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a b s t r a c t

This paper proposes a simple and effective texture recognition method that uses a new class of jet
texton learning. In this approach, first a Jet space representation of the image is derived from a set
of derivative of Gaussian (DtGs) filter responses upto 2nd order (R6), so called local jet vector (Ljv),
which satisfies the scale space properties, where the combinations of local jets preserve the intrinsic
local structure of the image in a hierarchical way and are invariant to image translation, rotation
and scaling. Next, the jet textons dictionary is learned using K-means clustering algorithm from DtGs
responses, followed by a contrast Weber law normalization pre-processing step. Finally, the feature
distribution of jet texton is considered as a model which is utilized to classify texture using a non-
parametric nearest regularized subspace (Nrs) classifier. Extensive experiments on three large and
well-known benchmark database for texture classification like KTH-TIPS, Brodatz and CUReT show
that the proposed method achieves state-of-the-art performance, especially when the number of
available training samples is limited. The source code of complete system is made publicly available
at https://github.com/swalpa/JetTexton.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Research background and motivation

Texture is a recurrent basic primitive of visual pattern that
reflects the distinctive ambiance between natural scenes. The
texture region in an image can be characterized by the spatial
distribution of image intensity or color if it follows a varying
or nonuniform pattern. The non-uniformity is analogous to the
variations in the captured scene due to the inherent pattern
present in the scene. It can be visually perceived in images rang-
ing from microscopic to multi-spectral remotely sensed images.
It is very important to tackle the texture recognition problem
as it is used in numerous applications that include industrial in-
spection, texture synthesis for animation and computer graphics,
document image recognition, satellite and aerial imagery applica-
tions, and biomedical image analysis [1,2]. Thus, the classification
of texture plays an important role in pattern recognition and

∗ Corresponding author.
E-mail addresses: swalpa@cse.jgec.ac.in (S.K. Roy), dipak@ieee.org

(D.K. Ghosh), srdubey@iiits.in (S.R. Dubey),
dr.siddhartha.bhattacharyya@gmail.com (S. Bhattacharyya), bbc@isical.ac.in
(B.B. Chaudhuri).

computer vision based solutions for many real-life problems of
society and industry [3,4]. However, the capacity to distinguish
between the textures characterizing the different local struc-
tures separated spatially is the main challenge of any texture
recognition approach. Several texture classification methods have
been introduced in the literature [5,6]. Most of the previously
introduced descriptors are not having the required amount of
discriminating power to work well for real-world textures. At the
same time, most of these descriptors are also not computationally
efficient for real-time applications due to the high dimensionality
problem. The method of texture classification should be invariant
to environmental changes, such as changes in viewpoint, rotation,
scale, geometry of the underlying surface etc.

1.2. Related work

The Local Binary Pattern (Lbp) [7], a simple and efficient sta-
tistical descriptor is used as a standard method for robust texture
classification in many applications [8]. Some variants of Lbp such
as Lbp variance [9], completed Lbp [10], dominant Lbp [11], binary
rotation invariant and noise tolerant (Brint) [12], scale selective
local binary patterns (Sslbp) [13], multiresolution local binary
pattern (Mrlbp) [8], Complete dual-cross pattern (Cdcp) [14],
Local directional ZigZag pattern (Ldzp) [15], Local morphological
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pattern (Lmp) [16], Affine Differential Local Mean ZigZag Pattern
(Adlmzp) [17], Local ZigZag max histograms of pooling pattern
(Lzmhpp) [18] have been introduced to boost the robustness and
accuracy of Lbp descriptor.

In addition to Lbp based methods, the texton learning based
methods have also became popular for texture classification.
These methods can be classified in terms of the following aspects:
hard level assignment and histogram based representation; dense
image sampling; a rear separating of the feature space; image
filter response and patch feature. Leung and Malik [19] have
proposed a method where the training images are enrolled and
a vector of 48 dimensional response is generated for each class
using a filtered operation. Then, the feature vectors are clustered
using K-Means algorithm. The texture model is built from texton
histogram for classification. Cula and Danna [20] have introduced
2-D texton learning by improving work of doing Leung and
Malik [19] single texture and un-calibrated image classification.
Recently, a texton dictionary is learnt in VZ-MR8 by Varma and
Zisserman [21]. They considered the training dataset having the
texture images with scale and rotation variations. Finally, the
learned texton dictionary is used for the classification of the new
unseen texture images. In 2009, Varma and Zisserman introduced
another method called as VZ-Patch [22] to encode the feature
distribution. The VZ-Patch is also based on the texton which is
directly computed from raw image intensity values. The down-
side of these methods is the increased time complexity of feature
extraction as well as feature matching. Varma and Garg [23]
learned textons using the locally extracted fractal dimension and
length signature from the MR8 filter responses to deal with large
variations of scale and viewpoint.

