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Abstract: Deep learning-based approaches have become very prominent in recent years due to its outstanding performance as
compared to the hand-extracted feature-based methods. Convolutional neural network (CNN) is a type of deep learning
architecture to deal with the image/video data. Residual network and squeeze and excitation network (SENet) are among recent
developments in CNN for image classification. However, the performance of SENet depends on the squeeze operation done by
global pooling, which sometimes may lead to poor performance. In this study, the authors propose a bilinear fusion mechanism
over different types of squeeze operation such as global pooling and max pooling. The excitation operation is performed using
the fused output of squeeze operation. They used to model the proposed fused SENet with the residual unit and name it as
FuSENet. Here the classification experiments are performed over benchmark hyperspectral image datasets. The experimental
results confirm the superiority of the proposed FuSENet method with respect to the state-of-the-art methods. The source code of
the complete system is made publicly available at https://github.com/swalpa/FuSENet.

1 Introduction
Deep learning-based techniques have become the recent trend of
research due to their great performance in practice. Convolutional
neural network (CNN) has emerged as a very popular architecture
to solve the image recognition problem [1]. The first revolutionary
work in this area was AlexNet CNN model [1] which won the
ImageNet large-scale object recognition challenge [2] in 2012.
Since then various variants of CNNs have been proposed for
different problems such as residual network (ResNet) [3], squeeze
and excitation network (SENet) [4] for image classification;
regions with CNN (R-CNN) [5], Fast-R-CNN [6], Faster-R-CNN
[7] for object detection; Mask-R-CNN [8] for image segmentation;
local bit-plane decoded Alexnet descriptor [9] for biomedical
image retrieval; dual CNN [10] for depth estimation; HybridSN
[11], genetic neural network [12] for hyperspectral image (HSI)
classification; RCCNet [13] for colon cancer classification etc. The
recent works over CNN are image classification [14], medical
image analysis [15], deep hashing [16], HSI classification [17, 18],
face anti-spoofing [19, 20], texture classification [21] etc.

The residual-based CNN, called ResNet [3], is a widely used
network due to the skip connection. The skip connection of ResNet
facilitates the better optimisation of the network using the gradient
descent method as it provides the superhighway for gradient flow
during back-propagation. Several variants of ResNet have been
investigated such as ResNeXt [22], DenseNet [23] etc. Moreover,
ResNet is also used for the experimentation over loss functions
[24] and optimisation methods [25]. The SENet [4] is one of the
very recent breakthroughs in a deep learning community. The
SENet tries to enhance the inter-channel relationship between
different channels of CNN activation. Basically, first, it squeezes
the volume using global pooling across spatial dimension, then an
excitation factor is generated using a small neural network over
squeezed data, and finally, the channels of input activation volume
are excited with this excitation factor. This type of network might
be better suited for a HSI classification problem as it contains
many channels at different wavelengths. Thus, to reduce the effect
of redundancy, the automatic prioritisation of intermediate
channels is needed, which is provided by the excitation scores of

such a network. However, a major problem with SENet is
associated with only one type of pooling for squeezing, which may
miss the relevant information. We tackle this problem by fusing the
excitation scores, computed using different squeeze networks.

The HSI contains the information in several spectral bands of
imaging [26]. The HSI has a wide range of real-world applications
such as earth observations and land cover classification such as
greenery detection, environment analysis, crop analysis, and many
more [27, 28]. The CNNs have also shown very promising
performance for HSI classification task [29–31]. Some researchers
have also explored the fusion in CNN such as the dual-path
network (DPNet) [32], convolutional feature fusion network [33],
deep feature fusion network [34], 3D–2D CNN fusion [11],
spatial–spectral squeeze-and-excitation residual network [35], and
spectral–spatial squeeze-and-excitation residual bag-of-features
learning [36] for HSI classification. These methods incorporate the
feature fusion at the feature level. However, we aim to incorporate
the fusion within a layered residual block.

In this study, we propose a fusion of SENet (FuSENet) for HSI
classification. The original SENet [4] contains only one squeeze
and excitation block. However, the proposed FuSENet uses fusion
of two bilinear SENets with different squeezing strategies. The
proposed method captures the channel relationship in multiple
ways to make the excitation factor more relevant. The main
contribution is as follows:

(1) A FuSENet model is proposed by fusing the excitation scores
from multiple squeezing channels.
(2) Two squeezing channels are considered to generate the
excitation scores through global pooling and max pooling,
respectively.
(3) The fusion of multiple squeeze and excitation scores are better
suited for HSI data as it has multiple channels.
(4) The proposed fused scores prioritises the important channels
towards better training and convergence.
(5) An extensive HSI classification experiment is performed to
show the improved performance using the proposed FuSENet
model.
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(6) The weight of the proposed FuSENet model is reduced because
less no. of blocks are needed as compared to the SENet.

