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Abstract

Recently, Convolutional Neural Networks (CNNs) have been used for the classi-
fication of hand activities from surface Electromyography (sEMG) signals. How-
ever, sEMG signal has spatial sparsity due to position of electrodes on hand mus-
cle and temporal dependency due to performance of activity over a period of time.
The CNN has the ability to extract spatial features and is limited in extracting
temporal dependencies. Whereas, the Long Short-Term Memory (LSTM) aims
to encode the temporal relations from sequential data. Hence, in this paper, we
propose a hybrid CNN and Bidirectional LSTM (Bi-LSTM) based EMGHand-
Net architecture to encode the inter-channel and temporal dependencies of sEMG
signals for hand activity classification. First, the CNN layers are used to extract
deep features from sEMG signals, then these feature maps are processed by the
Bi-LSTM to extract the sequential information in both the forward and backward
directions. Thus, the proposed model learns both inter-channel and bidirectional
temporal information in an end-to-end manner. The proposed model is trained
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and tested on five benchmark datasets, including the NinaPro DB1, NinaPro DB2,
NinaPro DB4, BioPatRec DB2 and UCI Gesture. The average classification ac-
curacies for the NinaPro DB1, NinaPro DB2, NinaPro DB4 and UCI Gesture are
95.77%, 95.9%, 91.65%, and 98.33% respectively. They correspond to an im-
provement of 4.42%, 12.2%, 18.65% and 1.33% over the respective state-of-the-
art models. Moreover, for the BioPatRec DB2 dataset, a comparable performance
(91.29%) is observed. The experimental results and comparisons confirm the su-
periority of the proposed model for hand activity classification from the sEMG
signals.

Keywords: CNN, Bidirectional LSTM, Deep Learning, Hand Activity
Classification, sEMG Signal, exoskeleton control

1. Introduction

Muscle computer interaction (MCI) is widely used in prostheses [1], robotic
control [2], sign language recognition (SLR) systems [3] and human-machine in-
teraction (HMI) [4]. The hand activity classification is a central problem in the
MCI technology and it includes analyses of categories such as hand gestures, ob-
ject grasping and hand movements [5]. The gesture classification is used in many
application areas such as computer games, virtual reality, and robot assisted surg-
eries [6]. A robot assisted surgery requires precise specification of the posture of
robotic hand with respect to a patient’s body as well as requisite movements to be
performed.

The human gestures can be identified directly by classifying gesture images
[7] or indirectly through the corresponding surface Electromyography (sEMG)
signals [8]. The latter approach has shown immense potential for developing con-
trol systems for the exoskeletons and prosthetic devices. The sEMG signal clas-
sification can be used to decode the intended motion to control the robotic arm
[9]. Specifically, the force, torque and the direction that characterize the intended
hand movements have to be decoded by the system [10]. The mapping between
the hand movement and the corresponding force was studied in [11] using the
ANN and LSTM architectures.

Classification of hand position during object grasping has direct applications
in controlling robot arms for pick and place tasks [12, 13]. Similarly, hand move-
ment classification can provide improved degrees of freedom to the exoskeleton
arm [14]. The focus of this paper is classification of hand activities using sEMG
signals with the pattern recognition methods. The classification of sEMG signals
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is traditionally carried out by the machine learning (ML) algorithms and recently
with the deep learning (DL) based approaches. A short review of these methods
follows.

1.1. Machine Learning Based Approaches
In machine learning techniques, the classification of sEMG signals requires

extraction of features, such as the time domain features [15], the frequency do-
main features [16] and the time-frequency domain features [15]. Shenoy et al.
[17] classified 8 hand movements with the linear Support Vector Machine (SVM)
using the Root Mean Square (RMS) as a feature and was able to control a robotic
arm with four degrees of freedom. In Altimemy et al. [18], a classification of 15
hand movements for persons with intact-limbs and 12 hand movements for am-
putees is performed with the Linear Discriminant Analysis (LDA) and the SVM
based on the Auto Regressive (AR) features. Shi et al. [19] have used features
including the Mean Absolute Value (MAV), the Zero Crossing (ZC), the Slope
Sign Change (SSC), and the Waveform Length (WL) for hand posture classifica-
tion with the K-Nearest Neighbor (KNN) classifier to control a bionic hand. In
[20], Waris et al. classified gesture data extracted through the surface as well
as intramuscular EMG signals over a period of seven days and showed that the
performance has improved over time with the Artificial Neural Network (ANN)
classifier compared to the classical KNN and the SVM classifiers. Tuncer et al.
[21] extracted the ternary features from the raw sEMG signals. The statistical
moments have been used as a feature for the classification with the KNN and the
cubic SVM classifiers. Recently, Fatimah et al. [22] have decomposed the sEMG
signals into Fourier intrinsic band functions (FIBFs) and extracted statistical fea-
tures for classification with the SVM and the KNN classifiers. The hand gesture
identification can be enhanced by capturing the depth information using a leap
motion device that improves the relabelling of gestures in training phase[14]. In
[23], energy based features were used with the fine KNN for classification of hand
gestures based on the sEMG signals. A key limitation of the machine learning ap-
proaches is a need for manual design of relevant feature sets for the said problem,
which is a very tedious task and may not be sufficiently accurate. Another draw-
back is the challenge of selection of an optimal classifier for the chosen features.

1.2. Deep Learning Based Approaches
For the sEMG signal classification, though machine learning approaches have

reported decent performance, however, in the recent literature, the deep learning
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approaches have become popular. It is because they automatically learn the im-
portant features [24] and tend to provide an improved performance. Hence with
the application of deep learning techniques for the sEMG classification, the con-
trol mechanism of exoskeletons can be significantly improved. In this section, we
review the recent deep learning techniques for classification of the sEMG signals.

1.2.1. CNN Approaches
In [25], Atzori et al. performed the sEMG classification task over NinaPro

DB1, NinaPro DB2 and NinaPro DB3 datasets with a deep Convolutional Neural
Network (CNN) architecture consisting of two convolutional layers. The authors
have shown a performance improvement of 2-5% compared to the existing ma-
chine learning classifiers such as the KNN, SVM, Random Forests and the LDA
[26]. Among the 2D approaches, Geng et al. [27] considered each sample of
dimension 1× 10 (here, 10 refers to no. of channels) as an instantaneous image
and provided as an input to the CNN model and showed that there are patterns
within instantaneous image which are similar across samples of the same trial and
discriminative across different trials.