Deep convolution neural networks (Cnn) are hierarchical rep-
resentation of feature extraction block which directly generates
feature from raw data and is predominately used to perform
several challenging computer vision tasks to achieve state-of-the-
art performance [24–26]. Cimpoi et al. [27] introduced FV-CNN
where extraction of Cnn features at multiple scales and order-
less Fisher Vector pooling operation has been used to describe
the texture. The scale and rotation invariant wavelet convolu-
tion scattering network (ScatNet) has been proposed by Mallat
et al. [28,29] where wavelets are used convolution filters and
learning is not needed. Chan et al. [30] proposed the PcaNet
which includes multistage principle component analysis (Pca)
in cascading form, binary hashing and histogram pooling. Liu
et al. proposed Genetic Algorithm based GANet [31] for global
texture representation which encodes Fisher vector pooling of a
Cnn feature maps. However, Cnns require the powerful hardware,
both for training and test because of complex architecture and
the lack of geometric invariance of global Cnn activation limits
robustness of recognition.

1.3. Our contributions

Most of the texton learning oriented approaches deal with a
large number of filter responses to achieve geometric invariance.
However, it increases the computational cost due to many con-
volution operations. A novel jet texton learning based method is
proposed in this work, which deals with only six filter response
for efficient, yet robust texture classification. The contributions of
this work are as follows: first the representation of an image in
Jet space is obtained from the responses of derivative of Gaussian
(DtGs) filters upto 2nd order in R6 space where DtGs responses
are preserved as an intrinsic local structure of the image in a hier-
archical way, using the characteristics of Hermite polynomials and
together with invariant to image scaling, rotation, and reflection.
Next, the Jet textons are learned from DtGs responses followed
by a contrast Weber law normalization based pre-processing

step, using the K-means clustering algorithm. The feature distri-
bution of Jet texton is considered as a texture model, and the
texture is classified using a non-parametric nearest regularized
subspace (Nrs) classifier [32].

The remaining part of the paper is organized as follows. Sec-
tion 2 explains the theoretical background of local image decom-
positions, Jet and Jet space. Section 3 describes the details of
the proposed Jet texton learning based method. In Section 4, the
texture classification performance is analyzed and compared with
the different variants of Lbps and also state-of-the-art bag-of-
words methods. Finally, Section 5 draws the concluding remarks.

2. Intrinsic image structure, jet and jet-space

Analysis of image is a crucial job in the image processing
area. Lindeberg [33] introduced a general framework of Scale
Space representation to address the multiple resolution image
structures. The ‘‘local deep structure’’ idea is connected with the
concept of derivative defined by

f ′(0) = lim
∆→0

f (0+∆)− f (0)
∆

.

So, it is not suitable in discrete domain, like images, that pres-
ence physical measurement. To measure the image derivative,
the scale space analysis introduces the following two-step solu-
tion [33]:

First, the image inner scale changing is measured by con-
volving (symbolize as ∗) Gaussian kernels with image. The 1D
Gaussian kernel at scale σ ∈ R+ is represented by

Gσ (x) =
1

σ
√
2π

e
−x2

2σ2

The 2D convolution of an image patch with Gaussian function
can be derived by computing the convolution of 1D Gaussian
function with image patch sequentially in the horizontal and ver-
tical directions by utilizing the 2D Gaussian function separability
property (Gσ (x, y) = Gσ (x)Gσ (y)) [34]. The image scaling, i.e,
Iσ = Gσ∗I is efficiently computed using magnificent characteristic
of the Gaussian function in space and frequency localization [35]
even if the input image (I) is the responses of physical measure-
ment and a directly sampled function. Secondly, In scale space
approach, the image derivative of up-scaled/down-scaled image
can be calculated by convolving the DtGs (I′σ = G′σ ∗ I) with the
original image in alternative way, as proposed by Young [36]. He
observed that in our receptive fields, the derivatives of Gaussian
perceive the image structure more accurately compared to other
functions like Gabor transform does. The 1-D DtGs with σ > 0 is
represented as Gσ (x) = G0

σ (x) =
1

σ
√
2π

e
−x2

2σ2 and

Gm
σ (x) =

dm

dxm
Gσ (x) = (

−1

σ
√
2
)mHm(

x

σ
√
2
)Gσ (x), m ∈ Z+ (1)

where m is a positive integer. G0
σ (x), and Hm(x) represent ba-

sic of Gaussian kernel and Hermite polynomial (Fig. 1(a)) with
mth order [37] respectively. The normalization of DtGs can be
performed using the condition

∫
| Gk

σ (x) |dx = 1. Here, G1
σ (x)

and G0
σ (x) represent ℓ1-normalized differentiating and blurring

filters, respectively. According to Hermite polynomials, for odd
order the neighborhood functions are anti-symmetrical (Gm

σ (−x) =
−Gm

σ (x)), and for even order are symmetrical (Gm
σ (−x) = Gm

σ (x)).
We consider the Fourier domain to compute the consequences
of neighborhood operators (that is, the Gm

σ (x)) throughout the
image. In Fourier domain, the nth order operator convolution rep-
resents as multiplication of nth times with envelope of Gaussian
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Fig. 1. (a) Hermite polynomials. (b) Upto 2nd order 2-D derivatives of the Gaussian (DtGs).

