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A B S T R A C T   

The performance of a robotic exoskeleton depends upon the accuracy of control commands from the controller 
fed with Surface ElectroMyoGraphy (sEMG) input signals. The classification of hand gestures based on sEMG 
signals extracted from a human hand depends upon the type of EMG features extracted. In this paper, an 
ensemble of energy features is proposed for the sEMG classification. The idea is motivated by the energy features’ 
relation to the movement force, dependence on related mechanical factors, robustness with respect to the 
repetition of trials and the presence of noise. The suitability of the proposed energy features is tested by using the 
standard machine learning classifiers, including the K-Nearest Neighbour (KNN), Probabilistic Neural Networks, 
Ensemble KNN, Quadratic Discriminant Analysis and the Cubic Support Vector Machines. In order to show the 
superiority of the proposed energy features, the experiments are conducted over benchmark NinaPro DB1 sEMG 
hand gesture dataset. The fine KNN classifier has achieved the highest validation accuracy of 88.8%, an 
improvement of 13% over the state of the art accuracy. The performance of the classifiers is analyzed with 
various evaluation metrics using the proposed feature ensemble. The contribution of individual features for the 
performance is also analyzed and observed that spectral band energy features have provided an highest accuracy 
of 85.2%. Additionally, the proposed method is found to be computationally least expensive.   

1. Introduction 

1.1. Motivation 

According to the 2011 census survey of India, 1.1 million people 
require an artificial support due to impairment in locomotion [1]. Some 
of these patients may need an intelligent assistive device to support the 
wrist and hand movements for their regular activities. Recall that in a 
human, the muscular movements of the hand are controlled by the 
central nervous system via motor neurons. A partially disabled person 
loses full control of the hand movements due to lapses in signal flow 
along these neural pathways to the muscles. To recover this control, an 
exoskeleton hand [2] (exo–hand) can be designed. It can assist in the 
proper movements of the hand by analyzing the surface Electromyog
raphy (sEMG) signals obtained from the hand muscles. Specifically, the 
signal processing software in an exoskeleton’s computer should be able 

to analyze the sEMG signals and decide what type of movement is 
intended for a task. In this paper, the focus is on Pattern recognition (PR) 
algorithms that play a critical role in identifying these categories of the 
movements. 

1.2. Literature review 

A vital stage of any pattern recognition (PR) framework is the feature 
extraction from the raw data. For the sEMG signals, several frameworks 
have been proposed for this purpose. Along with relevant features a 
suitable learning algorithm is also important for classification of hand 
movements. Here, we present a short and concise review of PR methods 
for hand gesture classification. 

1.2.1. Hand gestures 
Hand-Designed Features: The features used for EMG classification 
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can be categorized as follows. (1) Time domain (TD) based features such 
as Mean Absolute Value (MAV) and wavelength [3], myopulse rate, 
willison amplitude, and cardinality [4] and mean prominence of local 
peaks [5]; (2) Frequency domain (FD) based features such as Auto 
regression model coefficients [6], logarithms of moments of Fourier 
transforms [7]; (3) Combinations of TD and FD features [8]; (4) Wave
lets based features such as wavelet packet transform [9] and ternary 
pattern and discrete wavelet transform [10]; (5) Variational mode 
decomposition and composite permutation entropy index based features 
[11]; and (6) Various combinations of these different classes [12,13]. 
Apart from discovering features the other aspects of feature analysis 
include feature reduction [14,15], role of measurement conditions such 
as movement speed [16] and temporal variations on a daily scale [4]. 

Learning Based Features: In 2016, Atzori et al. [17] have proposed 
a Convolutional Neural Network (CNN) architecture for classification of 
the NinaPro sEMG dataset. They have achieved a performance compa
rable to that of the state-of-the-art in classical machine learning (ML) 
approaches. Du et al. [18] have applied a CNN for high density EMG data 
obtained from a 2D array of sensors from 23 subjects and achieved better 
accuracy for within sessions, but lower accuracy across sessions. Tsin
ganos et al. [19] have used the temporal CNN for the classification of 52 
classes NinaPro sEMG dataset. Cote et al. [20] have utilized the transfer 
learning technique over the CNNs over a 17 subjects dataset. 

