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Abstract Biomedical image retrieval is a challenging prob-
lem due to the varying contrast and size of structures in the
images. The approaches for biomedical image retrieval gen-
erally rely on the feature descriptors to characterize the im-
ages. The feature descriptor of query image is compared
with the descriptors of images from the database, to find
the best matches. Several hand-crafted feature descriptors
have been proposed so far for biomedical image retrieval
by exploiting the local relationship of neighboring image
pixels. It is observed in the literature that the local bit-
plane decoded features are well suited for this retrieval task.
Moreover, in recent past, it is also observed that the con-
volutional neural network (CNN) based features such as
AlexNet, Vgg16, GoogleNet, ResNet, etc. perform well in
many computer vision related tasks. Motivated by the suc-
cess of the deep learning based approaches, this paper pro-
poses a Local Bit-plane Decoding based AlexNet Descrip-
tor (LBpDAD) for biomedical image retrieval. The proposed
LBpDAD is computed by max-fusing the ReLU operated
feature maps of pre-trained AlexNet at a particular layer,
obtained from the original and local bit-plane decoded im-
ages. The proposed approach is also compared with Vgg16,
GoogleNet and ResNet models. The experiments on the pro-
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posed method over three benchmark biomedical databases
of different modalities such as MRI, CT and Microscopic
show the efficacy of the proposed descriptor.
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Decoding

1 Introduction

Computer-based biomedical image analysis techniques fa-
cilitate the medical experts and technicians to improve their
diagnosis of diseases, based on the crucial inputs suggested
by the computer system [53], [49]. The biomedical image re-
trieval is one of the fundamental and very challenging prob-
lem for medical and health informatics [28]. In image re-
trieval, the best matching image along with its descriptions
are identified from a database against a query image, based
on the content similarity between the query and database
images [52], [19]. In order to measure the similarity be-
tween images, the feature representation play an important
role [38], [47], [56].

In the past, the Local Binary Pattern (LBP) was very
popular for image representation [35]. Numerous LBP vari-
ants were proposed for addressing challenges in image re-
trieval in the past decades due to the huge success and sim-
plicity of LBP [38]. Some notable LBP variants are Local
Ternary Pattern (LTP) [55], Local Derivative Pattern (LDP)
[62], Local Gradient Hexa Pattern (LGHP) [3], Local Direc-
tional Gradient Pattern (LDGP) [4], and Local Directional
Order Pattern (LDOP) [11] for face recognition/retrieval
purposes; Local Tetra Pattern (LTrP) [29] and Multi-channel
Decoded LBP (mdLBP) [16] for image retrieval; Local In-
tensity Order Pattern (LIOP) [58] and Interleaved Intensity
Order based Local Descriptor (IOLD) [12] for local image
matching; and Complete Dual-Cross Pattern (CDCP) [44],
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Local Directional ZigZag Pattern (LDZP) [46], and Local
Jet Pattern (LJP) [45] for texture classification, etc. The LBP
based approaches are also widely used in biomedical image
analysis such as pulmonary emphysema analysis [51], cell
phenotype classification [33], biomedical image classifica-
tion [34], stem cell classification [36], etc. The latest devel-
opments over the LBP variant descriptors for biomedical im-
age retrieval include Local Mesh Pattern (LMeP) [31], Local
Ternary Co-occurrence pattern (LTCoP) [30], Local Diago-
nal Extrema Pattern (LDEP) [13], Local Bit-plane Dissimi-
larity Pattern (LBDISP) [17], Local Bit-plane Decoded Pat-
tern (LBDP) [15], and Local Wavelet Pattern (LWP) [14],
etc. Lan and Zhou have used the compressed scattering coef-
ficients for medical image retrieval [24]. It is observed from
the literature that the bit-plane decoding based descriptor is
more suitable for the biomedical image retrieval task [15].
Thus, in this work, we utilize the bit-plane decoded informa-
tion with convolutional neural network (CNN) framework.

During the past few years, the CNN based methods have
emerged very rapidly. The CNN-based approaches show
better efficacy compared to the hand-designed feature based
classifications. The first revolutionary work in this direction
was AlexNet architecture by Krizhevsky et al. in 2012 for
image classification [23]. After AlexNet, various deep ar-
chitectures have been proposed such as Vgg16 with deep
network [48], GoogleNet with inception module [54], and
ResNet with residual module [21] for image classification.
The CNN has also proven for other problems such as Faster
R-CNN [43] for object detection, Mask R-CNN [20] for se-
mantic segmentation, image fusion [22], CNN-ranker [61]
for retrieval, and Cross-CNN [59] for multiple modality
data representation, etc. The CNN based methods are also
proven to be efficient for biomedical image analysis such
as colon cancer recognition [50], cervical cell classification
[63], Pneumonia Detection [41], multispectral MR images
segmentation [5], and medical image registration [57], etc.