frequency which extends the implementation efficiency. In 2-D
(Fig. 1(b)), the DtGs at σ scale are expressed by

G(m,n)
σ (x, y) = Gm

σ (x)G
n
σ (y), m, n ∈ Z+

Gσ (x, y) = G(0,0)
σ (x, y)

(2)

hence, the scale-space technique permits computing derivative of
image at any scale with any order. The convolution formalism can
be used to compute the entire image derivative whereas for a
single location the mechanism of inner product (⟨.|.⟩) is widely
accepted. The image derivatives w.r.t. the origin at scale σ is
defined by

J(m,n) = (−1)(m+n)⟨G(m,n)
σ |I⟩

= (−1)(m+n)
∫
x,y∈R

G(m,n)
σ (x, y)I(x, y)dxdy.

(3)

However, measurement of the image derivative Jm,n (Fig. 2) de-
pends with inner scale σ variation. Therefore, the responses of
scale normalized DtGs (J s(m,n)) are computed by multiplying σ n+m

with J(m,n), and expressed as,

J s(m,n) = σ n+mJ(m,n). (4)

To avoid incorrect presumption, we should be noted that DtGs
are not orthonormal kernel (e.g., ⟨G(2,0)

σ |G(0,2)
σ ⟩ = 1/(16πσ 6)). The

vector of DtG responses {G(m,n)
σ |0 ≤ m + n ≤ k} up to kth order

structure, Jk(m,n) = ⟨G
m,n
σ |I⟩ is denoted to a local L-jet, whereas

Jk(m,n) ∈ RL(L = (k+2)!
2∗k! ) is referred as an jet space element [38].

In this work, we are considering the measurements up to 2nd
order structure which require kernel of six DtGs represented as,
{G⃗ = (G(0,0)

σ ,G(1,0)
σ ,G(0,1)

σ ,G(2,0)
σ ,G(1,1)

σ ,G(0,2)
σ )}, and referred as the

DtG family (Fig. 1(b)). The responses of DtGs calculated by Eq. (4)
are concerned as {J⃗ = (J s(0,0), J

s
(1,0), J

s
(0,1), J

s
(2,0), J

s
(1,1), J

s
(0,2))} is known

a 6-jet. Fig. 3 presents the responses for a sample image patch of
Fig. 2 with higher orders local structure (up to 2nd order).

3. Proposed method

This work proposes a framework (shown in Fig. 4), which con-
sists of two phases: jet texton learning and matching of feature
distribution for texture classification. The inside information of
the proposed framework are describe as follows:

3.1. Jet texton learning

There is no preferable scale which should be justified a real-
world natural texture. The representation abstract feature of the
whole image at different scales can be detected by searching.
Therefore, the desired image representation can be represented
by considering scale-space relations in order to facilitate the
consideration of different class of resolutions. In this work, the
morphology of the image object, at a particular scale is explored
with the help of spatial derivatives of texture image with different
Gaussian structures (anisotropic and isotropic). Florack et al. [38]
formed a spatial derivatives using multi-scale L-jet image rep-
resentation, as well as derivatives with respect to the scale (σ )
based on the principle visual cortex system. A set of responds for
derivative of Gaussian (DtGs) filters upto 2nd order (R6) which
stacks to form a vector in jet space representation of an image
called local jet vector (Ljv), satisfying the statistical in variance
characteristics of scale space [39,40]. In other words, the jet can
also be understood as isolating an image patch with a Gaussian
window and then probing it with Hermite function which is not
unlike a windowed Fourier transform. To learn the Jet textons, at
first the given texture image is transformed into local L-jet (L =
6) according to the Eq. (3), where the elements of 6-jet demon-
strate the DtGs response upto 2nd order (shown in Fig. 4(a)). The
scale normalized derivative responses of 6-jet for a given image
I , {J⃗ = (J s(0,0), J

s
(1,0), J

s
(0,1), J

s
(2,0), J

s
(1,1), J

s
(0,2))} are represented as a

vector {J⃗ = (J1, J2, . . . , JL−1, JL)}which we specify as the local jet
vector (Ljv) (shown in Fig. 4(b)). The filters in the filter bank are
translated to make it the zero-mean and motivated by Weber’s
law [22] a contrast normalization pre-processing step is used in
this work to normalize the DtG responses. Let ∥J (i,j)∥ be the ℓ2
norm of the DtG responses at pixel (i, j). The normalized values
of the DtGs responses are computed as follows,

J(i,j) ← J(i,j) ×
log(1+ L(i,j)

0.03 )
L(i,j)

, (5)

where L(i,j) = ∥J(i,j)∥2 is the magnitude of the DtG output at
coordinate (i, j). To form jet texton dictionary of each class, the
normalized DtG responses of randomly selected training image
set are combined and clustered using K -means clustering algo-
rithm (shown in Fig. 4(c)). Let L be the number of randomly
selected training image for the first class which is represented
as X1 = [x11, x12, . . . , x1L] ∈ RM×N×L, where M × N denotes
the size of a texture image. So, the total number of normalized
DtG responses of L selected images will be L × L and can be
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Fig. 2. Diagrammatically, top-left indicates the image structure measurement using up to 2nd order DtG filters bank and top-right shows the resulting local jet
vector.