Though several feature extraction techniques have been explored in 
the literature, these approaches are limited to the specific scenarios such 
as (1) real-time control of exoskeletons where shorter training time is 
critical [21,22], (2) simultaneous hand movement classification with 
multiple DoFs [23], (3) classification of both upper limb and lower limb 
movements [12] and (4) conditions, such as sensitivity to noise. Hence, 
the existing models are unable to cope up with the inherent noise in the 
sEMG signals and are not robust to varying conditions of sEMG signal 
measurements. Most of the features are tested for lower number of hand 
motion classes and lower number of sEMG channels. 

In this work we restrict to the hand designed features and propose 
the energy based features for sEMG based hand movement classification. 
We show that the proposed approach outperforms the existing state-of- 
the-art methods. The proposed approach is expected to serve a couple of 
purposes, including (a) it can be used as a ML benchmark for other ML 
classification or any deep learning frameworks to be developed and (b) it 
can also serve as an alternative sEMG classification method specifically 

in hardware implementation where the device cost and the time taken 
for a decision is more important with a reasonable accuracy of the 
decision. 

1.3. Proposed contributions 

As pointed out by the related works, different methods utilize 
different features and classifiers for sEMG signal classification. In this 
paper, we explore the utility of energy features based on moments of 
absolute values of the sEMG segments in time and frequency domain. 
Following are the main contributions of this paper: 

• In this work, we build a feature ensemble of important energy fea
tures for sEMG signal based hand pose classification.  

• In order to validate the performance improvement due to energy 
feature ensemble, we use widely adapted machine learning classi
fiers in sEMG literature, namely fine KNN, Probabilistic neural net
works, Ensemble KNN, Cubic SVM and Quadratic Discriminant 
Analysis (QDA) to train and test the data.  

• We perform the hand movement classification experiments on the 
sEMG signals from the benchmark NinaPro DB1 database [24] which 
contains the samples from 27 subjects.  

• Finally, we compare the proposed classification framework of the 
recent feature ensemble and classifier combinations to show the 
improvement due to the proposed framework. We also analyzed the 
impact of different features within the propose ensemble. 

The paper is organized as follows: In Section 2, the proposed meth
odology and implementation scheme is discussed. The results are dis
cussed with various analyses in Section 3. The Section 4 concludes the 
work with key findings and possible future directions. 

2. Proposed methodology and implementation 

2.1. Methodology 

The proposed implementation scheme is illustrated in the Fig. 1. The 
sEMG signals extracted from M electrodes corresponding to M channels 
consist of N distinct sEMG signals/patterns. The number N = S× C× T, 
where S is the total number of subjects, C is the number of different hand 

Fig. 1. Block diagram of the proposed classification scheme using energy features.  
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gestures and T is the number of repetitions of each gesture per subject. 
The full sEMG dataset can be represented as, 

x = {xn}
N
n=1 (1)  

where each observation vector xn consists of M channels and is given as 

xn = {xn,m}
M
m=1, n = 1,…,N (2)  

and each of the m-th channel consists of a vector 

xn,m = {xn,m(i)}NT
i=1 (3)  

where NT = Ns × T is the number of values in one trial of duration T and 
Ns is the sampling rate (samples/s). 

2.1.1. Feature extraction 
In this work, we propose a feature ensemble consisting of only three 

types of features: the Mean Absolute Value (MAV), the Temporal 
Segment Energies (TSE) and the Spectral Band Energies (SBE). These 
features are commonly used as a part of the feature ensembles in EMG 
signal classification. Both the temporal energy and the mean absolute 
value are based on the amplitude of the EMG signal. The relationship 
between the EMG signal amplitude and the force magnitude of limb 
movements varies from a linear to non-linear model [25–27]. Basically, 
this relationship depends on various mechanical and physiological fac
tors such as movement speed [25], muscle activation levels [28], muscle 
resting and contraction lengths [29] and muscle composition [27]. 
Importantly, based on these factors, the EMG amplitudes vary across 
different hand gestures and EMG electrodes and provide the theoretical 
foundation for discriminative power of the proposed features. A formal 
presentation of feature extraction is given below. From the sEMG sig
nals, statistical features are extracted for each trial xn,m as described 
below. 

Time domain (TD) features: For a given trial, the signal is divided 
into multiple segments. The features MAV [30] and TSE are computed 
for each of them. Let 

sg = {xn,m(i)}quadi = 1,…,Ng (4)  

where Ng is the number of values in one segment and is related to NT as 
NT = Ng × Nseg where Nseg is the number of segments per trial. 