In order to train the deep CNNs, huge number of im-
ages are required which may not be collected in many real-
life scenarios. This issue is generally dealt with by apply-
ing the transfer learning with pre-trained models, trained
over some big databases. Researchers have used the pre-
trained CNN models for applications such as content-based
image retrieval [25], remote sensing image retrieval [18],
face retrieval [10], military object recognition [60], dump-
sters recognition [42], etc. The CNN models pre-trained by
Imagenet database [9] are also successfully applied in med-
ical image applications such as mammogram analysis [2],
bioimage classification [32], domain transfer for biomedical
images [37], etc.

Some attempts have been made to utilize the CNN for
biomedical image retrieval. Qayyum et al. used a 8 layer
CNN architecture similar to AlexNet [39] for medical image
retrieval. They trained the network over a database of 7200

images obtained from different sources and gained a mean
average precision of 0.69. Due to lack of sufficient training
images, they could not get very high performance. Qiu et al.
have used the hash code over ‘FC6’ and ‘FC7’ AlexNet fea-
tures for medical image retrieval [40]. The retrieval time is
reduced in [40] due to binary feature, but at the cost of de-
graded performance. Chung et al. used a deep Siamese CNN
(SCNN) for diabetic retinopathy fundus image retrieval [7].
The retrieval performance of SCNN last layer proposed in
[7] is quite similar to the CNN softmax layer. Chowdhury
et al. used the CNN and Edge Histogram Descriptor for ra-
diographic image retrieval [6]. This approach works in two
steps. First the relevant database classes are computed for
a query image using CNN and then the hand-crafted Edge
Histogram Descriptor is used to retrieve the images only
from the relevant classes. This approach has combined CNN
with hand-crafted descriptor in sequential fashion. However,
in our proposed approach, the CNN features are computed
over hand-designed feature map and fused with the original
CNN features (i.e., parallel fusion).

Motivated by the suitability of bit-plane decoding mech-
anism for biomedical images, the success of CNN in var-
ious challenging problems, and the re-usability of the pre-
trained models, we propose Local Bit-plane Decoded CNN
Descriptors for biomedical image retrieval. The main con-
tributions of this paper can be summarized as follows:

– The local bit-plane decoding mechanism is used for im-
age transformation similar to LBDP [15].

– The pre-trained CNN models such as AlexNet [23],
Vgg16 [48], GoogleNet [54] and ResNet50 [21] are em-
ployed to generate the features.

– The CNN features are generated over raw input image as
well as bit-plane decoded image and combined at the last
representation layers using different fusion strategies.

The rest of the paper is structured as follows: Section
2 proposes the Local Bit-plane Decoded CNN Descriptor;
Section 3 presents the experimental setup including retrieval
framework, databases and evaluation criteria; Section 4 re-
ports the experimental results and analysis; and Section 5
concludes the paper.

2 Proposed Local Bit-plane Decoded CNN Descriptor

This section illustrates the proposed Local Bit-plane De-
coded AlexNet Descriptor (LBpDAD) obtained by inte-
grating the trained AlexNet [23] with local bit-plane decod-
ing mechanism [15]. The trained weights of AlexNet model1

is used in this paper which is computed over a large-scale
ImageNet database [9]. The proposed method for biomedi-
cal image retrieval is illustrated in Fig. 1. The input image I

1 The trained AlexNet weights available in the MATLAB is consid-
ered.
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Fig. 1: Proposed Local Bit-plane Decoded AlexNet Descriptor (LBpDAD) by fusing the original AlexNet features with Local
Bit-plane Decoded AlexNet features.

of dimensionm×n×3 is passed through the local bit-plane
decoding mechanism proposed in [15] to generate the local
bit-plane decoded map IM as follows:

Ii,j,kM =

8∑
b=1

sign(Ii,j,k, Bi,j,k,bD )× 2b−1 (1)

where i = 2, 3, · · · ,m− 1, j = 2, 3, · · · , n− 1, k = 1, 2, 3

represents the kth channel, b = 1, 2, · · · , 8 represents the
bth bit-plane, Ii,j,k is the value at position (i, j, k) in input
image, Ii,j,kM is the value at position (i, j, k) in the output
image map of local bit-plane decoding, Bi,j,k,bD is the local
bit-plane decoded decimal value in bth bit-plane for the cen-
ter pixel (i, j) in kth channel and the sign(α, β) is given
as,

sign(α, β) =

{
1, if α ≥ β
0, otherwise

(2)

The Bi,j,k,bD is computed as,

Bi,j,k,bD =

8∑
n=1

Bi,j,k,bn × 2n−1 (3)

where Bi,j,k,bn is the binary bit in bth bit-plane of kth chan-
nel corresponding to the nth neighbor of Ii,j,k at unit dis-
tance in the direction of (n− 1)× 45o from positive x-axis.