Fig. 3. (a)–(e). Examples of responses for image patch shown Fig. 2 for upto 2nd order local structure.

Fig. 4. Proposed texture classification framework: (a) randomly selected training images and DtGs structure upto 2nd order; (b) the scale normalized derivative
responses, 6-jet known as local jet vector (Ljv) for training images (a); (c) K -means clustering; (d) jet textons dictionary for training images of all class; (e)
distribution of learned models; (f)–(g) test image and its jet representation; (h) distribution of test model; (i) matching using Nrs classifier.
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represented as JX1 = [Jx11 , Jx12 , . . . , Jx1l , . . . , Jx1(L×L) ] ∈ RM×N×L×L,
where Jx1l represents lth element of JX1 . The dictionary of K jet
texton for first class, represented by D1 = [d11, d12, . . . , d1K ] ∈
RM×N×K , is to be learned from the training set X1, where d1j,
j ∈ 1, . . . , K is a jet texton. The conventional clustering algorithm,
K -means is applied to determine the K number of textons by
finding the solution of following optimization equation [21].

argmin
Ω1

K∑
j=1

∑
Jx1l∈Ω1j

∥ Jx1l − d1j ∥22 (6)

In K -means clustering, the dataset X1 is partitioned into K
different groups Ω1 = {Ω11, Ω12, . . . , Ω1j, . . . , Ω1K } so as to
minimize the within-cluster sum of squares (Wcss), where d1j
defines the cluster mean of group Ω1j. The dictionary D1 is more
compact compared to X1 (i.e K ≪ L). However, it is expected
that the learned texton in dictionary D1 could represent all the
samples in X1. In this way the dictionary D = [D1,D2, . . . ,DC ] is
formed, which contains a total of C × K textons for all C classes
(shown in Fig. 4(d)). Finally, the models of training images are
formed by extracting the histogram of learned jet textons (shown
in Fig. 4(e)) and these models are utilized to recognize the class
of test image during the classification phase.

3.2. Feature distribution matching

In pattern classification problems, different types of classifiers
such as nearest neighbor classifier (Nnc) [14], support vector ma-
chine (Svm) [11], multiple fuzzy-classifier [41], ensemble extreme
learning machine (eElm) [42], and nearest regularized subspace
(Nrs) classifier [32] have been used to recognize the test samples.
In this work, the class of test image is recognized by matching the
model histogram of test image (build up procedure is shown in
Fig. 4(f)–(h)) with the learned models of training images (shown
in Fig. 4(i)) using Nrs classifier [32]. In Nrs classifier, the class of
the test sample y ∈ Rd is referred to one of the C classes. Let
xi be the ith training sample and a vector X = {xi}ni=1 ∈ Rd is
formed by stacking all training samples with labels of categories
ωc ∈ {1, 2, . . . ,C}, where n and C represent the total number
of training examples and the number of categories, respectively.
Let nc be the number training examples for cth category, where∑C

c=1 nc = n. If the total number of training samples of cth
category is Xc , then the category of test example y, ȳc is approxi-
mated using a linear combination of class-wise available training
samples as

ȳc = Xcαc (7)

where Xc is of size d × nc and αc is the weighted coefficients
of nc × 1 size vector. The classification for a test feature y is
done by assigning appropriate class label for which the residual
is minimized [32], i.e.,

class(y) = arg min
c=1,...,C

(rc) (8)

where rc = ∥ȳc−y∥2 represents residual between ȳc and y which
is to be categorized. In Nrs [32], αc represents the class specific
weight vector which is determine mathematically as follows

αc = arg min
α∗
∥y− Xcα

∗
∥2 + τ∥Γc,yα

∗
∥2 (9)

where Γc,y is the biasing of Tikhonov regularization matrix for
cth category and test example y, τ represents regularization
parameter used globally (best-approximated result is achieved
when τ is set to be 5 × 1e−2) which balances the minimization
of regularization terms with the residual, and α∗ is the different

value of αc . Mathematically, a diagonal depiction of Γc,y [32] is in
the following form

Γc,y =

⎡⎢⎣ ∥y − xc,1∥2 0
. . .

0 ∥y − xc,nc∥2

⎤⎥⎦
where the individual elements i.e, xc,1, xc,2, . . . , xc,nc are columns
of the matrix Xc for the cth category. As stated by the Eq. (9), the
class specific weight vector αc is calculated as follows [32]

αc = (XT
cXc + τ 2Γ T

c,yΓc,y)−1XT
c y. (10)

4. Results and discussions

4.1. Texture databases

The performance of the introduced Jet Texton Learning ap-
proach is evaluated on three standard sets of texture databases:
KTH-TIPS [43], Brodatz album [44], and CUReT [45] texture
databases, respectively. Due to the insufficient intra-class varia-
tion and huge number of texture categories with limited num-
ber of examples per category make the experiments running
on whole database challenging. The descriptions of mentioned
databases are as follow:

The KTH-TIPS database [43] is enlarged from CUReT by imag-
ing new samples of 10 textures as shown in Fig. 5. It contains
texture images with three different geometric poses, four il-
luminations, and nine different variations of scales with size
200 × 200.