This paper is organised as follows: Section 2 presents the
proposed FuSENet model; Section 3 carries the experiments and
results analysis; and Section 4 concludes the paper.

2 Proposed FuSENet model
We propose a FuSENet model in this study for HSI classification.
Motivated from the nature of HSI data (i.e. many no. of channels in
input data), we make use the SENet [4] in the proposed method.
Basically, the proposed FuSENet model fuses the excitation scores
computed through different squeeze channels. The proposed
FuSENet model is described in Fig. 1. Let us consider a 3D HSI,
Xorg ∈ ℛM × N × D, where M, N, and D are the width, height, and
spectral dimension, respectively. To remove the spectral
redundancy, first, we employ the principal component analysis
(PCA) and reduce the number of spectral bands from D to B. The
output of the PCA is denoted by Xr ∈ ℛM × N × B, where B is the
reduced spectral bands after PCA. Furthermore, Xr is divided into
several regions, defined as xi, j, k ∈ ℛS × S × B centred at pixel (i, j)
with S as the spatial dimension. The centre of each region
xi, j = [xi, j, 1, …xi, j, B] is labelled as Y = (y1, y2, …, yC), where C is
the number of classes. These regions along with the ground truth
class labels of its centre are used for training and validation in
classification framework.

We propose a FuSENet by considering the ResNet [3] as the
base model. The batch normalisation (BN) [37] is used followed by
a 3D convolutional layer within the residual blocks. The
conventional residual blocks shown in Fig. 1b and can be
formulated as

Xout
l + 2 = ℐ(Xin

l ) + ℱ(Xin
l ; θ, Ω)

ℱ(Xin
l ; θ, Ω) = ϕ(Xin

l + 1) ∗ W l + 2 + bl + 2

Xin
l + 1 = ϕ(Xin

l ) ∗ W l + 1 + bl + 1

(1)

where Xin
l ∈ ℛS × S × B and Xout

l + 2 ∈ ℛS′ × S′ × B′ represent the input and
output feature maps. The residual function is defined by ℱ( ⋅ ),
parameterised by θ and Ω to represent the convolutional parameter
of two subsequent layers and ∗ and ϕ represent the convolution
operation and activation function, respectively. Every residual
block is followed by the proposed fused squeeze-and-excitation

(FuSE) block (as depicted by residual FuSE block in Fig. 1c). The
output of the FuSE block is used to re-calibrate the input channels
of that block. Basically, the FuSE block uses global average
pooling (GAP) and GMP for squeezing operation as given by

SQavg
c = 1

S′ × S′ ∑i = 1

S′

∑
j = 1

S′

( f i, j, c)

SQmax
c = max

i, j = 1
S′, S′ ( f i, j, c)

(2)

where f ∈ ℛS′ × S′ × B′ is the input feature map to FuSE block, f i, j, c

is the feature at (i,j) position in the cth channel and SQavg
c  and SQmax

c

are the squeezed values for the cth channel using global average
and max pooling, respectively. Basically, the squeeze operation
extracts the channel-wise information. Moreover, the global
pooling will retail the information in global context, whereas the
max pooling will retain the information in local context. The
excitation networks are used to prioritise the features extracted by
the squeeze operation. The uses of multiple squeeze channels
ensures that the final excitation scores should not be biased
towards global or local information.

The excitation factors (EXavg and EXmax) corresponding to
SQavg and SQmax, respectively, are computed as

EXavg = σ(W2, avg, δ(W1, avg, SQavg)) (3)

and

EXmax = σ(W2, max, δ(W1, max, SQmax)) (4)

where σ and δ refer to the sigmoid and ReLU activation functions,
respectively [4], W1 ∈ ℛ(B/r) × B and W2 ∈ ℛ(B × B)/r are the weights
of first and second dense layers of the FuSE block, and r is a
constant factor by which at first the dimension of squeezed data is
decreased and then increased before the sigmoid layer. In the
proposed FuSE block, we fuse the excitation factors to compute the
final scaling factor (s) as

sc = F(EXavg
c , EXmax

c ) (5)

where EXavg
c  and EXmax

c  are the excitation factors for the cth
channel corresponding to the GAP and GMP, respectively, sc is the
scaling factor after fusion, and F ∈ {Sum, Prod, Max} is the fusion
strategy. The Sum, Prod, and Max are the summation, product, and