Now, the input image I and local bit-plane decoded im-
age map IM are converted into IA and IMA, respectively to
satisfy the dimension required from the input image for the
pre-trained AlexNet. The IA and IMA are computed as,

IA = τ(I, [227, 227]) (4)

IMA = τ(IM , [227, 227]) (5)

where τ(Γ, [ξ, ξ]) is a function to resize any 3-D volume Γ
of dimension % × υ × ψ into the dimension of ξ × ξ × ψ.
The 227 × 227 denotes the spatial resolution needed from
the input for AlexNet.

Define Alex as a function of combinations of convo-
lutional, ReLU, max-pooling and fully connected layers,
which returns the features at a particular layer of pre-trained
AlexNet for an input image of dimension 227 × 227 × 3.
The AlexNet features AlexNet and LBpD Alex are com-
puted for input images IA and IMA, respectively at class
score layer (‘cs’) as,

AlexNet = ReLU(Alex(IA, cs)) (6)

LBpD Alex = ReLU(Alex(IMA, cs)) (7)

where ReLU [23] is a function defined as,

ReLU(φv) =

{
φv, if φv ≥ 0

0, otherwise
(8)
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Fig. 2: The Biomedical Image Retrieval Framework using Proposed LBpDAD Features.

∀v = 1, 2, · · · , D(φ), where φ represents a feature vector
and D(φ) represents the length of feature vector φ. The
ReLU operator is basically used in CNN framework to in-
troduce nonlinearity into convolved features by filtering the
negative values. Note that the ReLU operator over feature
vector is required to remove the Negative values as only
Non-negative values are useful in most distance measures.

The Maximum (‘Max’) fusion technique is used to com-
bine the AlexNet and LBpD Alex feature vectors into fi-
nal LBpDAD descriptor as,

LBpDADv =M(AlexNetv, LBpD Alexv) (9)

where LBpDADv , AlexNetv and LBpD Alexv are the
vth elements of LBpDAD, AlexNet and LBpD Alex

feature vectors, respectively, v = 1, 2, · · · , D(AlexNet)

with D(AlexNet) = D(LBpD Alex) and M is a ‘Max’
operator defined as,

M(α, β) =

{
α, if α ≥ β
β, otherwise.

(10)

The LBpDADfc7 (i.e., final fused feature vector at
‘fc7’ layer) is computed as,

LBpDADfc7
v =M(AlexNetfc7v , LBpD Alexfc7v ) (11)

where LBpDADfc7
v , AlexNetfc7v and LBpD Alexfc7v

are the vth elements of LBpDADfc7, AlexNetfc7

and LBpD Alexfc7 feature vectors, respectively. The
AlexNetfc7 and LBpD Alexfc7 are the feature vectors
computed at ‘fc7’ layer for the input images IA and IMA,
respectively, as,

AlexNetfc7 = ReLU(Alex(IA, fc7)) (12)

LBpD Alexfc7 = ReLU(Alex(IMA, fc7)) (13)

Similarly, the feature fused feature vector at ‘fc6’ layer can
be computed as,

LBpDADfc6
v =M(AlexNetfc6v , LBpD Alexfc6v ) (14)

where LBpDADfc6
v , AlexNetfc6v and LBpD Alexfc6v

are the vth elements of LBpDADfc6, AlexNetfc6

and LBpD Alexfc6 feature vectors, respectively. The
AlexNetfc6 and LBpD Alexfc6 are the feature vectors
computed at ‘fc6’ layer for the input images IA and IMA

respectively as,

AlexNetfc6 = ReLU(Alex(IA, fc6)) (15)

LBpD Alexfc6 = ReLU(Alex(IMA, fc6)). (16)

Note that all the feature descriptors are normalized to make
the unit sum using following formula,

φv =
φv∑D(φ)
i=1 φi

(17)

where φ is any feature vector of dimension D(φ). This nor-
malization makes the descriptors robust against image reso-
lution variations.