Brodatz [44] album consist of 32 homogeneous texture classes
where 25 sub-images of size 128 × 128 is obtained by non-
overlapping partitioning of each image, and each sub-image is
sampled down to 64 × 64 pixels shown in 6.

The 92 texture images per class with total 61 classes has been
included in CUReT database [45]. This database is organized to
attain large intra-class variation where images are collected in
varying lighting and view-point conditions with uniform scale.
The 61 texture classes each containing 92 images are cropped
into 200 × 200 spatial neighborhood and transformed to gray
scale [21] as shown in Fig. 7. The KTH-TIPS, Brodatz, and CUReT,
database are outlined in Table 1.

4.2. Results of experiment

In order to judge the texture classification outcome and ro-
bustness of the proposed Jet Texton Learning approach, the ex-
periments are carried out on three well-known texture databases
(KTH-TIPS, Brodatz, and CUReT) which consist of images with
different pose, scale, rotation and illumination conditions as men-
tioned in Table 1. The samples are captured in uncontrolled
environments. In this work, where L the number of samples for
each class are randomly selected as training samples to learn the
jet texton dictionary and subsequently train the Nrs classifier.
The remaining N− L samples are used as test samples for perfor-
mance analysis of the proposed model, where N represents total
number of samples per class. In KTH-TIPS, to learn the jet texton
dictionary, the DtGs responses upto 2nd order of L= 40 randomly
selected images from each texture category are arranged and
clustered using K -means algorithms. So, K = 12 jet textons are
learned from each of the C = 10 texture categories, resulting
in a jet texton dictionary of 12 × 10 = 120 (K × C) textons.
Similarly, jet texton dictionaries of 32 × 15 = 480 textons, and
61 × 19 = 1159 textons are learned for brodatz and CUReT
databases, respectively. Here, we have chosen the same value of
K for the different texture classes by putting equal importance to
all different classes. The performance of proposed model depends
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Fig. 5. KTH-TIPS database from where ten texture images from each class has been taken haphazardly.

Fig. 6. In experiment thirty two texture images taken from each class randomly of Brodatz textures.

Table 1
Summary sheet of experimental texture database.
Texture database Image rotation Illumination variation Scale variation Texture classes Sample size (pixels) Samples per class Total samples

KTH-TIPS � � � 10 200 × 200 81 810
Brodatz � � 32 64 × 64 64 2048
CUReT � � 61 200 × 200 92 5612

on the aforementioned parameters (K , number of cluster centers
and L, number of training examples per category). Therefore these
parameters are selected through evaluating the results of the
Jet Texton Learning approach by varying the value of L and K .
The classification results with different L and K are shown in
Fig. 8. It is observed that the best performance of the proposed
method on KTH-TIPS, Brodatz, and CUReT databases are achieved
as 99.00% 98.63% and 98.75% for (L, K ) = (40, 12), (L, K ) = (32,
15), and (L, K ) = (46, 19), respectively. In the literature, usually
Lbp variants are used for texture classification task. We compared
the results of the Jet Texton Learning approach with some pow-
erful variants of Lbp, which includes Clbp [10], Lbpv [9], Ltp [46],

Dlbp [11], Lbpsri_su2R,N [47], PriColbp [48], Brint [12], CoaLbp [49]
and LWP [3]. The comparative results on KTH-TIPS, Brodatz, and
CUReT are shown in Table 2.

The observations noted from Table 2 are as follows: The scale-
invariant Lbpsri_su2R,N descriptor performs better than Lbpriu2R,N . How-
ever, the multi-resolution Lbpriu2R,N descriptor, and Clbp_Sriu2R,N /Mriu2

R,N /

C descriptor is better than the given performance of Lbpsri_su2R,N
descriptor; and much worse than the proposed descriptor. As
a result the unvarying extraction and accurate scaling for each
pixel is crucial. However, Lbpsri_su2R(i,j),8 contributes valuable perfor-
mance in controlled environment [47], but losses status over
complex databases. Cdcp [14] achieves improved performance
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Fig. 7. Sample images of the Columbia–Utrecht database. In experiments, all the color images are mapped to the corresponding gray version.