Fig. 1  Proposed FuSENet end-to-end learning model for HSI classification. The 3D blocks of dimension S × S × B are extracted and used for training and
testing purpose. The kernel settings are as follows: K1

1/4/5/6 = 15, K2
1/4/5/6 = 15, and K3

1/4/5/6 = 5, respectively, and all the layers use 32 numbers of kernels
(a) The spectral-spatial learning block, (b) Residual learning block, (c) The squeeze-and-excitation fusion block using global average and max pooling
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maximum fusion strategies. As shown in Fig. 1c, the final scaling
factor is used to scale the FuSE block input that can re-formulate
the residual block as

Xout
l + 2(i, j, c) = ℐ(Xin

l (i, j, c)) + sc × ℱc(Xin
l ; θ, Ω) (6)

where ℱc represents the cth channel of the residual output,
Xout

l + 2(i, j, c) is the final output from the FuSENet block. Since, it is
the channel-wise product of the scalar sc and the feature map
ℱc(Xin

l ; θ, Ω). Hence, the FuSENet block captures the importance
of different channels and improves the inter-channel relationship.
The feature recalibration using the proposed FuSE block
prioritises the important channels using a higher scaling factor and
improves the feature representation produced by the residual
network (ResNet) [3]. A dense layer and a softmax layer are used
on the flattened output of the final residual FuSENet block as
shown in Fig. 1.

3 Experiments and discussion
A series of experiments are conducted to test the superiority of the
proposed FuSENet model. The results are compared with state-of-
the-art models such as support vector machines (SVMs) [38], 2D-
CNN [39], 3D-CNN [40], M3D-CNN [41], two-CNN [42], SENet
[4], DPNet [32], convolutional feature fusion network
(ConvFeaFuNet) [33], and deep feature fusion network
(DFeaFuNet) [34], respectively. The model is trained using the
RMSProp optimiser with a learning rate of 0.001 for 1000 epochs
over each HSI dataset. The categorical cross-entropy loss is
minimised using back-propagation. BN and 50% of dropout are
used to deal with over-fitting.

3.1 Hyperspectral datasets

The IP, UP and SA HSI datasets [http://dase.grss-ieee.org/] are
used for experiments and analysis. The used IP dataset [43]
contains the images with 200 spectral bands and having a spatial
dimension of size 145 × 145 from 16 mutually exclusive vegetation
classes. The used UP dataset consists of 610 × 340 pixel spatially
with 103 spectral bands from nine urban land-cover classes. The

used SA dataset comprises images of 512 × 217 spatial dimension
and 200 spectral bands from 16 vegetation classes.

Once the proposed FuSENet is successfully trained under the
above settings and can check the performance of the model over
the test samples. To validate, we have adopted three relevant
measurements for calculating the classification performance.
Overall accuracy (OA) is determined by the sum of class-wise
correctly classified pixels divided by the total number of presence
test pixels; the class accuracy (CA) denotes the percentage of
accurately classified samples in each category

OA =
∑i = 1

n pii
N × 100% (7)

CA = pii

∑i = 1
n pi j

× 100% (8)

where the total number of classes and the total number of pixels in
the dataset are represented by n, and N, respectively. pii represents
the pixel, which are perfectly classified and pi j the pixels actually
belonging to the ith class of the HSI data and during classification
it was assigned into the jth class. Average accuracy (AA) denotes
the sum of the class-wise accuracy divided by the number of
classes present in the dataset and can be calculated as

AA =
∑i = 1

n CAi
n × 100% (9)

and Kappa coefficient (kappa) is another metric of statistical
measurement, which calculates mutual information between the
ground truth map and predicted classification map and also shows
a strong agreement, which can be defined as follows:

kappa =
N∑i = 1

n pii − ∑i = 1
n pi∑ j = 1

n pj

N2 − ∑i = 1
n pi∑ j = 1

n pj
(10)

where the diagonal elements of the corresponding confusion
matrix, the total sum of the ith row and total sum of the jth column
are represented by pii, pi, and pj, respectively.

To well explore in both the spectral and spatial context and to
perform the unbiased comparison, various small spectral–spatial
3D input patches are extracted for each HSI dataset, such as 30
spectral bands are extracted with a spatial window of sizes 15 × 15
and 13 × 13, for the IP dataset and similarly 15 spectral bands are
extracted with a spatial window of sizes 15 × 15 and 13 × 13, for
both UP and SA datasets, respectively.