Wei et al. [28] had split each segment of the data samples into patches of im-
ages and processed with a parallel multi-stream CNN architecture and provided
patch wise analysis of images. The state of the art accuracies were achieved but
the computational complexity is 10− 20% higher than the other state of the art
architectures. In [29], an evolutionary algorithm is developed which generates
the CNN topology to identify the right number of CNN layers, the number of
kernels and the kernel size. In [30], deep learning architectures employing three
different input modalities such as the raw EMG, the Spectrogram and the Contin-
uous Wavelet Transform (CWT) are analysed with the help of a transfer learning
technique. Qi et al. [31] used 3D CNN to classify the composite hand motions
associated with digit writing. In [32], Betthauser et al. have implemented an
EMG prediction model with temporal convolutional networks and shown that the
sequential prediction of movements is better compared to the frame-wise predic-
tion. In [33], a single channel is randomly selected from the multi-channel data
achieving a classification accuracy close to 95% for a subset of NinaPro DB2.
From this analysis, It is inferred that sEMG signals can also be classified with
only a single channel of data which is very efficient for low memory devices.

1.2.2. RNN Approaches
The recurrent neural network (RNN) is a variation of the neural network which

works for sequential and temporal data. In [34], Koch et al. have used a Con-
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vLSTM cascaded with the LSTM architecture for hand gesture sequence classi-
fication. In [35], a two stage network consisting of a fully connected network
followed by a stacked RNN is implemented to classify the high density (HD) and
sparse sEMG signals. Hu et al. [36] developed an attention based CNN-RNN
architecture which is able to classify the sEMG images. In [37], a LSTM model is
compared with a deep back-propagation (BP) LSTM by using the waveform based
classification. In [38], a hybrid CNN-LSTM architecture named as the Long-term
Recurrent Convolutional Networks (LRCNs) is used for the task of activity recog-
nition and image and video description. Motivated by this work, Bao et al. [39]
and Chen et al. [40] proposed another CNN-LSTM architecture. Specifically,
[39], Bao et al. used this joint architecture to estimate wrist angles corresponding
to four movements collected from six healthy subjects. Chen et al. [40] used hy-
brid CNN and LSTM architecture for gesture classification through a HD-sEMG
dataset using the transfer learning approach. Note that the authors in [40] have
only utilised the LSTM for target datasets.

1.3. Motivation for Hybrid Architecture
From the literature, it is observed that the CNN architectures has a capabil-

ity to understand the spatial features of the human hand activity and the LSTM
architectures can capture the temporal information. Moreover, the Bi-LSTM im-
proves over the uni-directional LSTM through learning the forward and the back-
ward inter-relations between the activities and the input sEMG signals. Thus, in
this paper, a hybrid CNN and Bi-LSTM framework is proposed to learn both the
spatial and bi-directional temporal relations. Our approach differs from existing
architectures and methods as follows. The focus is on classification of hand activ-
ities with the CNN and Bi-LSTM in contrast to estimation of angles in [39]. The
Bi-LSTM based architecture is included in each of the experiments in contrast to
[40]. A flattening of activation maps is performed before the Bi-LSTM unit that
is in contrast with the architecture in [40] where the dense layers are inserted in
between the CNN and LSTM layers which may lead to loss of temporal informa-
tion. Another difference is in consideration of inputs, specifically window overlap
is not considered in contrast to many existing works [28, 29, 36].

1.4. Objectives
The main purpose of this study is to classify human hand activities based on

the sEMG signals. The specific objective of this study is to identify the follow-
ing characteristics of the deep learning model to achieve optimal classification
performance: (1) a proper shape of the input data provided to the model, (2) the
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number of conv layers and/or the number of LSTM layers, (3) a proper set of hy-
per parameters for the model and (4) appropriate preprocessing techniques for the
sEMG signals.

1.5. Contributions
The main contributions of this work are :

1. A hybrid CNN and Bi-LSTM based EMGHandNet architecture is success-
fully demonstrated for classification of human hand activities using the
sEMG signals.

2. The proposed method exploits the learning of the inter-channel and the tem-
poral features using the 1-D convolutional layers and the Bi-LSTM layers
respectively. Specifically, the spatial and short-term temporal relations are
encoded by the convolutional layers and the long-term temporal relation are
learned by the Bi-LSTM layers.

3. We have performed rigorous experiments on five benchmark sEMG datasets
for the classification of hand movements from the sEMG signals. We have
also analyzed the impact of the proposed method from different perspec-
tives and compared the performance against that of the recent deep Learning
methods.

The rest of this paper is organized as follows: Section II contains the prelimi-
naries required; Section III presents the proposed methodology; Section IV gives
details about the experimental setup; Section V demonstrates the experimental
results; and Section VI provides a conclusion along with the future scope.

2. Preliminaries

In this section, the basic working of the CNN and the LSTM are illustrated.

2.1. Convolutional Neural Networks (CNN)
The CNNs are commonly used for the feature extraction from images [41].

A CNN consists of the convolution, the activation and the pooling layers. In
the convolution (conv) layer, the input is convolved with the filter weights. The
number of rows in the kernel is the kernel size and the number of columns in the
kernel corresponds to the number of channels in the input data for the first conv
layer. For the rest of the conv layers it is the number of filters. An illustration of
1-D convolution is shown in Fig. 1. Consider an input sEMG signal with a two
channel data as shown in Fig. 1, the kernel is a two dimensional two column filter
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Figure 1: Illustration of 1-D convolution using an example having two channels.

(since the number of channels are two in this example) and the first convolution
output is calculated as y0 = a0 × k0 +a1 × k1 +b0 × k2 +b1 × k3. The remaining
outputs are calculated by sliding the kernel in the vertical direction (time stamp
direction). Thus, we get a single vector from each filter. The output vectors
from each of the filters are concatenated column wise to obtain a 2D feature map
which is further processed by the consecutive conv layers. The conv layers are
stacked until the abstract features of the signals are obtained. In the activation
layer, the input is transformed by a non-linear function such as the tanh(·) or the
ReLU function. The pooling layer reduces the dimensionality of the feature map.
The max-pooling is used for selecting prominent features from the feature map.
Finally, the output is converted to probability values (classification score) by using
the softmax function.

2.2. Long Short-Term Memory (LSTM)
The recurrent neural networks (RNNs) are a type of neural networks capable

of analysing sequence of data in which a prediction is dependent on previously
computed values. It is commonly used to analyze text, speech and DNA sequence
datasets, where any current information is dependent on the preceding time steps.
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Figure 2: A block diagram of the Bi-directional LSTM

However, the vanishing and exploding gradient issues in RNNs [42] have limited
its usability in long input sequence analysis. Hence, Long Short Term Memory
(LSTMs) [43] are used for the long sequential data. Within the LSTM, there is
a control gate to hold the current hidden state in a memory cell based upon pre-
ceding hidden states. The output predictions are encoded based on the previous
hidden states. The encoded output, from each LSTM layer is recursively appended
to form a complete feature vector. The Bidirectional LSTM (Bi-LSTM), deployed
in this work, takes input data in the form of sequences and generates hidden state
output predictions for each time step as depicted in the Fig. 2. It considers se-
quences in both forward and backward directions and encodes the features and
concatenates them.