Fig. 8. The proposed method’s texture classification performances with different number of training samples (L) and cluster centers (K ) for (a) KTH-TIPS, (b) Brodatz
and (c) CUReT databases.

over Clbp since the Cdcp patterns are extracted at the component
and holistic levels. Dlbp, when combined with Gabor features,
achieves a classification performance higher than the conven-
tional Lbp with Nnc. However, its performance is quite less than
the proposed method, as it does not consider changes in scale. The
proposed method achieves remarkable classification performance
compared to Clbp, Lbpv, Lbphf_S and Lbphf_S_M on KTH-TIPS,
Brodatz and CUReT texture datasets and yields comparable per-
formance with Dlbp. Table 3 shows the performance of proposed
texture classification method and other bag-of-words models.
Lazebinik et al. [52] proposed to detect regions of interest using
Harris-affine corner and Laplacian-affine blobs and then extract
regions normalizing Spin and Rift, as texture pattern. Finally,
texture classification is performed using a nearest neighbor clas-
sifier (Nnc). Caputo et al. [55] used Svm kernel instead of nearest
neighbor classifier and revealed that the Svm classifier could
achieve reasonably better performance compared to Nnc. Zhang
et al. [53] proposed object and texture classification by analyzing
different texture features and kernels. Recently, feature extraction

using global scale invariant methods highlights the researchers
due to the pixel by pixel operations of local scale normalization
which is usually slow. Xu et al. [57] and Quan et al. [58] tabu-
lates image pixels into multiple regions by their gray intensities
or local distribution of the feature descriptors and finally clas-
sify them. At varying scales multi-scale Bif [56] σ , 2σ , 4σ , and
8σ give comparable performance than the other bag-of-words
methods where Nnc is the used as classifier. Because of the
pyramid histogram along with time consuming shift matching
process makes Bif as a discriminate feature. Also, the feature
distribution length of Bif descriptor [56], Clbp [10], Sslbp [13]
and PriColbp [48] are much larger (64

= 1296, 2200, 480× 5 =
1000 and 590 × 2 = 1180) compared to the proposed method
(61 × 19 = 1159). Due to the absence of scale shifting scheme
the performance of Bif, a bit [56] is reduced. Apart from the
bag-of-words model, the performance of the proposed method is
also compared with two conventional texton based methods, i.e
VZ_MR8 and VZ_Patch. The performance of VZ_MR8 and VZ_Patch
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Table 2
Comparative results of the classification performance of the proposed and
variants of Lbp methods, where ‘–’ indicate the missing result.
Methods Classifier Classification accuracy (%)

KTH-TIPS [43] Brodatz [44] CUReT [45]

Lbpv [9] Nnc 95.50 93.80 94.00
Brint [12] Nnc 97.75 99.22 97.06
Lbpriu21,8 [7] Nnc 82.67 82.16 80.63
Dlbp3,24 [11] Svm 86.99 99.16 84.93
Lbpsri_su21,8 [47] Nnc 89.73 69.50 85.00
Lbp(1,8+2,16+3,24) [7] Nnc 95.17 91.60 95.84
Clbp_smc [10] Nnc 97.19 94.80 97.40
Sslbp [13] Nnc 97.80 – 98.55
PriCoLbpg [48] Svm 98.40 96.90 98.40
Lbphf_S [50] Nnc 97.00 94.60 95.90
Lbphf_S_M [51] Nnc 97.00 94.60 95.90
CoaLbp [49] Nnc 97.00 94.20 98.00
Cdcp [14] Nnc 97.90 97.20 –
Ldzp [16] Nnc 97.82 97.20 97.76
LWP [3] Nnc 93.00 95.48 90.91
Proposed method Nrs 99.00 98.63 98.75

Table 3
Texture classification results of the proposed and other bag-of-words methods.
Methods Classifier Classification accuracy (%)

KTH-TIPS [43] Brodatz [44] CUReT [45]

VZ-MR8 [21] Nnc 94.50 94.62 97.43
VZ-Patch [22] Nnc 92.40 87.10 98.03
Lazebnik et al. [52] Nnc 91.30 88.20 72.50
Zhang et al. [53] Svm 96.10 95.90 95.30
Liu et al. [54] Svm – 94.20 98.50
Capato et al. [55] Svm 94.80 95.00 98.50
Bif [56] Shift Nnc 98.50 98.47 98.60
S [20] Nnc – – 95.25
LM [19] Nnc – – 94.65
Proposed method Nnc 91.00 94.30 94.50
Proposed method Svm 94.00 98.20 97.50
Proposed method Nrs 99.00 98.63 98.75

is quite lower than the proposed method. The feature extrac-
tion and matching complexity is also higher than the proposed
method, because for each texture image both methods initially
find the dense 38 filter responses, whereas the proposed method
extract only six DtGs response, so called 6-jet and achieves in-
variance to scales, rotations or reflection. The overall observations
from Table 3 show that the proposed method exceeds the classifi-
cation performance of several bag-of-words methods. Table 3 also
indicates that the proposed method with Nnc and Svm classifiers
provides a comparable performance with some other methods.
The proposed method achieves reasonably high performance due
to the following characteristic. In the proposed approach, first
a set of derivative of Gaussian (DtGs) filter responds upto 2nd
order (R6) which stacks to form a jet space representation of a
texture image called local jet vector (Ljv), satisfying the statistical
in variance characteristics of scale space, where the combinations
of local jet are preserved and then abstract representation of local
image structure is done in a hierarchical way and invariant to
image scaling, translation, and rotation or reflection. Then, the jet
textons dictionary is learned from DtGs responses, followed by a
Weber law contrast normalization pre-processing step using K-
means clustering algorithm. Finally, the feature distribution of jet
texton is considered as a texture model which is utilized to clas-
sify texture using a non-parametric nearest regularized subspace
(Nrs) classifier and enjoys the following properties of Nrs: the
testing sample is approximated from available training samples
within the class via a linear combination. The best approximation
of the test sample, derived from class-wise training samples is