3 Experimental Setup

In this section, at first we present the biomedical image re-
trieval framework using proposed descriptor. Then biomed-
ical databases used for the experiments and finally the eval-
uation measures are described.
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3.1 Proposed Biomedical Image Retrieval Framework

The biomedical image retrieval framework using proposed
Local Bit-plane Decoded AlexNet Descriptor (LBpDAD)

is portrayed in Fig. 2. The feature extraction steps are the
same for both query image and database images. The im-
age is passed through the Pre-trained AlexNet to generate
the direct features. The input image is also converted into a
local bit-plane decoded map which is then passed through
the pre-trained AlexNet to generate the local bit-plane de-
coded features. Finally the direct Alex features and local
bit-plane decoded Alex features are combined using ‘Max’
fusion strategy to generate the final LBpDAD descriptor.
As the biomedical images are gray scale and AlexNet re-
quires 3-channel input, the same gray scale channel of our
image is copied three times to create the 3-channel input.
Once the descriptors are computed for all images including
query and database, the feature matching is performed by
computing the distances between descriptors of query im-
age and database images. Based on the distances, the top
matching images are retrieved from the database against the
given query image. The ‘Chi-square’ distance measure is
adapted in this paper as it has shown better performance for
state-of-the-art descriptors [15], [14]. However, the perfor-
mance of proposed LBpDAD descriptor is also analyzed
with other distances such as ‘Euclidean’, ‘Manhattan’, ‘Co-
sine’ and ‘Canberra’ in the Experiment Section.

3.2 Biomedical Databases Used

Three biomedical databases of different modalities includ-
ing OASIS-MRI [27], TCIA-CT [8] and HeLa-Microscopic
[1] are used in this paper to justify the improved perfor-
mance of proposed LBpDAD descriptor in image retrieval
framework. The Open Access Series of Imaging Studies has
released a magnetic resonance imaging database (OASIS-
MRI) in public domain for research and analysis [27]. This
database is based on the 421 subjects from the age-group
between 18 and 96 years. The OASIS-MRI database con-
tains the 176 × 208 resolution cross-sectional images. The
database is divided into four categories similar to [15] hav-
ing 106, 89, 102 and 124 images. The different categories
of this database represent varying ventricular shape inside
the images. The cancer image archive (TCIA) is a stor-
age for various cancer location images in Digital Imaging
and Communications in Medicine (DICOM) image format
[8]. These images are publicly accessible for research. We
have used the same TCIA-CT database which is used in
[14]. This database has 604 Colo prone 1.0B30f CT im-
ages of the DICOM series number 1.3.6.1.4.1.9328.50.4.2
of study instance UID 1.3.6.1.4.1.9328.50.4.1 for subject
1.3.6.1.4.1.9328.50.4.0001. The database is divided into 8
categories having 75, 50, 58, 140, 70, 92, 78, and 41 images

as per the size and structure of Colo prone. The original im-
age size in TCIA-CT database is 512× 512 pixels. We have
also used fluorescence microscope images for the experi-
ment taken from the 2D HeLa database [1]. This database
contains total 862 images of HeLa cells from 10 different
categories corresponding to 10 different subcellular patterns
using fluorescence microscopy.

3.3 Evaluation Criteria

The average retrieval precision (ARP), average retrieval
rate (ARR), F-Score and Average Normalized Modified Re-
trieval Rank (ANMRR) is used for the performance mea-
surement similar to [30], [31], [15], [17], [14], [13]. The
ARP and ARR are computed as,

ARP =
1

C

C∑
c=1

MPc (18)

ARR =
1

C

C∑
c=1

MRc (19)

where C is the number of classes in a database, MPc and
MRc are the mean precision and mean recall for cth class
and defined as,

MPc =
1

nc

nc∑
i=1

#CRi
#TR

(20)

MRc =
1

nc

nc∑
i=1

#CRi
#TGc

(21)

where nc is the number of images in cth class, #CRi is
the number of correctly retrieved images, #TR is the total
number of retrieved images, and #TGc is the number of
ground truth images in cth class. The F-Score is calculated
from the ARP and ARR as,

F -Score = 2× ARP ×ARR
ARP +ARR

. (22)

The ANMRR is calculated by following the steps provided
in [26]. Higher values of ARP, ARR and F-Score and lower
value of ANMRR represent better performance.