3. Methodology

3.1. Problem Statement
The total number of sEMG patterns in a dataset is N = S×NA ×R, where S

is to the total number of subjects, NA is the number of different hand activities,
and R corresponds to the number of activity repetitions per subject. A full sEMG
dataset can be represented as:

x = {xn}N
n=1 (1)

where each observation array xn consists of multiple channels as:

xn = {xn,m}NC
m=1, n = 1, · · · ,N (2)
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Figure 3: The block diagram depicts learning steps involved in proposed hybrid CNN and
Bi-LSTM based EMGHandNet architecture

and NC is the number of channels (from different electrodes) and each of these
channels consists of an array

xn,m = {xn,m(i)}NT
i=1 (3)

where NT = Ns×T is the number of values in one trial of duration T and Ns is the
sampling rate (samples/sec).

The objective of this study is to map the sEMG signals to the corresponding
activity (α - Target labels), which can be formulated as

f{xn}→ α (4)

The mapping function in (4) can be implemented either by a machine learning
or a deep learning classifier. For the mapping function, appropriate features are
required that represent the underlying inverse kinematic relationships between the
sEMG signals and the corresponding activity performed. The feature extraction
and mapping is achieved by a hybrid deep learning model described below (see
Fig. 3)
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Figure 4: The expanded view of hybrid CNN and Bi-LSTM based EMGHandNet architecture

3.2. Hybrid EMGHandNet Model
The proposed hybrid CNN and Bi-LSTM based EMGHandNet implementa-

tion scheme is illustrated in Fig. 3 with the internal architecture depicted in Fig. 4.
The sEMG signals are preprocessed, suitably segmented and provided as inputs to
a deep learning architecture for classification. The EMGHandNet consists of four
one dimensional (1-D) CNN layers with a time distributed wrapper followed by
two Bi-LSTM layers and finally two dense layers as shown in Fig. 4. The outputs
of the final dense layer are the categories of the hand activities. The deep learning
model learns the mapping of neuro muscle activity (sEMG signals) to the limb
kinematics. It is able to classify hand activities appropriately by bypassing the
need for theoretical neuro-mechanical models (eg. differential equations). This
ML based learning of kinematic mapping is demonstrated in [44–47].

The first step is the EMG data setup and preprocessing for feeding to the CNN
and is described as follows. The number of samples NT from each trial is factor-
ized as:

{SL,TS}= f act(NT ) (5)

where SL is no. of sub sequences, TS is sub-sequence time steps and f act(NT ) is
the factorization of (NT ) such that NT = SLTS. TS is chosen such that the minimum
(TS) greater than zero. The class labels are one-hot encoded to compute the cross
entropy loss for the multi-class problem. The input shape of the data NT ×NC is
reshaped to the SL ×TS ×NC using the factorization method in (5). This 3D data
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is split into train and test samples and sent to 1-D CNN layers. The output size No
for each CNN layer with a kernel size k is given by

No =

⌊
i+2p− k

s

⌋
+1 (6)

where i is the input size, s is the stride and p is the padding given by p =
⌊ k

2

⌋
.

The obtained feature map is further processed by three more convolution lay-
ers which lead to the generation of an output array of size T5 ×F1, which is then
flattened to a vector size 1×F2. The feature sets computed in SL parallel streams
are concatenated into a feature array of dimension SL ×F2, which is provided as
input to a stack of Bi-LSTM layers.

Intuitively, Bi-LSTM is able to encode the long-term temporal information
better than the uni-directional LSTM. It is because the forward LSTM of Bi-
LSTM encodes the sequence from start to end of a trial and the backward LSTM
encodes the sequence from the end to start of a trial. The model is better equipped
with the temporal representation of the final activity posture from the backward
LSTM layer while the forward LSTM layer is able to predict the intermediate
movement of activity thus contributing to the improved classification accuracy
of the model. The intermediate movement prediction from the backward LSTM
layer also reduces the number of possibilities for subsequent movements in terms
of prediction and enforces improved separability in the abstract feature space and
thus minimizes the class ambiguity. The output dimension of the Bi-LSTM layer
with all the sub sequences is SL × 2×NL that is flattened and subsequently pro-
cessed by the two dense layers. Finally, the last dense layer consists of a soft-
max activation function to obtain output probabilities for each of the hand activity
classes.

4. Experimental setup

4.1. Dataset Description
In this section, we briefly discuss the five publicly available benchmark datasets

used in the experiments; NinaPro DB1, NinaPro DB2, NinaPro DB4, BioPatRec
DB2 and UCI Gesture. In the respective measurement sessions, the sEMG sen-
sors were placed on various muscle locations on the upper limbs. The muscle sites
included are Flexor carpi radialis, Flexor carpi ulnaris, Extensor digitorum, Ex-
tensor carpi radialis brevis muscle, and Palmaris longus [48]. The datasets consist
of hand activities broadly categorized into gestures, wrist movements, grasping
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Table 1: Action categories mapped to robotic arm control

Action Category Robotic or exoskeleton arm control mapping
Gestures To control finger motions of the robotic arm and bionic hand [50, 51]
wrist movements To control degrees of freedom [51]
grasping objects To guide an arm for the task such as pick and place objects [12, 13]
hand movements To provide multiple degrees of freedom for exoskeleton arm [14]

Table 2: Preprocessing steps for each of the datasets

Processing step NinaPro
DB1

NinaPro
DB2

NinaPro
DB4

BioPatRec
DB2

UCI
Gesture

Power line noise fil-
tering at 50Hz

Not applied Applied Applied Not Applied Not Ap-
plied

Low pass filtering
with cutoff frequency
fc =500Hz

Not applied Applied Applied Not Applied Not Ap-
plied

Wavelet Denoising Applied Applied Applied Applied Applied

objects and hand movements. The hand action categories that can be mapped to
robotic or exoskeleton arm controls are provided in Table 1. It is assumed that the
difference between static and dynamic gestures is the angular velocity of the fin-
gers during activity [49]. In static actions, the angle between fingers does not vary
during activity but varies in dynamic activities. The position of the hand can vary
in both static and dynamic actions. As per this assumption, the datasets consist
of static hand actions only. The datasets are illustrated in detail in the references
provided in the descriptions given below.

A brief description of each dataset analyzed is as follows:

1. NinaPro DB1 [26]: The dataset consists of sEMG signals extracted from
27 subjects performing various hand activities are grouped into three exer-
cises namely exercise A, exercise B and exercise C. The exercise A consists
of single finger flexion and extension movements. The exercise B consists
of multiple finger flexion and extension movements as well as wrist move-
ments. The exercise C consists of grasping of household objects. Each ac-
tivity is performed for a duration of 5s with a rest period of 3s and repeated
over 10 trials.