To evaluate the effectiveness of the proposed FuSENet, the
whole extracted 3D input patches are randomly selected into three
sets viz., training, validating, and testing. During the training, 20%,
and 10% available labelled 3D patches are selected from each
class. In addition, unlabelled 5% available sample patches from
each class were supplied for the model validation and the
remaining samples for model testing. Moreover, to avoid the biases
among different classes with imbalance samples, the experiments
were repeated ten times and the evaluated performances are
reported in terms of mean ± std value. The detailed description of
the training, validation, and testing along with class-wise
classification accuracies, i.e. OAs, AAs, and kappa coefficients are
given in Tables 1–3, respectively.

In addition, Table 4 shows the comparison with the well-known
HSI classification methods under varying training samples, i.e. 10
and 20%, respectively. It is observed from the table that the
proposed FuSENet model reaches consistent classification
performance in both the scenarios as compared to SVM, 2D-CNN,
3D-CNN, M3D-CNN, two-CNN, DPNet, ConvFeaFuNet,
DFeaFuNet, SENet (GMP), and SENet (GMP), respectively. The
OAs achieved by SENet (GAP) model is higher than other
compared spectral- or spatial-based methods since the method uses
3D convolution within the residual learning block and is capable of
extracting both the spectral–spatial feature representation jointly,

Table 1 The class-wise varying training, validation, and test
samples and the performance measured in terms of OA,
Kappa, and AA metric over Indian Pines (IP)

IP
Class Name Training Validation Test Accuracy
1 alfalfa 6 2 38 100
2 corn-no till 214 71 1143 98.47
3 corn-min till 124 41 665 98.53
4 corn 35 11 191 98.56
5 grass-pasture 72 24 387 99.95
6 grass-trees 109 36 585 99.60
7 grass-pasture-mowed 4 1 23 98.75
8 hay-windrowed 71 23 384 99.40
9 oats 3 1 16 100
10 soybean-no till 145 48 779 98.54
11 soybean-min till 368 122 1965 98.42
12 soybean-clean 88 29 476 98.94
13 wheat 30 10 165 98.66
14 woods 189 63 1013 98.98
15 buildings-grass-trees-

drives
57 19 310 100

16 stone-steel-towers 13 4 76 98.36
OA 99.01 ± 0.1

Kappa 98.60 ± 0.1
AA 98.64 ± 0.1
total 1528 505 8216
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which provides the discriminative information to accurately
classify the target HSI data. The proposed FuSENet consistently
outperform OAs as compared to the SENet (GAP) by an average
improvement of +0.49, +1.12, and +0.12 for IP, UP, and SA,
respectively. The convergence of training losses shown in Figs. 2a–
c and the convergence of the accuracies shown in Figs. 2d–f for IP,
UP, and SA using the proposed FuSENet framework and its
different variations, i.e. SENet (GAP) and SENet (GMP),
respectively. It can be observed from the figures that the proposed
model smoothly converge as compared to its other variants in both
scenarios.

To explore the robustness of the proposed FuSENet, Table 4
shows the classification performance of FuSENet in terms of OA,
Kappa, and AA using varying training samples 10 and 20% over
IP, UP, and SA datasets, respectively.

The performance is reported in terms of the OA, AA and Kappa
coefficient. The best-achieved results are highlighted in bold. It is
observed from the experimental results that the proposed FuSENet
outperforms other methods over each dataset in terms of each
evaluation criterion. We also test the method simply using GAP, i.e.
SENet (GAP) and GMP, i.e. SENet (GMP), respectively, where we
have found that the performance of fusion is significantly improved

as compared to SENet methods due to the fact that fusion yields a
better weight calibration feature maps at the end. To validate the
impact of different fusion techniques a comparison with other
fusion strategies such as addition (Sum), multiplication (Multiply)
and maximum (Max) are presented in Table 5. It is observed that
the Max fusion is better suited for the proposed method and we
prefer to use the maximum (Max) fusion strategy between the
sigmoid output of GAP and GMP in the proposed FuSENet
method (shown in Fig. 1c).

The feature representation of any CNN is always dependent
upon the convolutional filter banks and the ability to produce the
discriminative feature maps can be controlled by the number of
kernels used in the filter banks. To show the impact of the number
of kernels in the proposed network, we vary the number of kernels
from 16 to 64 and the step size is taken with a power of 2 and
shown in Fig. 3. It can be observed from Fig. 3 that the model
achieved the highest classification performance with 64 kernels in
each convolutional filter bank for IP, UP, and SA, datasets,
respectively.