4 Results and Analysis

This section presents the experimental results, comparison
between the methods and analysis. First, the results of pro-
posed model are compared with the state-of-the-art methods
and then its performance is analyzed for different layers, fu-
sion strategies, distance measures and CNN models.
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(a) ARP over OASIS-MRI Database
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(b) ARP over TCIA-CT Database
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(c) ARP over HeLa Database
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(d) ARR over OASIS-MRI Database
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(e) ARR over TCIA-CT Database
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(f) ARR over HeLa Database
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(g) F-Score over OASIS-MRI Database
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(h) F-Score over TCIA-CT Database
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(i) F-Score over HeLa Database
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(j) ANMRR over OASIS-MRI Database
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(k) ANMRR over TCIA-CT Database
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(l) ANMRR over HeLa Database

Fig. 3: The retrieval results comparison over OASIS-MRI, TCIA-CT and HeLa databases.

4.1 Results Comparison

In order to express the improved performance of proposed
model, the LBpDADfc6 results are compared with the
results of state-of-the-art descriptors such as LBP [35],
LTP [55], LDP [62], LTrP [29], LTCoP [30], LMeP

[31], LDEP [13], LBDP [15], LWP [14] and LBDISP
[17]. Note that LBpDADfc6 is used here for com-
parison, whereas the comparison between LBpDADfc6,
LBpDADfc7 and LBpDAD descriptors are carried out in
the next subsection. The image retrieval results in terms of
the ARP (%), ARR (%), F-Score (%) and ANMRR (%) by
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Fig. 4: The retrieval results from OASIS-MRI database. The 1st column represents the query image. The 3rd to last columns
represent the top-10 retrieved images in decreasing order of similarity against the query image in 1st column. The results in
1st to 11th rows are corresponding to LBP [35], LTP [55], LDP [62], LTrP [29], LTCoP [30], LMeP [31], LDEP
[13], LBDP [15], LWP [14], LBDISP [17] and proposed LBpDADfc6 descriptors, respectively. The false positive
retrieved images are highlighted in red color rectangles.

varying the number of retrieved images are presented in Fig.
3. The 1st, 2nd, 3rd and 4th rows contain the ARP, ARR,
F-Score and ANMRR plots, respectively. The 1st, 2nd and
3rd columns are dedicated to the results over OASIS-MRI,
TCIA-CT and HeLa databases, respectively. The Chi-square
distance is used for feature matching.

It is observed from the results of Figs. 3a, 3d, 3g
and 3j that the proposed LBpDADfc6 descriptor outper-
forms the state-of-the-art descriptors with a big margin. The
LBpDADfc6 descriptor is also succeeded on TCIA-CT
database and just beats the best performing LBDP descrip-
tor in terms of all the evaluation measures (see Figs. 3b, 3e,
3h and 3k). Similar improvement in the results is also ob-
served for HeLa database as shown in Figs. 3c, 3f, 3i and
3l using the proposed descriptor as compared to the exist-
ing descriptors. The improved performance of the proposed
descriptor may be due to the following three reasons: (1)

the used CNN features are more discriminative when trained
over big ImageNet database, (2) the local bit-plane decoding
mechanism is better suited for biomedical images, and (3)
the fusion of raw CNN feature and local bit-plane decoded
CNN feature further improves the discriminative power of
the resultant descriptor.

The retrieved images using different methods for the ex-
ample query image of OASIS-MRI, TCIA-CT and HeLa
database are shown in Fig. 4, 5, and 6, respectively. In these
figures, the results in 1st to 11th rows are corresponding
to LBP [35], LTP [55], LDP [62], LTrP [29], LTCoP
[30], LMeP [31], LDEP [13], LBDP [15], LWP [14],
LBDISP [17] and proposed LBpDADfc6 descriptors, re-
spectively. The 1st column represents the query image. The
3rd to last columns represent the top-10 retrieved images in
decreasing order of similarity against the query image in 1st

column. The false positive retrieved images are highlighted
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Fig. 5: The retrieval results from TCIA-CT database. The 1st column represents the query image. The 3rd to last columns
represent the top-10 retrieved images in decreasing order of similarity against the query image in 1st column. The results in
1st to 11th rows are corresponding to LBP [35], LTP [55], LDP [62], LTrP [29], LTCoP [30], LMeP [31], LDEP
[13], LBDP [15], LWP [14], LBDISP [17] and proposed LBpDADfc6 descriptors, respectively. The false positive
retrieved images are highlighted in red color rectangles.

in red color rectangles. It can be observed from these results
that the proposed method (last row) outperforms other meth-
ods. The LBpDADfc6 is able to gain the 100%, 90%, and
100% precision over OASIS-MRI (Fig. 4), TCIA-CT (Fig.
5), and HeLa (Fig. 6) databases, respectively.