2. NinaPro DB2 [26]: The dataset consists of sEMG signals extracted from 40
subjects while they performed finger gestures and grasping of objects. The
49 classes of actions are grouped into exercise B, exercise C and exercise D.
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The exercises B and C are same as in NinaPro DB1. The exercise D consists
of 9 force patterns obtained while pressing fingers on force sensors.

3. NinaPro DB4 [52]: In this dataset, the sEMG signals are collected from
10 subjects. The hand activities are same as in the NinaPro DB1; the only
difference is the data is obtained at a higher sampling rate.

4. BioPatRec DB2 [53] : This dataset consists of 26 hand movements obtained
from 17 subjects. These activities include six basic hand movements such as
open/close, hand pronation/supination and wrist flexion and extension and
20 movements made up of combinations of the six basic movements. Each
movement is performed for a duration of 3s with a rest duration of 3s.

5. UCI Gesture [54]: This dataset consists of 7 hand movements obtained from
36 subjects. The activities include seven basic movements such as a hand
clenched in a fist, the wrist flexion and extension, radial and ulnar deviation
of the wrist, the extended palm, and the rest state. Since the extended palm
is not performed by each of the subjects, we have considered first six classes
of data for the classification task.

4.2. Dataset Preprocessing and Preparation
As summarized in the Table 2, each trial of the data xn is preprocessed dif-

ferently for each of the dataset used. The data pre-processing is performed in
MATLAB R2020 to obtain the train and test data files. As the sEMG signals are
contaminated by unwanted components such as the line-noise and the receiver
noise. To mitigate their effects, the following three steps are used, a) Line noise
filtering at 50Hz to remove power supply noise, b) First order Butterworth low
pass filtering at a cut-off frequency of 500Hz (since sEMG signal lies in the band
of 20− 380Hz), c) Wavelet denoising at an order of 8, with the symlet mother
wavelet. The prepossessing steps are applied as per requirement on each of the
datasets. Different preprocessing steps are applied to different datasets due to
the following reasons. For the NinaPro DB1, since the data is already filtered
with 50Hz line noise only wavelet denoising is applied. As the data is sampled
at 100Hz, it does not require low pass filtering with a 500Hz cut-off frequency.
For the NinaPro DB2 and NinaPro DB4, since the sampling rate is 2kHz, filters
for 50Hz line noise and a low pass filter with a cutoff at 500Hz are applied. The
filtered data is denoised with a wavelet-based method. Since the BioPatRec DB2
is available pre-filtered for the 50Hz line noise and band-pass filtered with a pass-
band frequencies of 20Hz and 400Hz, no further filtering is required. Similarly,
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Table 3: Dataset characteristics and setup for numerical experiments

Parameter NinaPro
DB1

NinaPro
DB2

NinaPro
DB4

BioPatRec
DB2

UCI Ges-
ture

no. of subjects (S) 27 40 10 17 36
no. of classes (NA) 52 49 52 26 6
no. of channels (NC) 10 12 12 8 8
no. of repetitions (R) 10 6 6 3 4
Sampling frequency
(Ns) (samples/sec) 100 2000 2000 2000 1000

Trial length (NT ) 500 10000 10000 6000 1500
Activity duration (T) (sec) 5 5 5 3 3
Rest period (sec) 3 3 3 3 3
Sensor type Otto Bock Delsys

Trigno
Wireless

Cometa
MiniWave

Bipolar
Silver
Electrodes

MYO
Thalmic
bracelet

Total Patterns (N) 14040 11760 3120 1326 864
Patterns per class 270 240 60 51 24
Train patterns (Aggregate
data)

9828 7840 2080 884 648

Test patterns (Aggregate
data)

4212 3920 1040 442 216

Train patterns (Sub-wise
data)

364 196 208 52 18

Test patterns (Sub-wise
data)

156 98 104 26 6

Train trial numbers 1,3,4,
6,8,9, 10

1,3,4, 6 1,3,4, 6 1,3 1,3,4

Test trial numbers 2,5,7 2, 5 2,5 2 2

the UCI Gesture data is also available pre-filtered; only wavelet denoising is ap-
plied.

For a given trial, if the number of samples are exceeding NT , the excess data
is truncated. In other case, if the number of samples is less than NT , zero padding
is used. The data is split trial-wise into 70% for training as mentioned in Table
3 and 30% for testing [29]. The train and test data sets are standardised channel
wise, so that the resultant data has zero mean and unit variance. These files are
converted into pandas data frames with TensorFlow back-end. The tensor shapes
for each layer are given in the Table 4.
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Table 4: Tensor shapes obtained during implementation - Aggregate data scheme. For NinaPro
DB1, TS = 20, for NinaPro DB2, NinaPro DB4 and BioPatRec DB2, TS = 400 and for UCI

Gesture, TS = 50 (Time segment of 50ms))

Shape of Ten-
sor

Values for Ni-
naPro DB1

Values for
NinaPro DB2
and NinaPro
DB4

Values for
BioPatRec
DB2

Values for
UCI Gesture

NT ×NC 500×10 10000×12 6000×8 1500×8
SL ×TS ×NC 25×20×10 25×400×12 15×400×8 30×50×8
SL ×T1 ×F1 25×10×64 25×200×64 15×200×64 30×25×64
SL ×T2 ×F1 25×2×64 25×97×64 15×97×64 30×9×64
SL ×T3 ×F1 25×1×64 25×49×64 15×49×64 30×5×64
SL ×T4 ×F1 25×1×64 25×25×64 15×25×64 30×3×64
SL ×T5 ×F1 25×1×64 25×13×64 15×13×64 30×2×64
SL ×1×F2 25×1×64 25×1×832 15×1×832 30×1×128
SL ×F2 25×64 25×832 15×832 30×128
SL × (2×NL) 25× (2×200) 25× (2×200) 15× (2×200) 30× (2×200)
1 × SL × 2 ×
NL

1×10000 1×10000 1×6000 1×12000

1×NA 1×52 1×49 /1×52 1×26 1×6

4.3. Network Settings and Model Training
The EMGHandNet is implemented with the following parameters. The learn-

ing rate (lr) is initialized to 10−3 with a batch size of 16. The hyper parameters
tuned for an improved performance are given in the Table 5. The number of fil-
ters at each convolution layer and the kernel size are mentioned in the Fig. 4, for
example conv1d 64@9 refers to 64 filters with a kernel size 9. The EMGHandNet
is trained and tested separately for each dataset and corresponding classification
accuracy is evaluated as follows

Accuracy =
Number of correctly classified trials

Total number of trials
×100. (7)

The experiments are carried out on a machine consisting of Nvidia Quadro
RTX 6000 24 GB RAM Graphical Processing Unit (GPU) card. The model de-
ployment is done in TensorFlow 2.2.0 framework with python.
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Table 5: Tuned hyper parameters for the EMGHandNet

Layer Parameter Name Value

Convolution hyper parame-
ters

Kernel initializer:
Strides:
Kernel regularizer:

he normal
2
10−4

Batch Normalization
ε:
Momentum:

10−6

0.95
Batch size 16
Learning rate l1 = 10−3

Optimizer Adam β1:, β2: 0.9, 0.999
Activation Tanh & Relu
Dropout 0.2093
no. of epochs 200
Bi-LSTM Cells: 200
TensorFlow version 2.2.0

5. Results and discussion

The following models are trained and tested on the five benchmark datasets
mentioned earlier.