Table 4
The classification accuracy (%) of few state-of-the-art texton based methods on
CUReT database with different training conditions along with the number of
textons.
Method Number of textons Training samples/class (L)

46 23 12 6

VZ_MR8 2440 97.79 95.03 90.48 82.90
VZ_Patch 2440 97.66 94.58 89.40 81.06
Varma and Garg 2048 97.50 94.69 89.74 81.67
Clbp 2248 97.39 94.19 80.72 79.88
Proposed method 1159 98.75 97.75 91.10 83.50

Fig. 9. The sigma (σ ) of the DtGs kernel vs. classification accuracies for the
proposed method.

Table 5
The result of one way statistical ANOVA test with significance level α = 0.05
for KTH-TIPS, Brodatz, and CUReT texture databases.
Source SS df MS F Prob (p) > F

Groups 624.958 06 104.160 7.58 0.0009
Error 192.463 14 013.747
Total 817.420 20

used to assign its class label. The linear combination of hypothe-
ses is calculated in a stable manner using a distance-weighted
Tikhonov regularization.

The performance of the statistical texton based learning
method varies with the number of samples present in the training
set. The classification accuracy (%) of the proposed and a few
state-of-the-art texton based methods for CUReT database under
different training conditions are shown in Table 4. It is observed
that the classification performance degrades due to reduction of
the number of training samples. The performances of proposed Jet
Texton Learning approach for different sigma (σ ) values of DtGs
kernel are evaluated on KTH-TIPS, Brodatz and CUReT databases
and shown in Fig. 9. It indicates that the best result is achieved
for σ = 0.5 in all three databases.

Though the results of Tables 2 and 3 clearly indicate the
improved results, we conducted another experiment using one
way statistical analysis of variance (Anova) test [59] to cross
check the significant improvement of the classification perfor-
mance. Anova test is a way to find whether experimental results
are significant or not, and used to evaluate the group means
differences in a sample set. The null hypothesis H0 of the test
points out that, the group means are very close to each other. In
case any group average is totally out of the box as compared
to other group averages, it signifies that the selected significant
level is more than the p-value and the H0 can be rejected. In
order to perceive the difference between the performance of
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Fig. 10. The box plot (classification methods vs. accuracy) of proposed and other
state-of-the-art methods corresponding to Anova test on KTH-TIPS, Brodatz and
CUReT texture databases.

proposed method and other popular methods like VZ-MR8, VZ-
Patch, Brint, Dlbp, Clbp_S/M/C, and Lbpriu2, an one way Anova
test is experimented with selecting the significance level α =
0.05. The test results are tabulated in Table 5. The result in Table 5
indicate that the selected significant level α = 0.05 is more
than the p-value (0.0009), which implies the proposed method’s
performance significantly differs from other methods and hence
cancels the hypothesis H0. Moreover, the Anova test results are
also displayed using a box plot as depicted in Fig. 10. The box plot
results convey the improvement in the mean performance of the
proposed method over other state-of-the-art methods such as VZ-
MR8 [21], VZ-Patch [22], Brint [12], Dlbp [11], Clbp_S/M/C [10],
and Lbpriu2 [7].

To show the class-wise performance of the proposed texture
classification method, the confusion matrix for KTH-TIPS, Brodatz,
and CUReT databases are shown in Fig. 11. To make it more
visible, we adopt a color bar which represents the class-wise
classification or misclassification rate. In confusion matrix the
horizontal and vertical axes represent the true and predicted class
labels, and the principle diagonal points represent the class-wise
performance rate whereas outside the diagonal points shows miss
classification rate in percentage. In confusion matrix, the best
classification along the diagonal is as dark red as possible and
away from the diagonal the points should be as dark blue as
possible.

The texture classification performance of the proposed method
is also compared with the state-of-the-art deep CNN based meth-
ods, such as PCANet [30], PCANetriu2 [30], FV-AlexNet [60], FV-
VGGM [27,61], FV-VGGVD [27,61] in Table 6. This result com-
parison indicates that the proposed method provides significant
improvement of the classification performance as compared to
the state-of-the-art deep CNN based methods. Moreover, the di-
mension of final feature of proposed method is less as compared
to others, except PCANetriu2.

The algorithm is implemented in Matlab 2016 environment
and executed on Intel R⃝ CoreTM2 Duo Cpu T6400 @ 2.00 GHz × 2
processor and 4 GB Ramwith Ubuntu 16.04 Lts operating system.
According to three benchmark texture database, Table 7 lists out
the average training and matching (or classification) time cost
per-image is carried out using the proposed method. It has been
observed from the experimental result that the proposed method
can be performed in reasonable time.