4.2 Performance Analysis over Different Layers

The previous subsection presented a comparative result of
LBpDADfc6 descriptor with the existing descriptors. In
this experiment, the results of proposed descriptor are an-
alyzed at different layers, i.e., LBpDAD for ‘class score
layer’, LBpDADfc7 for ‘fc7’ layer and LBpDADfc6 for
‘fc6’ layer (see Fig. 7). Moreover, the results of origi-
nal AlexNet (i.e., AlexNet, AlexNetfc7 and AlexNetfc6

for ‘class score’, ‘fc7’ and ‘fc6’ layers, respectively) as
well as the results of local bit-plane decoded AlexNet

without fusion (i.e., LBpD Alex, LBpD Alexfc7 and
LBpD Alexfc6 for ‘class score’, ‘fc7’ and ‘fc6’ layers,
respectively) are also compared in Fig. 7. The results are
shown for ARP (1strow) and ANMRR (2ndrow) eval-
uation metrics over OASIS-MRI (1stcolumn), TCIA-CT
(2ndcolumn) and HeLa (3rdcolumn) databases in Fig. 7. It
is perceived across the plots of Fig. 7 that in general, the per-
formance of fused local bit-plane decoded AlexNet descrip-
tors (i.e., LBpDAD, LBpDADfc7 and LBpDADfc6) is
better than the local bit-plane decoded AlexNet descrip-
tors without fusion (i.e., LBpD Alex, LBpD Alexfc7 and
LBpD Alexfc6) respectively which in turn better than the
original AlexNet descriptors (i.e., AlexNet, AlexNetfc7

and AlexNetfc6) respectively. Moreover, the performance
gain due to ‘max’ fusion is very prominent over HeLa
database. This observation also supports that the CNN fea-
tures extracted over local-bit plane decoded image is more
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Fig. 6: The retrieval results from HeLa database. The 1st column represents the query image. The 3rd to last columns
represent the top-10 retrieved images in decreasing order of similarity against the query image in 1st column. The results in
1st to 11th rows are corresponding to LBP [35], LTP [55], LDP [62], LTrP [29], LTCoP [30], LMeP [31], LDEP
[13], LBDP [15], LWP [14], LBDISP [17] and proposed LBpDADfc6 descriptors, respectively. The false positive
retrieved images are highlighted in red color rectangles.

discriminative compared to raw CNN features. This is so be-
cause the local bit-plane decoded image is rich with the local
relationship at each bit-plane, whereas both CNN features
have the complementary information due to different input
modalities (i.e., raw input image and local bit-plane decoded
input image). It is also discovered from this experiment that
the features of LBpDADfc6 at ‘fc6’ layer are more dis-
criminative than the features of LBpDADfc7 at ‘fc7’ and
LBpDAD at ‘class score’ layers for the OASIS-MRI and
TCIA-CT databases because the later ‘fc7’ and ‘class score’
layer features are more fitted towards the training database
as compared to the earlier ‘fc6’ layer features. However, the
LBpDADfc7 descriptor at ‘fc7’ layer is best the perform-
ing one on HeLa database due to the presence of more ho-
mogeneous regions in the images.

4.3 Performance Analysis using Different Fusion Strategies

This experiment is done to analyze the effects of differ-
ent fusion strategies for combining the features of original
AlexNet and local bit-plane decoded AlexNet. The ARP
(%) values using Maximum (Max), Addition (Add), Product
(Prod), Absolute Difference (Diff) and Division (Div) fusion
strategies are summarized in Table 1. Note that all features
are passed through the ReLU operator before fusion. The
LBpDAD, LBpDADfc7 and LBpDADfc6 descriptors
are used over OASIS-MRI, TCIA-CT and HeLa databases
to validate the results in this experiment. The number of re-
trieved images is set to 5 and Chi-square distance is used in
this experiment. The main objective of the proposed method
is to study the effect of feature level fusion of hand-crafted
and CNN features. There could be many possible fusion
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(a) ARP over OASIS-MRI Database
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(b) ARP over TCIA-CT Database
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(c) ARP over HeLa Database
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(d) ANMRR over OASIS-MRI Database
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(e) ANMRR over TCIA-CT Database
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(f) ANMRR over HeLa Database

Fig. 7: The comparison between AlexNet, LBpD Alex and LBpDAD features taken from ‘Softmax’, ‘FC7’ and ‘FC6’
layers over OASIS-MRI, TCIA-CT and HeLa databases using ARP and ANMRR evaluation measures. Here AlexNet
refers to the features computed over raw image, LBpD Alex represents the AlexNet features computed over Local Bit-
plane Decoded Image instead of original image, and LBpDAD depicts the features obtained after fusing AlexNet and
LBpD Alex using ‘max’ fusion strategy.

