Kolchinsky, Brendan D Tracey, and David D Cox. On the information bot-
tleneck theory of deep learning. Journal of Statistical Mechanics: Theory
and Experiment, 2019(12):124020, 2019. 3

[56] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep
neural networks via information. arXiv preprint arXiv:1703.00810, 2017.
2, 3

[57] Bernard W Silverman. Monographs on statistics and applied probability.
Density estimation for statistics and data analysis, 26, 1986. 10

[58] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014. 5

[59] Pravendra Singh, Vinay Kumar Verma, Piyush Rai, and Vinay Nambood-
iri. Leveraging filter correlations for deep model compression. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 835–844, 2020. 1, 2, 6, 7, 8

[60] Pravendra Singh, Vinay Kumar Verma, Piyush Rai, and Vinay P Nam-
boodiri. Acceleration of deep convolutional neural networks using adap-
tive filter pruning. IEEE Journal of Selected Topics in Signal Processing,
14(4):838–847, 2020. 1, 2, 6, 7, 8

[61] Xiu Su, Shan You, Tao Huang, Fei Wang, Chen Qian, Changshui Zhang,
and Chang Xu. Locally free weight sharing for network width search. In
International Conference on Learning Representations, 2020. 1, 2, 8

[62] Nicolás I Tapia and Pablo A Estévez. On the information plane of au-
toencoders. In 2020 International Joint Conference on Neural Networks

(IJCNN), pages 1–8. IEEE, 2020. 10
[63] Naftali Tishby, Fernando C Pereira, and William Bialek. The information

bottleneck method. arXiv preprint physics/0004057, 2000. 2
[64] Sheng Wang, Siqi Sun, Zhen Li, Renyu Zhang, and Jinbo Xu. Accurate

de novo prediction of protein contact map by ultra-deep learning model.
PLoS computational biology, 13(1):e1005324, 2017. 1

[65] Wenxiao Wang, Cong Fu, Jishun Guo, Deng Cai, and Xiaofei He. Cop:
Customized deep model compression via regularized correlation-based
filter-level pruning. arXiv preprint arXiv:1906.10337, 2019. 2

[66] Liangjian Wen, Xuanyang Zhang, Haoli Bai, and Zenglin Xu. Structured
pruning of recurrent neural networks through neuron selection. Neural
Networks, 123:134–141, 2020. 2

[67] Kristoffer Wickstrøm, Sigurd Løkse, Michael Kampffmeyer, Shujian Yu,
Jose Principe, and Robert Jenssen. Information plane analysis of deep
neural networks via matrix-based renyi’s entropy and tensor kernels.
arXiv preprint arXiv:1909.11396, 2019. 2, 3, 4, 6, 10

[68] P. L. Williams and R. Beer. Nonnegative decomposition of multivariate
information. ArXiv, abs/1004.2515, 2010. 10

[69] J. Wu, C. Leng, Yuhang Wang, Q. Hu, and J. Cheng. Quantized con-
volutional neural networks for mobile devices. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 4820–4828,
2016. 1

[70] Salimeh Yasaei Sekeh and Alfred O Hero. Geometric estimation of mul-
tivariate dependency. Entropy, 21(8):787, 2019. 3

[71] Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot architecture
search for channel numbers. arXiv preprint arXiv:1903.11728, 2019. 1

[72] Shujian Yu, Luis Gonzalo Sanchez Giraldo, Robert Jenssen, and Jose C.
Principe. Multivariate extension of matrix-based renyi’s α-order entropy
functional, 2019. 10

[73] Shujian Yu, Kristoffer Wickstrøm, Robert Jenssen, and José C Prı́ncipe.
Understanding convolutional neural networks with information theory:
An initial exploration. IEEE transactions on neural networks and learn-
ing systems, 2020. 10

13