To well explore the impact of different spatial 3D input patches
in the proposed FuSENet framework. Table 6 compares the
performance of the proposed FuSENet framework in terms of OAs,

Table 2 The class-wise varying training, validation, and test samples, and the performance measured in term of OA, Kappa,
and AA metric over University of Pavia (UP)

UP
Class Name Training Validation Test Accuracy
1 asphalt 994 331 5306 99.89
2 meadows 2797 932 14920 99.93
3 gravel 314 104 1681 98.75
4 trees 459 153 2452 98.71
5 painted metal sheets 201 67 1077 98.69
6 bare soil 754 251 4024 99.76
7 bitumen 199 66 1065 99.94
8 self-blocking bricks 552 184 2946 98.31
9 shadows 142 47 758 100

OA 99.42 ± 0.2
Kappa 99.21 ± 0.3

AA 99.33 ± 0.2
total 6412 2135 34,229

 

Table 3 The class-wise varying training, validation, and test samples and the performance measured in terms of OA, Kappa,
and AA metric over Salinas Scene (SA)

SA
Class Name Training Validation Test Accuracy
1 Brocoli_green_weeds_1 301 100 1608 100
2 Brocoli_green_weeds_2 558 186 2982 100
3 Fallow 296 98 1582 99.63
4 Fallow_rough_plow 209 69 1116 99.21
5 Fallow_smooth 401 133 2144 100
6 Stubble 593 197 3169 100
7 Celery 536 178 2865 99.61
8 Grapes_untrained 1690 563 9018 99.97
9 Soil_vinyard_develop 930 310 4963 99.97
10 Corn_senesced_green_weeds 491 163 2624 99.95
11 Lettuce_romaine_4wk 160 53 855 100
12 Lettuce_romaine_5wk 289 96 1542 99.84
13 Lettuce_romaine_6wk 137 45 734 98.88
14 Lettuce_romaine_7wk 160 53 857 99.96
15 Vinyard_untrained 1090 363 5815 99.59
16 Vinyard_vertical_trellis 271 90 1446 98.59

OA 99.68 ± 0.2
Kappa 99.74 ± 0.1

AA 99.69 ± 0.1
total 8112 2697 43,320
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AAs, and kappa of the IN, UP, and SA datasets under different
spatial input patches of sizes 13 × 13 and 15 × 15, respectively. 
The results are reported in Table 6, the proposed FuSENet
framework shows sound classification performance for the IP

dataset when the spatial window of size was taken as 15 × 15 and it
was 13 × 13 for UP and SA datasets, in addition, 20% of available
labelled samples are supplied during training. The average OAs
improved by the FuSENet are +1.25, +0.35, and 0.29 between the

Table 4 The classification accuracies (%) in terms of OA, Kappa, and AA using the proposed FuSENet methods with varying
training data 10 and 20%, respectively
Training samples Methods IP dataset UP dataset SA dataset

OA Kappa AA OA Kappa AA OA Kappa AA
SVM 81.67 ± 0.65 78.76 ± 0.77 79.84 ± 3.37 90.58 ± 0.47 87.21 ± 0.70 92.99 ± 0.36 94.46 ± 0.12 93.13 ± 0.34 93.01 ± 0.60

2D-CNN 80.27 ± 1.2 78.26 ± 2.1 68.32 ± 4.1 96.63 ± 0.2 95.53 ± 1.0 94.84 ± 1.4 96.34 ± 0.3 95.93 ± 0.9 94.36 ± 0.5
3D-CNN 82.62 ± 0.1 79.25 ± 0.3 76.51 ± 0.1 96.34 ± 0.2 94.90 ± 1.2 97.03 ± 0.6 85.00 ± 0.1 83.20 ± 0.7 89.63 ± 0.2

10% M3D-CNN 81.39 ± 2.6 81.20 ± 2.0 75.22 ± 0.7 95.95 ± 0.6 93.40 ± 0.4 97.52 ± 1.0 94.20 ± 0.8 93.61 ± 0.3 96.66 ± 0.5
two-CNN 96.71 ± 0.1 96.10 ± 0.10 96.16 ± 0.12 97.71 ± 0.1 97.62 ± 0.1 97.45 ± 0.2 97.12 ± 0.30 96.98 ± 0.20 97.00 ± 0.20
DPNet 96.04 ± 0.2 96.97 ± 0.07 96.93 ± 0.07 97.67 ± 0.1 97.58 ± 0.1 97.27 ± 0.2 97.97± 0.1 97.95 ± 0.1 98.11 ± 0.1