Table 1: The results comparison in between Maximum
(Max), Addition (Add), Product (Prod), Absolute Difference
(Diff) and Division (Div) fusion strategies in terms of the
ARP values for 5 number of retrieved images. The best re-
sults are highlighted in bold face.

Method Dataset Max Add Prod Diff Div

LBpDAD
OASIS 68.67 69.53 69.72 66.12 63.45
TCIA 98.00 97.88 97.93 98.03 97.77
HeLa 79.43 78.74 78.63 79.48 77.26

LBpDADFC7
OASIS 68.95 68.73 69.37 68.12 66.59
TCIA 98.27 98.25 98.19 98.15 98.23
HeLa 82.21 81.77 80.16 82.14 82.94

LBpDADFC6
OASIS 69.80 69.95 70.10 69.50 67.86
TCIA 98.13 98.16 98.29 98.11 98.12
HeLa 79.62 79.26 77.74 79.91 83.14

Table 2: The t-test computed over the results of Table 1.

Distance Add Prod Diff Div
Max 0.02 0.08 0.09 0.19
Add 0.06 0.07 0.17
Prod 0.01 0.12
Diff 0.1

strategies. In experiments, we have explored some of them.
Even though Product ‘Prod’ fusion technique has performed

better in many instances (as Product of two non-negative
feature vectors are more sparse, which decreases the ef-
fect of inter-class variability over the final feature vector), it
introduces additional computational overheads. Hence, we
have opted for the ‘Max’ fusion strategy in the remaining
experiments.

In order to observe the statistical difference between the
results of different fusion strategies, we conduct the t-test
over the results of each pair of fusion strategy. Note that the
higher value of absolute t-test represent high variability be-
tween two distributions and vice versa. Moreover, the posi-
tive sign represents the greater values for the corresponding
distribution against other distribution. We summarize the t-
test values for the results of Table 1 in Table 2. It is clear
from this table that the overall performance using Max fu-
sion is better, as it has positive t-test values as compared to
all other fusion strategies. The t-test analysis confirms the
choice of using Max fusion strategy in proposed method. It
is also observed that statistically, the {Max, Add} fusion ap-
proaches and {Prod, Diff} fusion approaches are very simi-
lar.



Local Bit-plane Decoded Convolutional Neural Network Features for Biomedical Image Retrieval 11

Table 3: The comparison among Euclidean (Eucld), Man-
hattan (L1), Cosine (Cosn), Canberra (Canb) and Chi-
square (Chisq) distance measures in terms of the ARP val-
ues for 5 number of retrieved images. The best results are
highlighted by bold style.

Method Dataset Eucld L1 Cosn Canb Chisq

LBpDAD
OASIS 68.23 68.63 67.96 68.91 68.67
TCIA 97.69 97.87 97.71 97.98 98.00
HeLa 78.56 78.91 78.59 79.63 79.43

LBpDADFC7
OASIS 69.48 68.65 68.69 67.02 68.95
TCIA 98.19 98.19 98.18 98.30 98.27
HeLa 81.62 82.18 81.04 80.75 82.21

LBpDADFC6
OASIS 69.20 69.34 69.68 68.68 69.80
TCIA 98.09 98.15 98.06 98.28 98.13
HeLa 74.75 79.78 77.16 83.29 79.62

Table 4: The t-test computed over the results of Table 3.

Distance L1 Cosn Canb Chisq
Eucld -0.15 -0.03 -0.18 -0.19
L1 0.12 -0.03 -0.04
Cosn -0.15 -0.16
Canb -0.01

4.4 Performance Analysis using Different Distance
Measures

The Chi-square distance measure is used in the previous re-
sults to find the dissimilarity between two images. This ex-
periment is conducted to analyze the effect of distance mea-
sures over the performance of proposed descriptors. The Eu-
clidean (Eucld), Manhattan (L1), Cosine (Cosn), Canberra
(Canb) and Chi-square (Chisq) distance measures are con-
sidered for this experiment. The results with different dis-
tance measures in terms of the ARP (%) for 5 retrieved
images using LBpDAD, LBpDADfc7 and LBpDADfc6

descriptors are illustrated in Table 3. The Chi-square dis-
tance is generally used with many hand-crafted descriptors,
as it works well with histograms, whereas the feature vector
of the proposed descriptor is not in the form of histogram.
Though Canberra distance is better to find the distance be-
tween two vectors (not histogram), for fair comparison with
the state-of-the-art hand-crafted descriptors (i.e., histogram
based features), we have used Chi-square ‘Chisq’ distance
measure in rest of the results of this paper.