1. EMGHandNet: The proposed hybrid CNN and Bi-LSTM architecture
2. MsCNN: The Multistream-CNN architecture by Wei et al. [28]
3. EvCNN: Evolved CNN by Olsson et al. [29]
4. CNNLM: Combined CNN - LSTM architecture by Chen et al. [40]
5. Energy features: KNN classifier using energy features by Karnam et al.

[23]

Specifically, these models are analyzed in the following two schemes

• Subject-wise analysis:- In this scheme, the EMGHandNet is trained and
tested with the subject wise data. The average classification accuracy across
the subjects is computed.

• Aggregated data analysis:- In this analysis, the EMGHandNet is trained and
tested with aggregated data from the available subjects with split-up scheme
mentioned in data preprocessing stage. The average accuracy is calculated
as per (7).
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To validate the EMGHandNet, the following analyses are carried out: (1) anal-
ysis of the role of input shapes, (2) comparative analysis with the RNN layers, (3)
analysis of the pre-processing methods, (4) loss curves for different datasets, (5)
comparison with the state of the art models, and (6) time and space complexity
analysis. For fair comparison, we have used the same dataset setup and input
shape processing techniques both in the EMGHandNet and the other models.

5.1. Role of Input Shapes
The EMGHandNet is also analysed with respect to different input shapes of

the data as shown in Fig. 5 for the five datasets. It is observed that for some
datasets with input shape consisting of samples with 200ms time segment (for
NinaPro DB1, TS = 20 samples, for NinaPro DB2, NinaPro DB4, and BioPa-
tRec DB2, TS = 400 samples) and 50ms time segment (for UCI Gesture, TS = 50
samples), the performance is superior compared to when other time segments are
used. For the BioPatRec dataset, the highest accuracy of 83.9% is achieved for an
input shape of [15,400] (corresponds to 200ms time segment). This analysis sug-
gests that the performance of the model varies with respect to different shapes and
achieves an optimal average accuracy for the identified input shape. Finally, for
the UCI Gestures, a time segment of 0.05s out of 3s trial data provides improved
classification. It is observed that a similar time segment of 0.2s has provided bet-
ter results for four datasets except UCI Gesture. Hence an optimal time segment is
important for improved capture of temporal relations. The optimal time segment
obtained is dependent on various factors such as sampling frequency (Ns), activity
duration (T) and number of samples within a sub-sequence (Ts). The training and
testing of datasets are done independently across the five datasets and observed
that there is no direct linear relationship between no.of samples within a trial (NT )
and optimal time segment.

5.2. Performance Analysis with RNN Layers
The performance of the EMGHandNet is also analysed by varying the number

of stacked Bi-LSTM layers and results are shown in Fig. 6. It is observed that
the EMGHandNet model with 4 Conv and 2 Bi-LSTM layers outperforms the
EMGHandNet model with 4 Conv layers and other Bi-LSTM configurations. The
model with no Bi-LSTM layer corresponds to the network with four Conv layers
only. This analysis shows that the performance of the model with the Bi-LSTM
layers is better than without Bi-LSTM layer (i.e., only Conv layers). Importantly,
for the EMGHandNet, this analysis also supports the choice of using two Bi-
LSTM layers following the CNN network.
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Figure 5: Performance analysis from Aggregate Data scheme with different shapes for NinaPro
DB1, NinaPro DB2, NinaPro DB4, BioPatRec DB2 and UCI Gesture datasets. For NinaPro DB1,

TS = 20, for NinaPro DB2, NinaPro DB4 and BioPatRec DB2, TS = 400 and for UCI Gesture,
TS = 50 (Time segment of 50ms)
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Figure 6: Performance analysis with respect to no. of Bi-LSTM layers in the proposed
EMGHandNet model over all datasets - Aggregate data scheme. For NinaPro DB1, TS = 20, for
NinaPro DB2, NinaPro DB4 and BioPatRec DB2, TS = 400 and for UCI Gesture, TS = 50 (Time

segment of 50ms)

The proposed model is also analysed with different type of RNN layers, such
as LSTM, Gated Recurrent Unit (GRU), Bidirectional GRU (Bi-GRU), RNN, and
Bidirectional RNN (Bi-RNN) on NinaPro DB1 dataset. The results in terms of the
classification accuracy are shown in Fig. 7. From these results, it is evident that
the Bi-LSTM is better suited in the proposed framework as it leads to the highest
performance as compared to other type of RNN layers. The Bi-LSTM layer better
captures the long-term temporal relations compared to other type of RNN layers
as it learns both forward and backward temporal characteristics.

5.3. Analysis on Pre-processing Methods
The role of preprocessing for the improvement of classification performance

is analyzed through following experiments, see Table 6. In one experiment, the
preprocessing method in the EvCNN [29] is replaced with our preprocessing ap-
proach. This is compared with the combination consisting of the preprocessing
method from the EvCNN followed by the EMGHandNet. The EMGHandNet with
our preprocessed data exhibits better classification accuracy compared to other
combinations. This analysis shows that the preprocessing technique used in this
work is better suited for sEMG data based hand activity classification as compared
to the preprocessing and architecture from [29]. Further experiments are carried
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Figure 7: NinaPro DB1 performance analysis with different type of recurrent layers such as
LSTM, Bi-LSTM, GRU, Bi-GRU, RNN and Bi-RNN layers in the proposed model

out by comparing the EMGHandNet model with and without any preprocessing of
data. It is observed that, for BioPatRec DB2, there is an improvement of 17.69%
in classification accuracy compared to that without preprocessing. Similarly, for
NinaPro DB4, a comparable performance improvement of 10.58% is observed.
Additionally, for the remaining datasets the improvement is at least 3%. This
shows that there is an improvement in performance of the model when data is
preprocessed compared to the case without preprocessing.