The MAV features are defined for each of the segments sg as follows: 

fMAV(g) =
1

Ng

∑Ng

i=1
|xn,m(i)| (5)  

and the TSE features for each segment are defined as 

fTSE(g) =
∑Ng

i=1
|xn,m(i)|2. (6) 

The resulting MAV feature vector for the m-th channel is given as 

f(m)

MAV = {fMAV(g)}Na
g=1 (7)  

where Na is the No. of segments per trial for computation of MAV fea
tures. The vector of MAV features representing the M channels is 

fMAV = {f(m)

MAV}
M
m=1 (8) 

Similarly, the feature vector fTSE is also constructed.Spectral Band 
Energies (SBE): In this case, the periodogram of the signal is computed 
and the resulting spectral densities are divided into multiple bands and 
the spectral energies are computed for each of them. Consider the 
Discrete Fourier Transform (DFT) of a m-th channel’s trial xn,m, given as 

Xn,m(k) =
∑

i
xn,m(i)e− j2π ik

NT . (9) 

Next the spectrum is divided into NB bands 

Xn,m = {Xb}
NB
b=1 (10)  

where Xb is the b-th band in Xn,m with elements 

Xb = {Xb(k)}Nb
k=1 (11)  

where Xb(k) is same as Xn,m(k) within the b-th band and Nb is the number 
of DFT samples in Xb. The corresponding SBE is given by 

fSBE(b) =
1

Nb

∑Nb

k=1
|Xb(k)|2. (12) 

Again the features from M channels are concatenated to form the 
spectral feature vector fSBE . In this method, we use the following feature 
ensemble [fMAV , fTSE, fSBE] for classification of the hand gestures/poses. 
The effective length of the full feature ensemble is 

Nf = (Na +Ne +Nb) × M (13)  

and the feature sub-set sizes are summarized in the Table 1. 

2.1.2. Machine learning algorithms 
Here, we address the classification of C categories of hand poses. The 

following classical and yet effective machine learning algorithms: K- 
Nearest Neighbour (KNN), Probabilistic Neural Networks (PNN), 
Quadratic Discriminant Analysis (QDA), Ensemble KNN (sKNN) and 
Cubic Support Vector Machine (SVM3) have been applied to the feature 
dataset. The hyper-parameter settings for different machine learning 
algorithms used in this work are summarized in Table 2. The pseudo 
code for sEMG classification is given in Algorithm 1. The algorithm dis
cusses steps involved from the process of feature extraction to calcu
lating classification accuracy. The performance of classifiers is evaluated 
using the classification accuracy (α) in the cross validation stage, ac
curacy (β) during the testing phase, Kappa coefficient (κ) for perfor
mance against chance assignment [31], precision γ for average fraction 
of correct classifications against predictions, recall ρ for average fraction 
of correct classifications against true labels and F1 score [32]. These 
classifiers are selected as they provided best performance compared to 
other machine learning classifiers in the literature. At last the Sequential 
Forward Selection (SFS) is applied to the feature vector to identify the 

Table 1 
Summary of features extracted.  

Feature name Feature length 

Mean Absolute Value (MAV) 2× M  
Temporal Segment Energies (TSE) 4× M  
Spectral Band Energies (SBE) 4× M   

Table 2 
Setup Information for the Classifiers.  

Classifier Model Setup 

Fine KNN No.of neighbours = 1,  
Distance metric = Correlation,  
Distance weight = Equal 

PNN Spread = 1 
Ensemble KNN No.of Learning cycles = 30,  

learners = KNN,  
Subspace dimension = 70 

QDA Score transform = ‘none’  
Fill coeffs = ‘off’ 

Cubic SVM Polynomial kernel, Order = 3,  
Box Constraint = 1,  
Multi-class Method = one-vs-one  
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relevant feature subsets.  
Algorithm1:Surface EMG Signal Classification 

Input: surface EMG signals xn,m, class labels  
1. For each n: 1 to N 
2. For each m 
3. For each Segment 
4. Compute features: 
5. MAV, TSE, SBE features from (8), (6), (12), respectively 
6. Concatenation of features: F0(n)⟵[fMAV , fTSE, fSBE]

7. Lc(n)⟵ class label of nth pattern  
8. For m: 1 to M (average over M trials) 
9. Fs⟵F0(i), Ls = Lc(i) (i = shuffle(N))  

10. Data partition for cross validation and testing: 
11. Fs⟶[Fcv

s ; Fte
s ], Ls ⟶ [Lcv

s ,Lte
s ]

12. Cross validation: 
13. Ftr

s ⟵ One partition of Fcv
s  

14. Ltr
s ⟵ One partition of Lcv

s  

15. model, pred labels = FKNN(Ftr
s ,L

tr
s )  