ConvFeaFuNet 97.39 ± 0.4 97.16 ± 0.5 97.01 ± 0.5 97.72 ± 0.1 97.64 ± 0.2 97.20 ± 0.2 97.89 ± 0.1 97.83 ± 0.1 97.91 ± 0.1
DFeaFuNet 97.45 ± 0.2 97.79 ± 0.2 97.61 ± 0.2 97.38 ± 0.3 96.93 ± 0.4 97.32 ± 0.3 98.74 ± 0.2 98.91 ± 0.1 98.88 ± 0.1

SENet(GMP) 97.48 ± 0.3 97.84 ± 0.2 97.91 ± 0.3 97.56 ± 0.5 97.41 ± 0.4 97.47 ± 0.4 98.88 ± 0.1 98.93 ± 0.2 99.01 ± 0.1
SENet(GAP) 97.62 ± 0.3 97.91 ± 0.2 97.88 ± 0.3 97.53 ± 0.6 97.48 ± 0.5 97.52 ± 0.5 99.11 ± 0.2 98.89 ± 0.2 99.06 ± 0.2
FuSENet 1.11 ± 0.2 1.25 ± 0.2 1.32 ± 0.2 1.65 ± 0.3 1.69 ± 0.3 1.68 ± 0.4 1.23 ± 0.1 1.97 ± 0.2 1.16 ± 0.1

SVM 86.24 ± 0.38 84.27 ± 0.45 83.15 ± 1.10 95.20 ± 0.13 93.63 ± 0.17 93.60 ± 0.14 94.15 ± 0.10 93.48 ± 0.11 97.23 ± 0.11
2D-CNN 86.90 ± 1.3 85.01 ± 1.6 82.70 ± 1.0 96.02 ± 0.4 96.04 ± 0.3 95.10 ± 0.1 96.15 ± 0.6 95.71 ± 0.7 98.27 ± 0.2
3D-CNN 89.23 ± 0.2 87.70 ± 0.3 87.87 ± 0.1 97.30 ± 0.3 96.22 ± 0.1 97.02 ± 0.1 94.54 ± 0.5 93.81 ± 0.3 96.79 ± 0.6

20% M3D-CNN 93.67 ± 0.1 92.70 ± 0.3 93.60 ± 0.6 97.41 ± 0.2 96.05 ± 0.6 98.22 ± 0.1 94.92 ± 0.3 94.40 ± 0.1 97.28 ± 0.2
Two-CNN 98.73 ± 0.2 98.71 ± 0.2 98.73 ± 0.2 98.72 ± 0.25 98.40 ± 0.17 98.45 ± 0.20 98.13 ± 0.43 98.01 ± 0.20 98.10 ± 0.20

DPNet 98.84 ± 0.1 98.33 ± 0.1 98.42 ± 0.1 98.37 ± 0.1 98.32 ± 0.1 98.39 ± 0.2 98.27 ± 0.2 98.15 ± 0.1 98.21 ± 0.1
ConvFeaFuNet 98.79 ± 0.3 98.46 ± 0.4 98.71 ± 0.3 98.51 ± 0.2 98.54 ± 0.2 98.57 ± 0.2 98.44 ± 0.1 98.48 ± 0.0 98.45 ± 0.0

DFeaFuNet 98.75 ± 0.2 98.72 ± 0.2 98.49 ± 0.2 98.93 ± 0.3 98.91 ± 0.4 98.94 ± 0.3 98.98 ± 0.2 99.01 ± 0.1 98.96 ± 0.1
SENet(GMP) 98.53 ± 0.6 98.27 ± 0.8 97.91 ± 1.5 99.05 ± 0.2 98.81 ± 0.2 98.86 ± 0.2 99.07 ± 0.3 99.19 ± 0.2 99.13 ± 0.2
SENet(GAP) 98.76 ± 0.5 98.43 ± 0.7 98.20 ± 1.0 99.36 ± 0.1 99.20 ± 0.1 99.30 ± 0.1 99.50 ± 0.1 99.55 ± 0.1 99.40 ± 0.1
FuSENet 1.01 ± 0.1 1.60 ± 0.1 1.64 ± 0.1 1.42 ± 0.2 1.21 ± 0.3 1.33 ± 0.2 1.68 ± 0.2 1.74 ± 0.1 1.69 ± 0.1

 

Fig. 2  The convergence analysis
(a–c) The convergence of loss versus epochs, (d–f) The accuracy versus epochs using the SENet (GAP), SENet (GMP) and FuSENet models over IP, UP, and SA datasets,
respectively

 
Table 5 The performance of FuSENet using different fusion strategies such as addition (Sum), multiplication (Mul) and
maximum (Max) over each dataset
Training samples Methods IP dataset UP dataset Salinas Scene dataset