5.4. Loss Curves for Individual Datasets
Fig. 8 shows the loss curves from the EMGHandNet corresponding to each

of the five datasets. The input shapes chosen are as follows, for NinaPro DB1:
25×20×10, for NinaPro DB2 and NinaPro DB4: 25×400×12, for BioPatRec
DB2: 15× 400× 8 and for for UCI Gesture: 30× 50× 8. The EMGHandNet
obtains a stable response after 70 epochs for each of the five datasets.

5.5. Performance Comparison
The EMGHandNet performance is compared with that of the MsCNN, EvCNN,

CNNLM where the results are reproduced in this work and a few other models for
which the results are reported from the literature (see Tables 7 and 8 ).
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Figure 8: Loss curve observed during training of EMGHandNet over NinaPro DB1, NinaPro
DB2, NinaPro DB4, BioPatRec DB2 and UCI Gesture datasets - Aggregate data scheme. For

NinaPro DB1, TS = 20, for NinaPro DB2, NinaPro DB4 and BioPatRec DB2, TS = 400 and for
UCI Gesture, TS = 50 (Time segment of 50ms)
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Table 6: Performance analysis using accuracy (%) of different preprocessing techniques with
various architectures - Aggregate data scheme. For NinaPro DB1, TS = 20, for NinaPro DB2,
NinaPro DB4 and BioPatRec DB2, TS = 400 and for UCI Gesture, TS = 50 (Time segment of

50ms)

Dataset / Methodology NinaPro
DB1

NinaPro
DB2

NinaPro
DB4

BioPatRec
DB2

UCI Ges-
ture

Olsson Preprocessing -
EvCNN [29]

81.57 66.64 13 77.71 54.41

Olsson Preprocessing -
EMGHandNet

86.98 81.11 21.6 67.8 91.16

Proposed Preprocessing
- EvCNN [29]

84.54 60.52 38 52.71 77.2

Proposed Preprocessing
- EMGHandNet

91.76 92.01 89.5 83.9 93.48

Without Preprocessing -
EMGHandNet

89.5 91.62 78.92 66.21 93.02

In the subject-wise analysis, as shown in Table 7, for the NinaPro datasets, the
EMGHandNet shows higher average test accuracy compared to the state-of the
art methods. The subject-wise average accuracy of the EMGHandNet model for
NinaPro DB1 is 95.77%, which is an improvement of 7.57% over 88.2% from
the Multi-view CNN [57]. For the NinaPro DB2 dataset, the EMGHandNet with
an accuracy of 95.9% improved by 12.2% against 83.7% of the Multi-view CNN
[57]. The EMGHandNet has an improvement of 8.73% over reproduced CNNLM
[40]. For the Ninapro DB4 , the EMGHandNet with an average test accuracy of
91.65%, outperforms the Attention sEMG model [58] by 18.65%. For the UCI
Gesture, there is a small improvement of 1.33% over Deep Neural architecture
[59] by attaining a test accuracy of 98.33%. Based on the existing approaches,
the BioPatRec DB2 dataset is used without any data augmentation, hence for the
EMGHandNet model, the performance of 91.29% is approaching that of the state
of the art.

In the aggregated scheme, as shown in the Table 8, for the NinaPro datasets,
the accuracy of the EMGHandNet is again better compared to that of the existing
models. Specifically, for NinaPro DB1, the EMGHandNet obtained an accuracy
of 91.76%, which is an improvement of atleast 3.56% as compared to 88.2%
based on Multi-view CNN [57]. For NinaPro DB2, an accuracy of 92.01% is ob-
served using the EMGHandNet, which is an improvement of 8.31% as compared
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Table 7: Classification accuracy (%) analysis with different architectures - Subject wise analysis.
* are reproduced results. For NinaPro DB1, TS = 20, for NinaPro DB2, NinaPro DB4 and

BioPatRec DB2, TS = 400 and for UCI Gesture, TS = 50 (Time segment of 50ms)

Dataset / Architecture NinaPro
DB1

NinaPro
DB2

NinaPro
DB4

BioPatRec
DB2

UCI
Ges-
ture

RMS, MAV, and DASDV by yang
et al. [55] (Sub-wise)

91.35 - - - -

Multi-sEMG-features image by
Cheng et al. [56]

82.54 - - - -

MsCNN [28] (Sub-wise) 85 - - - -
MsCNN[28] (Sub-wise) * 74.25 50.99 34.1 66.18 95.58
EvCNN [29] (Sub-wise) 81.4 71.6 - 91.4 -
EvCNN [29] (Sub-wise) * 68.06 80.54 22.3 84.19 45.55
CNN-RNN by Hu et al. [36] 87 82.2 - 94.1 -
Multi-View CNN by Wei et al.
[57]

88.2 83.7 58 94.0 -

Attention sEMG by Josephs et al.
[58]

- - 73 - -

Deep Neural Network by Potekhin
et al. [59]

- - - - 97

CNNLM [40] (Sub-wise)* 92.99 87.17 87.37 89.17 86.51
EMGHandNet (Sub-wise) 95.77 95.9 91.65 91.29 98.33

to 83.7% of Multi-view CNN [57] but an improvement of 1.4% against the En-
ergy features [23]. For the NinaPro DB4, the achieved accuracy is 89.5%, which
is an 5.58% improvement over 83.92% of the CNNLM [40]. For the UCI Gesture,
the achieved accuracy is 93.48%, which is an improvement of 3.98% over 89.5%
of the MsCNN [28]. Finally, for the BioPatRec, the EMGHandnet improved the
peformance by 6.19% against the accuracy of the EvCNN [29]. The EMGHand-
net has out-perfomed the machine learning classifiers such as [23, 26]. Among
the existing methods for the five datasets, the CNNLM [40] and Energy features
[23] comes closest to the accuracy of the EMGHandNet. Additionally, for the
4 datasets other than UCI Gesture, the MsCNN [28] has the least performance
among the competing methods.

The McNemar’s test [62] is implemented to analyze the statistical significance
of the observed improvement in classification performance. The terms in Table
9 are defined as follows: fcc is the number of patterns for which both classifiers
result in correct prediction, fci when EMGHandNet is correct and the state of
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Table 8: Classification accuracy (%) analysis with different architectures - Aggregate data
scheme. * are reproduced results. For NinaPro DB1, TS = 20, for NinaPro DB2, NinaPro DB4

and BioPatRec DB2, TS = 400 and for UCI Gesture, TS = 50 (Time segment of 50ms)

Dataset / Architecture NinaPro
DB1

NinaPro
DB2

NinaPro
DB4

BioPatRec
DB2

UCI
Ges-
ture

Benchmark classifier with hand-
crafted features [26] (Aggregate)

75.3 75.3 - - -

CNN by Atzori et al. [25] (Aggre-
gate)

66.6 60.3 - - -

LDA by Nazemi et al. [60] 84.23 - - - -
LS-SVM by Nazemi et al. [60] 85.19 - - - -
Random Forest by Rubio et al.
[61]