The computational complexity of the proposed jet texton
learning method is described as follows. The jet texton learning

Table 6
Texture classification results of the proposed and deep CNN based methods.
Method Classifier Feature

dimension
Results on texture datasets

Brodatz CUReT KTH-TIPS

PCANet [30] NNC 2 048 90.89 92.03 –
PCANetriu2
[30]

NNC 80 85.70 81.48 –

FV-AlexNet
[60]

SVM 32 768 98.20 98.50 98.60

FV-VGGM
[27,61]

SVM 65 536 98.50 98.40 98.80

FV-VGGVD
[27,61]

SVM 65 536 98.60 98.60 98.80

Proposed
method

NRS 1 159 98.63 98.75 99.00

framework comprises three steps which include (i) formation
of jet representation for a given image, (ii) building the texton
dictionary and (iii) building the histogram for each texton. The
computation complexity to compute the filter response (jet rep-
resentation) using separable convolutions is O(2 × MNk), where
M and N are the height and width of the image and k is the
kernel size. The complexity to compute each filter response with
normalization process becomes O(2 × MNk) + O(MN), where
O(MN) represents the complexity of normalization process for
each filter response. Now, each image having 6 filter responses
and L number of sample images is taken from each class for
training. So, the complexity to compute filter responses for CL
samples of C class becomes O(CL × 6 × 2 × MNk) + O(CL ×
6 × MN). The complexity to find the dictionaries of K jet texton
for each class using K-means clustering (Lloyd’s algorithm and
its most variants) is O(nKdP), where n = 6L is the number
of d-dimensional (d = MN) vectors to be clustered, K is the
number of clusters and P is the number of iterations needed
until convergence. So, the complexity to find the dictionaries of
K jet texton for each class is O(6× LKMNP) and for C number of
classes it becomes O(6 × CLKMNP). The complexity to build the
histogram of each jet texton is O(MN). So, the complexity to build
the histogram for C×K textons becomes O(CK ×MN). Therefore,
the computational complexity of the proposed jet texton learning
model is (O(CL×6×2×MNk)+ O(CL×6×MN))+ O(6×CLKMNP)
+ O(CK × MN) and the final computational complexity without
the constant term can be written as O(CLMNk) + O(CLMN) +
O(CLKMNP) + O(CKMN).

Finally we highlight the differences and common charac-
teristic of VZ_MR8 and the proposed method. The proposed
method and VZ_MR8 both have classified an image in two steps:
texton dictionary learning and classification. In texton learning,
stage the proposed method finds six DtGs responses (R6-Jet
space which satisfies the statistical invariance properties of scale
space [40]) to extract a 6-dimensional feature vector correspond-
ing to each pixel and a texton dictionary where a total 61 × 19
= 1159 textons have been learned using K -means clustering
algorithm. Whereas VZ_MR8 requires 38 filters which extract an
8-dimensional feature vector corresponding to each pixel and a
texton dictionary containing a total of 61 × 40 = 2440 learned
textons. For both techniques the histogram is build based on
texton frequency. In classification stage VZ_MR8 utilizes Nnc
classifier for dissimilarity measurement whereas the proposed
method uses Nrs classifier and enjoys the following proper-
ties of Nrs: the testing sample is approximated from available
training samples within the class via a linear combination. The
best approximation of the test sample, derived from class-wise
training samples is used to assign its class label. The linear
combination of hypotheses is calculated in a stable manner using
a distance-weighted Tikhonov regularization.
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Fig. 11. The confusion matrix of texture classification using the proposed method for (a) KTH-TIPS, (b) Brodatz, and (c) CUReT databases.

Table 7
The average training and matching (testing) time cost per-image on three
benchmark texture database.
Method Dataset Training time (s) Test time (s)

Build texton Build histogram

Proposed model
Brodatz 0.02 0.06 0.07
CUReT 1.83 2.63 0.82
KTH-TIPS 2.37 2.74 0.92

VZ-MR8 [21] CUReT 2.23 –
KTH-TIPS 1.7 –

VZ-Patch [22] CUReT 26.1 –
KTH-TIPS 18.6 –

5. Conclusion

This work presents an efficient jet texton learning based tex-
ture classification method. The proposed method includes jet
texton dictionary learning and classification phase. In jet tex-
ton dictionary learning, the proposed method extracts six DtGs
responses (R6-Jet space) and finds 6 dimensional feature vec-
tor for each pixel of training images. Then a jet texton dic-
tionary is learned using K -means clustering algorithm. Finally,
the model of training images is formed by extracting the his-
togram of learned jet textons. In the classification phase, the
class of test image is recognized by comparing its model his-
togram with trained models using Nrs classifier. To analyze the
texture classification performances of the proposed method and
to compare the outcomes with other state-of-the-art methods,
the experiments are conducted on three well-known KTH-TIPS,
Brodatz and CUReT databases. The experimental results show that
the proposed method provides better performance compared to
the other state-of-the-art methods and maintains a good clas-
sification performance even in large databases such as CUReT
with less number of textons. The proposed method can be used
in real applications like industrial inspection, document image
recognition, biomedical image analysis etc.
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