OA Kappa AA OA Kappa AA OA Kappa AA
Sum 94.74 ± 0.2 94.56 ± 0.2 95.65 ± 0.2 96.39 ± 0.2 97.94 ± 0.2 96.49 ± 0.3 98.07 ± 0.1 98.39 ± 0.1 98.11 ± 0.1

20% Multiply 95.31 ± 0.2 96.77 ± 0.3 95.41 ± 0.3 97.33 ± 0.2 97.45 ± 0.1 96.87 ± 0.2 98.12 ± 0.1 98.73 ± 0.2 98.25 ± 0.1
Max 1.01 ± 0.1 1.60 ± 0.1 1.64 ± 0.1 199.42 ± 0.2 1.21 ± 0.3 1.33 ± 0.2 1.68 ± 0.2 1.74 ± 0.1 1.69 ± 0.1
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two spatial windows of sizes 13 × 13 and 15 × 15 for IP, UP, and
SA datasets, respectively.

The visualisation of the classification maps using different
methods along with false colour images, and their respective
ground truth maps over the three datasets, i.e. IP, UP, and SA are
shown in Figs. 4–6, respectively. In addition, the class legends of
IP, UP, and SA datasets are also shown in Figs. 7a–c. A quality
classification map can be visualised using the proposed FuSENet
method and which make sense from the quantitative comparison
shown in Tables 1–3, respectively. The classification map
generated through 3D-CNN is better as compared to SVM and 2D-
CNN but still, there exist some artefacts within the class
boundaries. This is mainly because 2D-CNN uses only spatial
information to predict the target pixels. During the training
proposed FuSENet is capable of learning more discriminative and
powerful spectral–spatial feature representations consecutively by
simply ‘excite’ the feature that helps in classification layer while
suppressing the ineffective feature based on the patterns produced
by the FuSENet over the feature maps. So, the proposed FuSENet
produces smooth and more accurate classification maps over all the
HSI datasets as compared to the other methods.

To further analyse the classification performance shown in
Table 4 of the proposed FuSENet model, we have conducted the
one way statistical analysis of variance (ANOVA) test [44]. This
ANOVA experiment is performed to explore the reason behind the
improved classification performance achieved by FuSENet as
compared to SVM, 3D-CNN, two-CNN, DFeaFuNet, and SENet
(GAP), respectively. The null hypothesis H0 can determine
difference among group means is not significant for the test. In an
experiment, if the p-value is lesser than the pre-selected significant

Fig. 3  The influence of OAs(%) with varying numbers of kernels for IP, UP, and SA, respectively
 

Table 6 The influence of varying training samples (i.e. 20, 10, 5%) with respect to the spatial window of size (S × S) (i.e. 15 × 15
and 13 × 13) over the performance of the proposed FuSENet on IP, UP, and SA datasets
Training, % Window size IP dataset UP dataset SA dataset

OA AA Kappa OA AA Kappa OA AA Kappa
20 1.01 ± 0.1 1.60 ± 0.1 1.64 ± 0.1 99.42± 0.2 99.21 ± 0.3 99.33 ± 0.2 1.68 ± 0.2 1.74 ± 0.1 1.69 ± 0.1
10 15 × 15 98.11 ± 0.2 98.25 ± 0.2 98.32 ± 0.2 97.65 ± 0.3 97.69 ± 0.3 97.68 ± 0.4 99.23 ± 0.1 98.97 ± 0.2 99.16 ± 0.1
5 93.48 ± 2.2 93.11 ± 2.1 91.27 ± 2.3 1.58 ± 0.1 99.36 ± 0.1 1.44 ± 0.1 99.14 ± 0.2 99.56 ± 0.1 99.04 ± 0.2
20 1.76 ± 0.4 1.45 ± 0.4 1.28 ± 0.4 99.77 ± 0.2 99.67 ± 0.2 1.69 ± 0.2 1.97 ± 0.0 1.97 ± 0.0 1.96 ± 0.0
10 13 × 13 96.14 ± 1.3 96.17 ± 1.2 95.45 ± 1.6 99.67 ± 0.2 99.62 ± 0.2 99.56 ± 0.2 99.94 ± 0.0 99.92 ± 0.0 99.93 ± 0.0
5 93.48 ± 2.2 93.11 ± 2.1 91.27 ± 2.3 99.58 ± 0.1 99.36 ± 0.1 99.44 ± 0.1 99.14 ± 0.2 99.56 ± 0.1 99.04 ± 0.2

 

Fig. 4  Classification map for IP
(a) False colour image, (b) Ground truth, (c–f) Predicted classification maps for 2D-
CNN, 3D-CNN, SENet, and FuSENet, respectively