16. α, cv_labels = cross_validation(model,Fcv
s ,Lcv

s )

17. β, test_labels = cross_validation(model,Fte
s ,L

te
s )

18. Compute: Cross validation and test performance metrics averaged over M runs 

19. Output: 
20. Cross Validation Metrics: α, β, γ, F1 and κ  
21. Testing Metrics: α, β, γ, F1 and κ   

2.2. Implementation 

2.2.1. NinaPro dataset description 
In this study, we experiment on the sEMG data from the benchmark 

dataset NinaPro DB1 [24]. The dataset consists of C = 52 classes of hand 
gestures collected from S = 27 subjects. Each hand movement is per
formed for 5 s and repeated for T = 10 times with a rest period of 3 s 
between each trial. Each sEMG signal consists of 10 channels, extracted 
from Otto Bock sEMG sensor [33] placed at different locations on a 
human hand. The data acquisition rate is 100 samples/s. The total 
number of predictors is P = 27× 52× 10 = 14040. 

2.2.2. Experimentation 
From the 10 channel sEMG signal, we obtain features as described 

below. As listed in Table 1, from each of the patterns of size 512 × 10 a 
feature ensemble of size 1 × 100 is constructed. To avoid bias in learning 
during the training, the patterns are shuffled across subjects, trials and 
classes. The 14040 × 100 dataset is divided into 80% cross validation set 
and 20% test set. The feature matrix, thus extracted is trained and tested 
with the five classifiers, namely KNN, PNN, Ensemble KNN, QDA and 
Cubic SVM. A 10-fold cross validation is performed and the optimized 
classifier is used for making label prediction on the test data. For eval
uation purpose, a confusion matrix is obtained, at both cross validation 
and testing stages. A comparative analysis is performed under various 
setups and conditions as described below. 

3. Results and performance analysis 

To evaluate the proposed classification framework, the following 
experiments are performed: (i) performance comparison of the proposed 
feature ensemble with the various state-of-the-art feature ensembles 
using the fine KNN classifier, (ii) evaluations of the proposed feature 
ensemble with multiple existing classifiers to find the suitable classifier, 
and (iii) comparisons with the results from the benchmark methods. The 
metrics α, β, κ, γ, ρ and F1 score, as mentioned in Section 2.1.2, are 
computed. For better visualization, the metrics are presented as follows: 
first two in percentage values and the rest on a fractional scale. 

3.1. Comparison with feature ensembles 

The following feature ensembles are considered in the analysis of the 
proposed classification framework.  

1. F0: MAV, TSE and SBE  
2. F1: MAV, zero crossings, slope changes and wavelength [23]  
3. F2: F1 and auto regression Coefficients [13]  
4. F3: F1, myopulse rate, willison amplitude, and cardinality [4]  
5. F4: Log moments in frequency domain [7]  
6. F5: F4, modified LMF based features, time domain statistics, spectral 

band powers, max channel cross correlations, and local binary pat
terns [12] 

Here the F0 is the proposed feature ensemble and the Fi for i = 1,… 
, 5 are the state-of-the-art feature ensembles from the literature. 

In this comparison study, for each set, the corresponding feature 
ensembles are computed and used as inputs to the fine K Nearest 
Neighbor (KNN) and their performance metrics α and β are also evalu
ated. As shown in the Fig. 2, the feature ensemble F1 from [23], has 
produced the least classification performance (α = 64.4 and β = 63.5). 
The best performance is produced by the proposed energy ensemble F0 
(α = 88.8 and β = 87.6). The next best feature ensemble lags behind by 
at least 13% at α = 75.6 and β = 75.3. The proposed feature ensemble 
outperforms the other feature ensembles because the energy features 

Fig. 2. Performance comparison with different Feature Ensembles with 
Fine KNN. 

Fig. 3. Performance comparison with different Classifiers with proposed 
feature ensemble. 
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have greater relevance for hand gestures categorization as mentioned in 
Section 2.1.1. 