The t-test values for the results of Table 3 are shown in
Table 4. It can be seen that the Chi-square distance has the
maximum t-test value as compared to all other distances.
The performance of Canberra distance is also close to Chi-
square, as suggested by the smallest t-test value between
them. This experiment stamps the choice of Chi-square dis-
tance for the proposed biomedical image retrieval frame-
work.

4.5 Performance Analysis using Other CNN Models

In this experiment, we analyze the suitability of proposed
approach with other widely adapted Convolutional Neural
Network (CNN) models such as ‘Vgg16’ [48], ‘GoogleNet’
[54] and ‘ResNet50’ [21]. The pre-trained weights of these
models available in MATLAB are used. The ‘class score’
features of these models are considered in this experiment.
Similar to AlexNet, the original features of these models
are referred as Vgg16, GoogleNet and ResNet50. Similar
to LBpDAD, the Local Bit-plane Decoded CNN Descrip-
tors for ‘Vgg16’, ‘GoogleNet’ and ‘ResNet50’ models are
denoted by LBpDVD, LBpDGD and LBpDRD, respectively.
The retrieval results using ARP (%) vs. number of retrieved
images are displayed in Fig. 8 for proposed LBpDAD,
LBpDVD, LBpDGD and LBpDRD descriptors correspond-
ing to ‘AlexNet’, ‘Vgg16’, ‘GoogleNet’ and ‘ResNet50’
models, respectively. Note that the feature dimension is
1000 in all these descriptors. The results of local bit-plane
decoded CNN descriptors fused at ‘class score’ layer are
compared with the original CNN features obtained at ‘class
score’ layer in Fig. 8. All the features are passed through
the ReLU operator before use. It is observed through this
experiment that the proposed approach is well suited for
‘AlexNet’, ‘Vgg16’, ‘GoogleNet’ and ‘ResNet’ models over
OASIS-MRI and TCIA-CT databases. In case of HeLa
database, the performance of LBpDAD and LBpDGD

features is better than the AlexNet and GoogleNet fea-
tures. In general, the ‘ResNet50’ is more discriminative than
‘AlexNet’, ‘Vgg16’ and ‘GoogleNet’, because the last layer
features of ‘ResNet50’ are generated through deep hierar-
chical transformations.

5 Conclusion

A Local Bit-plane Decoding and Convolutional Neural Net-
work based (CNN) architecture is proposed to produce the
image descriptors in this paper. The introduced approach
fuses the features at a particular layer of CNN using max-
imum fusion strategy. The two feature vectors are computed
from the raw image and local bit-plane decoded map im-
age. All features are operated by ReLU operator before fu-
sion. The proposed LBpDAD descriptor corresponding to
the ‘AlexNet’ model is tested in image retrieval framework
over three biomedical databases of different modalities. It is
noted that the proposed descriptor outperforms the state-of-
the-art biomedical image descriptors. It is also investigated
that the performance at ‘FC6’ layer is generally better than
‘FC7’ and ‘class score’ layers. Moreover, the performance
of fused features is better than the individual features. An-
other observation points out that the ‘Product’ based fusion
strategy is more suitable in the proposed architecture. As
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Fig. 8: The results in terms of the ARP vs. number of retrieved images by applying the proposed architecture over AlexNet
[23], V GG16 [48],GoogleNet [54] andResNet50 [21] models. HereAlexNet, V GG16,GoogleNet andResNet50 rep-
resent the features obtained by applying ReLU over ‘softmax’ layer. The LBpDAD, LBpDV D, LBpDGD and LBpDRD
refer to the features obtained by applying ReLU over ‘softmax’ layer in the proposed architecture corresponding to the
AlexNet, V GG16, GoogleNet and ResNet50 models.

per experimental results using different distances, the ‘Can-
berra’ distance measure is more appropriate. A favorable
observation is made w.r.t. the proposed architecture with
different CNNs such as ‘AlexNet’, ‘Vgg16’, ‘GoogleNet’
and ‘ResNet50’. The experiments and analysis support the
proposed local bit-plane decoding based CNN descriptor in
terms of improved retrieval performance over biomedical
images.
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