 

Fig. 5  Classification map for Pavia University
(a) False colour image, (b) Ground truth, (c-f) Predicted classification maps for 2D-
CNN, 3D-CNN, SENet, and FuSENet, respectively
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level, which implies that at least one group mean is significantly
different from the others and we can simply reject hypothesis H0.
The significance level is kept for the one way ANOVA test as
α = 0.05 and the test results for three different datasets are shown

in Table 7. In addition, the box plot corresponding to
aforementioned ANOVA test for three different datasets is also
shown in Figs. 8a and b, which clearly indicates that the mean
performance of FuSENet is significantly better than the methods

Fig. 6  Classification map for SA
(a) False colour image, (b) Ground truth, (c–f) Predicted classification maps for 2D-CNN, 3D-CNN, SENet, and FuSENet, respectively

 

Fig. 7  The class legend for
(a) IP, (b) UP, (c) SA datasets, respectively, where black legend shows background class

 
Table 7 One way statistical ANOVA test where the level of significance is selected as α = 0.05 for IP, UP, and SA, respectively

IP dataset UP dataset SA dataset
Sum_Sq df F Prob(p)>F Sum_Sq df F Prob (p) > F Sum_Sq df F Prob(p) > F

groups 1570.418 5.0 5130.690 1.61 × 10−35 212.725 5.0 514.927 1.37 × 10−23 756.928 5.0 6490.738 9.60 × 10−37

residual 1.469 24.0 1.982 24.0 0.559 24.0
total 1571.88 29.0 214.708 29.0 757.48 29
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such as SVM, 3D-CNN, two-CNN, DFeaFuNet, and SENet(GAP),
respectively. 

To train a deep network, it always requires expensive hardware
such as graphical processing units (GPUs) and in the existing
models, millions and millions of parameters need to be re-weighted
during training. Hence, the number of parameters play an important
role while training. Fig. 9 shows the comparative distribution of
learnable weigh parameters with the state-of-the-art methods, i.e.
3D-CNN [40], M3D-CNN [41], two-CNN [42], ResNet [3], SENet
[4], FuSENet, respectively. The proposed model contains less
number of weight parameters as compared to others as observed
from Fig. 9 and it is possible to train in a general configured
machine with a minimum of 2 GB of GPU. To increase feature
generalisation ability, it is important to extract the joint spectral–
spatial features simultaneously. Since the proposed FuSENet uses
the 3D residual learning block to extract joint spectral–spatial
features and which ended with a high-dimensional abstract

representation of the feature and difficult to visualise within the
high range. To visualise the discriminative power of the proposed
feature representation, T-distributed stochastic neighbor embedding
(t-SNE) [45] helps to transform the dimensionality of the learned
features into 2D space and became much easier to plot. Figs. 10a–c
show the t-SNE visualisation of learned features in 2D for three
HSI datasets, i.e. IP, UP, and SA, respectively. It can be clearly
visualised from the figures that due to the use of large training
epochs the learned spectral–spatial features from the same class
clustered together and features from different classes are becoming
much easier to separate.

4 Conclusion
In this study, a CNN model named FuSENet is proposed in the
SENet framework. To design the FuSENet, we use two squeeze
and excitation connection bi-linearly based on GAP and GMP,

Fig. 8  The significance test
(a–c) The box plot (methods versus accuracy) of one way statistical ANOVA test for ‘M1’: SVM, ‘M2’: 3D-CNN, ‘M3’: Two-CNN, ‘M4’: DFeaFuNet, ‘M5’: SENet(GAP) and
proposed FuSENet models over IP, UP and SA datasets, respectively

 

Fig. 9  The number of learnable model parameters for the methods 3D-CNN, M3D-CNN, two-CNN, ResNet, SENet, and FuSENet, respectively
 

Fig. 10  Two-dimension spectral–spatial feature visualisation of the proposed FuSENet via t-SNE where samples are represented through points and classes
are shown in different colours for
(a) IP, (b) UP, (c) SA datasets, respectively
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respectively. To better utilise both the characteristics are then fused
into the sigmoid output of block SENet(GAP) and SENet(GMP),
respectively, and computed the final scaling factor for each channel
of input at any given layer. To enhance feature learning efficiency
and avoid gradient vanishing problem, the proposed FuSENet
method is combined with a 3D residual learning network and tested
for a hyperspectral image classification problem over three
benchmark datasets. The results are compared with state-of-the-art
methods. The proposed FuSENet method has shown extremely
good performance with a limited amount of training data. It is also
discovered that the Max fusion is better suited to the proposed
FuSENet method.
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