3.2. Classifier comparisons 

In this experiment, the proposed feature ensemble F0 is computed 
and used as input to commonly used machine learning algorithms (i.e., 
Fine K-Nearest Neighbour (FKNN), Probabilistic Neural Networks 
(PNN), Quadratic Discriminant Analysis (QDA), Ensemble KNN (sKNN) 
and Cubic Support Vector Machine (SVM3)) for sEMG signal classifica
tion. As shown in Fig. 3, the best performance is produced by the fine 
KNN (α = 88.8 and β = 87.6) and closely followed by the Probabilistic 
ANN (PNN) (α = 87.1 and β = 84.2) and then by ensemble KNN (α =

84.8 and β = 84). The quadratic discriminant algorithm shows the least 
performance. Thus, it is observed from this experiment that the feature 
representation produced by the proposed feature ensemble is more 
relevant with respect to the problem in hand and exhibits more class 
separability. 

3.3. Comparison against benchmark algorithms 

The performance of the proposed classification framework is 
compared against the existing sEMG benchmark classification methods 
consisting of different combinations of feature ensembles and classifi
cation frameworks as listed in Table 3. Here B0 indicates the proposed 
framework and the Bi for i = 1,…,5 are the benchmark frameworks. The 
parameter setups of the different classifiers used in the numerical ana
lyses are also shown in Table 2. The performance of these classifiers is 
analyzed based on the cross validation accuracy (α) and Test accuracy 
(β) with benchmark results and is shown in Fig. 4. The other perfor
mance metrics of the proposed framework B0 are analyzed against those 

of the benchmarks and are shown in Fig. 5. The major findings from this 
experiment are summarized as follows:  

• Cross validation accuracy (α) and Test accuracy (β): The proposed 
classification framework B0 has achieved the highest performance of 
α = 88.8 and β = 87.6, which is an improvement of 15% over the 
state of the art performance α = 71.9 and β = 71 from the bench
mark B5 based on PNN. The lowest performance among the 
compared benchmarks is B4 [6].  

• Other metrics: κ, γ, ρ, F1: The proposed framework B0 leads to the 
highest values for each of the performance metrics, i.e., 

κ = 0.89; γ = 0.888; ρ = 0.889; F1 = 0.888 

Table 3 
Description of Benchmark Frameworks. *Reproduced frameworks with the 
given feature ensemble.  

Framework Classifier Feature Ensemble 

B0  Fine KNN F0  

B1 [23] *  QDA F1  

B2 [13]*  KNN F2  

B3 [4]*  SVM F3  

B4 [6]*  SVM F4  

B5 [12]*  PNN F5   

Fig. 4. Performance comparison against benchmark frameworks.  

Fig. 5. Performance comparison against benchmark frameworks in terms of 
various metrics. 

Table 4 
Feature Set Contributions toward classification accuracy for the proposed 
framework B0.  

Feature Set SBE {SBE, MAV} F0  

α  85.2  88.2  88.8  
β  83.9  86.7  87.6   

Fig. 6. Average number of features selected in each feature category.  
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The runner-up is the framework B5 with metric values as, 

κ = 0.713; γ = 0.719; ρ = 0.722; F1 = 0.721   

The lowest performance is achieved by the benchmark B4. From this 
experiment, it is noticed that the proposed energy driven feature 
ensemble outperforms the existing state-of-the-art benchmarks. In order 
to understand, the better representative ability of the proposed 
ensemble, the feature analysis is given in the next experiment. 

3.4. Feature analysis 

The performance improvement of B0 over B5 is mainly due to the 
inclusion of energy features as observed from the Table 4. Clearly, the 
spectral features SBE provide the best performance by any single type of 
feature subset and the overall performance is incremented by inclusion 
of the subsets MAV and TSE in the same order. Next, to understand the 
role of individual features within the subsets SBE, MAV and TSE; we 
implemented the sequential forward selection algorithm. The Fig. 6. 
shows the average number of features selected fsel per subset over 100 
runs of the SFS algorithm. It demonstrates that the features from the SBE 
subset play the most significant role in the classification process fol
lowed by the MAV and TSE. Further, based on Table 4, for M = 10 the 
total number of features in the three subsets are {20,40,40}

respectively. Hence, from Fig. 6. it is determined that, on an average, the 
number of selected features exceeds 50% from SBE, 17% from MAV and 
25% from TSE. In terms of variability among selected features, the MAV 
has a higher standard deviation of 5 while SBE and TSE have relatively 
lower standard deviations of 2 and 1 respectively. 

3.5. Channel sensitivity 

Finally, to understand the role of individual EMG channels and 
corresponding electrodes, we evaluated the classification accuracy of 
the proposed framework by omitting one channel at a time. From Fig. 7, 
it is clear that the cross validation accuracy is not highly sensitive to any 
single channel. However, omission of the channels 3, 4 and 5 does not 
affect the performance much. Further, the omission of channels 2, 8 and 
10 has led to loss of 1 to 2% in the accuracy. 