- - - - 95.39

Energy features [23] (Aggregate) 87.07 90.61* 60.67* 89.36* 93.98*
MsCNN [28] (Aggregate) * 60 31.41 33.9 62.4 89.5
EvCNN [29] (Aggregate) * 81.57 66.64 13 77.71 54.41
CNN-RNN by Hu et al. [36] 87 82.2 - 94.1 -
Multi-View CNN by Wei et al.
[57]

88.2 83.7 58 94.0 -

Attention sEMG by Josephs et al.
[58]

- - 73 - -

CNNLM [40] (Aggregate)* 79.26 78.71 83.92 71.65 86.51
EMGHandNet (Aggregate) 91.76 92.01 89.5 83.9 93.48

the art classifier is incorrect, fic is Vice versa, and fii is the number of patterns
for which both classifiers predictions are incorrect. From these metrics, the chi-
square statistic is calculated [62] as 6.64 > 3.84 (the threshold for one degree of
freedom). Hence the improvement is significant at 95% confidence level. For
the NinaPro DB1, the chi square value evaluated against the Energy features [23]
is 47.2 and for the NinaPro DB4, the chi square value against CNNLM [40] is
10.07. For the UCI Gestures, the chi-square value against the Energy features
[23] is 0.529, which indicates that both the classifiers provide similar results.

5.6. Time and Space Complexity Analysis
The time and space complexity of the ML methods are calculated based on the

analysis provided in [29]. The time complexity of each Conv 1D, Bi-LSTM, and
Fully Connected (FC) layer are computed based on the number of Floating Point
Operations Per Second (FLOPS) and provided in Table 10. The time complexity
for UCI Gesture can also be computed similar to the methods used for the first four
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Table 9: Statistics from McNEMAR’s test on Energy Features [23] and EMGHandNet for
NinaPro DB2. Performance comparison based on correct proportions

Energy Features [23]
Correct Incorrect Total

EMGHandNet
Correct fcc = 3350 fic = 200 3550
Incorrect fci = 255 fii = 113 368
Total 3605 313 3918

Table 10: Time complexity of layers in the network (n = no.of filters, v = vertical stride, y =
kernel height, N = no. of patterns, Ne = no. of epochs and NA = no. of activities)

Layer
Name

Input
shape

Theoretical values
for layers (FLOPS)

Theoretical
values
for Ni-
naPro DB1
(FLOPS)

Theoretical values
for NinaPro DB2
and NinaPro DB4
(FLOPS)

Theoretical
values for
BioPa-
tRec DB2
(FLOPS)

Conv1d
64@9

TS ×NC (TS/v)n(2yNC +1) 115840 2777600 185600

Conv1d
64@5

T2 ×F1 (T2/v)n(2yF1 +1) 41024 1989664 1989664

Conv1d
64@5

T3 ×F1 (T3/v)n(2yF1 +1) 20512 1005088 1005088

Conv1d
64@3

T4 ×F1 (T4/v)n(2yF1 +1) 12320 308000 308000

Bi −
LST M1

SL ×F2 2 × 4 × (F2 + NL +
1)NL

424000 1652800 1652800

Bi −
LST M2

SL × 2 ×
NL

2×4× (2NL +NL +
1)NL

1281600 1281600 1281600

FC1 1 × SL ×
2×NL

SL ×2×NL ×512 10000×512 10000×512 6000×512

FC2 1×512 512×NA 512×52 512×49/512×52 512×26
Total −− −− 5760320 14159840/14161376 6743264
O( f ) −− Total ×N ×Ne 1.6×1013 3.3 × 1013/8.8 ×

1012
1.7×1012

datasets, see Table 10. The total training time, for NinaPro DB1, NinaPro DB2,
NinaPro DB4, BioPatRec DB2 and UCI Gesture datasets are 48min, 48.3min,
16min, 6.6min and 6.6min respectively. The space complexity of Conv 1D, Bi-
LSTM, FC and Batch Normalization (BN) layer are given as 4HC [29] based on
the output shape H ×C and given in Table 11. Additional memory is allocated
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Table 11: Space complexity of layers in the network (n = no. of filters, v = vertical stride, y =
kernel height, and NA = no. of activities)

Layer Name Input shape Output shape Based on
output
shape
(bytes)

Based on no. of learning
parameters (bytes)

Conv1d 64@9 TS ×NC T1 ×F1 4T1F1 4n(yNC +1)
Conv1d 64@5 T2 ×F1 T3 ×F1 4T3F1 4n(yF1 +1)
Conv1d 64@5 T3 ×F1 T4 ×F1 4T4F1 4n(yF1 +1)
Conv1d 64@3 T4 ×F1 T5 ×F1 4T5F1 4n(yF1 +1)
Bi−LST M1 SL ×F2 SL × (2×NL) 4×2SLNL 4×2×4× (F2 +NL +1)NL
Bi−LST M2 SL × (2×NL) SL × (2×NL) 4×2SLNL 4×2×4×(2NL+NL+1)NL
FC1 1×SL ×2×NL 1×512 4×512 4×512(SL ×2×NL +1)
FC2 1×512 1×NA 4×NA 4×NA(512+1)
BN1 T1 ×F1 T1 ×F1 4T1F1 16×F1
BN2 T3 ×F1 T3 ×F1 4T3F1 16×F1
BN3 T4 ×F1 T4 ×F1 4T4F1 16×F1
BN4 T5 ×F1 T5 ×F1 4T5F1 16×F1
BN5 1×512 1×512 4×512 16×512

Table 12: Computational complexity comparison based on trainable parameters of various
architectures - Aggregate data scheme. For NinaPro DB1, TS = 20, for NinaPro DB2, NinaPro

DB4 and BioPatRec DB2, TS = 400 and for UCI Gesture, TS = 50 (Time segment of 50ms)

Trainable
parameters /
Methodology

NinaPro
DB1

NinaPro
DB2

NinaPro
DB4

BioPatRec
DB2

UCI Ges-
ture

MsCNN [28] 8.69×106 3.12×106 1.97×108 9.90×107 6.61×107

EvCNN [29] 3.77×105 1.31×107 2.80×106 2.92×106 1.66×106

CNNLM [40] 1.52×105 5.41×105 5.42×105 4.15×105 3.06×105

EMGHandNet 6.59×106 7.82×106 7.82×106 5.76×106 7.69×106

based on no. of learning parameters (weights and biases).
The time complexity and space complexity of Bi-LSTM is same [43]. The

space complexity of Conv 1D [63], FC and BN layers are theoretically computed
considering 32 bit operating system. The computational complexity depends on
the number of trainable parameters. Based on this, the complexity of different
architectures are compared as provided in Table 12. For most of the datasets,
it is observed that the computational complexity of the EMGHandNet is higher
compared to that of the EvCNN and CNNLM but less compared to the MsCNN.
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5.7. Discussion
The performance of the proposed EMGHandNet model has improved due to

the following reasons:

• The proposed hybrid CNN and Bi-LSTM architecture is able to extract
both cross-channel and temporal features. The 1-D convolution encodes
the cross-channel and short-term temporal information and the Bi-LSTM
encodes the long-term temporal information in both forward and backward
directions.