3.6. Time and space complexity 

The time complexity of each feature is analysed with respect to 
number of the basic operations such as additions, multiplications and 
comparisons. The time and space complexities of the features are listed 
in the Table 5. The algorithm is implemented using MATLAB 2020 on a 
desktop PC with intel i5 processor having 24 GB RAM. The space 
complexity is lesser for MAV, TSE and SBE features compared to com
plex features such as the AR and LMF. For a single run, the time com
plexities and corresponding execution times for the classification 
frameworks are given in Table 6. The theoretical time and space 
complexity of the classifiers are determined by considering the analysis 
provided in [34–38]. Notably, the proposed framework B0 takes shortest 
execution time of 8.55s, while the benchmark framework B3 requires the 
longest execution time of 332.88s as expected from the corresponding 

Fig. 7. The CV accuracy of B0 as a function of omitted channel index.  

Table 5 
Time and space complexity analysis for features (N – No. of patterns, M – No. of features, NT – No. of samples in a trial, P – No. of coefficients and – zero operations)  

Feature No. of additions No. of multiplications No. of comparisons space complexity (Rows× Columns)  

MAV [(Ng − 1)Nseg]MN  – – N× NsegM  
TSE [(Ng − 1)Nseg]MN  [NgNseg]MN  – N× NsegM  
SBE [NTlogNT/2 + (Nb − 1)Nseg]MN  [(NT/2)logNT/2 + NbNseg]MN  – N× NsegM  
ZC [23] – – (NT − 1)MN  N× M  
SC [23] 3(NT − 3)MN  – (NT − 3)MN  N× M  
WL [12] (2NT − 3)MN  – – N× M  
AR [13] (NT − 1)MN  – – N× PM  
MPR [12] (NT − 1)MN  – NTMN  N× M  
WA [12] (2NT − 3)MN  – (NT − 1)MN  N× M  
Cardinality [4] (NT − 1)MN  – NTMN  N× M  
LMF [7] [NTlogNT/2 + (NT − 1)P]MN  [(NT/2)logNT/2 + (NT − 1)P]MN  – N× PM  
TDS [12] 9(NT − 1)MN  6NTMN  – N× 4M   

Table 6 
Time and space complexity analysis for classifiers (N – No. of patterns, M – No. of 
features, and C – No. of classes).  

Frame 
work 

Classifier Theoretical 
best time 

Theoretical 
worst time 

Execution 
time (s) 

Space 
complexity 

B0  FKNN  
[34] 

O (NM) O (MNlogN) 8.55  O (NM)

B1  

[23]  
QDA  
[37] 

O (2MN +

M2)

O (NM2 +

M3)

8.59  O (2MN +

M2)

B2  

[13]  
KNN  
[34] 

O (NM) O (MNlogN) 12.31  O (NM)

B3 [4]  SVM  
[35] 

O (NM2) O (N3) 332.88  O (N2)

B4 [6]  SVM  
[35] 

O (NM2) O (N3) 233.66  O (N2)

B5  

[12]  
PNN  
[38] 

O (N2) O (NMC) 183.47  O (N2)
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theoretical complexity. This analysis depicts that the proposed frame
work B0 is computationally efficient compared to the benchmark 
frameworks. The storage space requirement of B0 is lower compared to 
other frameworks. Moreover, the feature set F0 is very simple and 
compact in exploiting the abstract features from the sEMG signals. 

4. Conclusion 

In this study, we have implemented a multi-class classification 
framework to categorize the 52 human hand gestures. We have proposed 
an energy based feature ensemble to extract relevant and discriminative 
features pertaining to the sEMG classification. The Fine KNN, PNN, 
Ensemble KNN, Cubic SVM and QDA classifiers are trained and tested to 
classify the sEMG signals with the proposed feature ensemble. The Fine 
KNN classifier performance is the best among the classifiers with a 
maximum test accuracy of 87.6%. The proposed energy based feature 
ensemble, using the Fine KNN classifier, outperforms the state-of-the-art 
feature ensembles. Moreover, the proposed benchmark outperforms the 
other benchmarks with a significant margin. The feature analysis depicts 
the importance of different energy based features in the proposed 
ensemble. The computational complexity analysis confirms the effi
ciency of the proposed method. The future plan is to integrate the pro
posed feature ensemble with deep learning to further improve the 
classification accuracy. 
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