• The whole trial data of input samples is provided to the model as com-
pared to segmented data in the existing methods. Instead of considering
segmented data as an input pattern, the whole trial data, as a pattern, pro-
vides better sequential information for the model. This is because we do not
know in which time segment the subject has performed the activity within
a trial.

It is observed that subject wise performance analysis is better compared to aggre-
gated data scheme because the model understands hand actions better due to low
intra-subject signal covariance in the former case against the higher inter-subject
signal covariance in the latter case. A trend or correlation is observed with re-
spect to the duration of the segment being classified and the performance of the
model. For example, a time segment of 0.2s has shown better performance for
the datasets NinaPro DB1, NinaPro DB2, NinaPro DB4, and BioPatRec DB2 and
a time segment of 0.05s has shown better performance for UCI Gesture. It is in-
ferred that the performance of the model is affected by the input shape provided to
the CNN. Some of the limitations of the proposed model are: (a) The model may
need further innovation to improve the performance for the BioPatRec DB2 data.
(b) For each dataset, the model requires separate training and testing. To reduce
re-training requirements a transfer learning technique can be explored.

6. Conclusion & Future Scope

6.1. Conclusion
In this paper, we have proposed a hybrid CNN and Bi-LSTM architecture

for the classification of human hand activities by using the sEMG signals. The
EMGHandNet is analyzed for five benchmark sEMG datasets for the hand ac-
tivity classification. The EMGHandNet outperforms (by at least 4% and up to
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18.65%) the state-of-the-art models in terms of the average classification accu-
racy for the NinaPro DB1, NinaPro DB2 and NinaPro DB4 datasets. A superior
performance is also observed in the aggregated data analysis scheme. It is also
observed that the preprocessing performed in this paper is better than the exist-
ing ones for the said problem. Moreover, it is found that the performance of the
EMGHandNet model can be tuned based on the shape of input data to the time
distributed wrapper. Finally, the two layer Bi-LSTM is determined to be a better
choice as compared to other RNN types.

6.2. Future Scope
As the sEMG signal is considered in time domain only, there is scope for

performance improvement by converting the given signals to the wavelet domain
or the Empirical Mode decomposition (EMD) domain before further processing
by the deep learning models. The model can also be implemented on a hardware
device to understand issues during practical implementation. When deploying on
hardware, some of the issues are time latency and portability. The time latency to
test a sample is 1.8µs in the best case and 518µs in the worst case which is a major
factor to be considered for real time implementation. We further plan to build an
sEMG signal dataset for Indian population to analyse geography related variations
among the datasets. Finally, the model can be further improved to learn from the
signals corresponding to highly dynamic and high speed movements involved in
activities such as sports.

References

[1] Guo W, Yao P, Sheng X, Zhang D, Zhu X. An enhanced human-computer
interface based on simultaneous sEMG and NIRS for prostheses control.
In: 2014 IEEE International Conference on Information and Automation
(ICIA); 2014. p. 204-7.

[2] Fan Y, Yin Y. Active and progressive exoskeleton rehabilitation using mul-
tisource information fusion from EMG and force-position EPP. IEEE Trans
Biomed Eng. 2013;60(12):3314-21.

[3] Li Y, Chen X, Zhang X, Wang K, Wang ZJ. A sign-component-based frame-
work for chinese sign language recognition using accelerometer and sEMG
data. IEEE Trans Biomed Eng. 2012;59(10):2695-704.

28



[4] Cheng J, Chen X, Lu Z, Wang K, Shen M. Key-press gestures recognition
and interaction based on sEMG signals. In: International Conference on
Multimodal Interfaces and the Workshop on Machine Learning for Multi-
modal Interaction. ICMI-MLMI ’10. New York, NY, USA: Association for
Computing Machinery; 2010. p. 1-4.

[5] Qi W, Su H, Aliverti A. A smartphone-based adaptive recognition and real-
time monitoring system for human activities. IEEE Trans Hum Mach Syst.
2020;50(5):414-23.

[6] Wen R, Tay W, Nguyen BP, Chng CB, Chui CK. Hand gesture guided
robot-assisted surgery based on a direct augmented reality interface. Comput
Methods Programs Biomed. 2014;116(2):68-80.
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[53] Ortiz-Catalan M, Brånemark R, Håkansson B. BioPatRec: A modular re-
search platform for the control of artificial limbs based on pattern recogni-
tion algorithms. Source Code Biol Med. 2013 Apr;8(1):11.

33



[54] Lobov S, Krilova N, Kastalskiy I, Kazantsev V, Makarov VA. Latent factors
limiting the performance of sEMG-interfaces. Sensors. 2018;18(4):1122.

[55] Yang K, Xu M, Yang X, Yang R, Chen Y. A novel EMG-based hand gesture
recognition framework based on multivariate variational mode decomposi-
tion. Sensors. 2021;21(21):7002.

[56] Cheng Y, Li G, Yu M, Jiang D, Yun J, Liu Y, et al. Gesture recogni-
tion based on surface electromyography-feature image. Concurr Comput.
2021;33(6):e6051.

[57] Wei W, Dai Q, Wong Y, Hu Y, Kankanhalli M, Geng W. Surface-
electromyography-based gesture recognition by multi-view deep learning.
IEEE Trans Biomed Eng. 2019;66(10):2964-73.

[58] Josephs D, Drake C, Heroy A, Santerre J. sEMG gesture recognition with
a simple model of attention. In: Alsentzer E, McDermott MBA, Falck F,
Sarkar SK, Roy S, Hyland SL, editors. Proceedings of the Machine Learning
for Health NeurIPS Workshop. vol. 136 of Proceedings of Machine Learning
Research. PMLR; 2020. p. 126-38.

[59] Potekhin VV, Unal O. Development of machine learning models to deter-
mine hand gestures using EMG signals. Annals of DAAAM & Proceedings.
2020;7(1).

[60] Nazemi A, Maleki A. Artificial neural network classifier in comparison with
LDA and LS-SVM classifiers to recognize 52 hand postures and movements.
In: 2014 4th International Conference on Computer and Knowledge Engi-
neering (ICCKE). IEEE; 2014. p. 18-22.

[61] Rubio AM, Grisales JAA, Tabares-Soto R, Orozco-Arias S, Varón CFJ, Bu-
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