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Local ZigZag Max Histograms of Pooling
Pattern for Texture Classification
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The efficiency of any texture classification model confides on descriptor
used for similarity matching. The formation of image descriptor is a
challenging and important task in computer vision. This letter introduces
a Local ZigZag Max Histograms of Pooling Pattern (LZMHPP) for
classification of texture images. To compute the descriptor, first the
dissimilarity between center pixel and it’s neighbors is computed for
each image patch over the whole image, then the dissimilarity map
is encoded with different type of ZigZag ordering mechanism, and
finally the Max Histograms Pooling is used to form LZMHPP descriptor
from two complementary ZigZag weighted structures and achieves
sufficient robustness under geometric variations. The experimental study
on KTH-TIPS and CUReT texture databases indicates the efficiency and
supremacy of LZMHPP descriptor for texture classification.

Introduction: The texture recognition plays a vital role in many
applications such as industrial image analysis, remote sensing image
analysis, facial analysis, etc. The texture classification from images
is a very challenging problem due to the huge amount of inter-class
similarities. The primary method to deal with this problem is to match
the descriptors computed from the texture images instead of image itself,
as the descriptors exhibit the robustness and discriminative features.
Several methods were proposed in the past to design the suitable image
descriptors for the texture characterisation. Local binary pattern (LBP)
is one of state-of-the-art descriptor for texture classification [1]. Several
improvements over LBP have been proposed such as Local ternary
pattern (LTP) [2], Local derivative pattern (LDP) [3], Local tetra pattern
(LTrP) [4], Local bit-plane dissimilarity pattern (LBDISP) [5], Complete
dual-cross pattern (CDCP) [6], etc. Recently, ZigZag based descriptor has
shown a great improvement in the performance using Local directional
ZigZag pattern (LDZP) [7]. The existing descriptors suffer due to the
limited descriminative power and robustness ability.

In this letter, a new descriptor is proposed by exploiting the benefits
of ZigZag features as well as Max histogram pooling. Basically, first
different local ZigZag patterns are extracted, then the Max pooling
is applied over the histograms of different local ZigZag patterns. The
utilisation of different ZigZag features boost the discriminative ability,
whereas the Max pooling of histograms introduces more robustness
against the various geometrical variations such as rotation, scaling, etc.

Local ZigZag Max Histograms of Pooling Pattern: The local binary
pattern (LBP) [1] is a well-known and highly discriminative texture
descriptor which labels each pixel within a local neighborhood at a
radius around its center by computing the sign of difference of the
intensity values of neighbours from the center. The LBP achieves
enough discriminate under different geometric variations. However, in
LBP structure, there is no perceptual angular relation between two
consecutive neighbouring samples with respect to its center. So, it can
not capture enough angular information in the local texture patch which
could be useful to capture the complex local structure. To overcome the
aforementioned problems, we have designed a new descriptor in this
letter based on local ZigZag weighed structure [7].

In LZP descriptor, the sign of intensity differences of the center to its
neighboring pixels are calculated to label each pixel initially as,

f = [f0, . . . , fn, . . . , fN−1]T

= [I0 − Ic, . . . , In − Ic, . . . IN−1 − Ic]
(1)

where f∈R1×N represents a vector of local intensity difference, which
produces LZP invariant under monotonic photometric changes, Ic, In
and N represent the pixel intensity of center, nth neighbouring and total
number of involved points (i.e, N = 8 ) respectively. The value of LZP at
Ic is calculated as,

LZP(i, j) =

N−1∑
n=0

h(fn)× 2n, h(z) =

{
1, if z ≥ 0

0, else.
(2)
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Fig. 1 Variants of Local ZigZag structure (3 × 3), where (a)-(d) represent of
four different (S1, S2, S3, S4) orders.
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Fig. 2 Proposed Framework: (a) Texture image (b)-(c) Different local ZigZag
structures are stacked to form two complementary LZP groups i.e, (S1, S3)
and (S2, S4) where S1, S2, S3, and S4 are shown in Fig. 1 (d)-(e)
Two complementary LZP maps (f)-(g) The LZMH is build from CLZP (h)
Represents final LZMHPP histogram.

The LZP code generates 2N distinct decimal values from the sign
of the differences between center and its neighborhoods and generally
described by the string of N-bit binary, where 2n−1 represents the
weights of the n-th bit. Since, we calculate LZP by the thresholding within
a 3× 3 window , the LZP output ranges between 0 to 255. Due to the
visibility of angular relationship from second to the seventh pixel of the
ZigZag structure of Fig. 1, the two neighbors of each pixel extends the
angle by either 45

◦
or 180

◦
or 135

◦
. While in LBP, the angular relation

between any two successive sample point with respect to its reference
pixel is always to be a constant (45

◦
for 8 sample points) and shows no

visually perceptible angular relationship between two alternate pixel with
respect to their intermediate. These fluctuations of LZP angles among
the sample points allow to capture more frequent changes in local micro
texture pattern. This micro structure forms four different orders of Local
ZigZag kernel based on their starting point shown in Fig. 1(a)-(d), and
which may make LZP as a better rotational invariant texture descriptor
than traditional descriptors.

First, the four different LZP maps are extracted from the input texture
image I (Fig. 2(a)) using the four different orders ZigZag structure
so, called S1, S2, S3 and S4 (Fig. 2(b)-(c)). Then, the extracted LZP
maps are used to formed two groups of complementary local ZigZag
Pattern (CLZP) i.e. CLZP1 and CLZP2 by stacking the output of two
complementary ZigZag structure together as shown in Fig. 2(d)-(e) and
represented as,

CLZP1 = {LZP(i, j)S1, LZP(i, j)S3}

CLZP2 = {LZP(i, j)S2, LZP(i, j)S4}
(3)

In this context, the complementary ZigZag structure indicates that it
is the 90

◦
rotated version of another one, which allows to encode the

complementary rotational invariant texture information. After that, the
local gray scale distribution of LZPs for each pixel (x, y) of the texture
image I with dimensionMx ×My is computed. It is indexed by building
a discrete distribution of 2N bins of Lzp codes, more formally the
histogram is defined by,

LZPH(λ) = f(CLZP, S(g)) S(g) =

{
(2g − 1, 2g + 1), g== 1

(g, 2g), g== 2

f(LZP(i, j), t) =

Mx−1∑
i=2

My−1∑
j=2

φ(LZP(i, j), t,Ω), φ(p, q) =

{
1, p== q

0, else

(4)
where Ω∈ [0,L], and L represents the maximum value of CLZP pattern.

The histogram codes of LZMH1 and LZMH2 for each reference bins
are calculated using a max histogram pooling (⊕) operation between two
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Table 1: Texture classification performance on different texture descriptors

Dataset Classifier Accuracy Feature
LengthKTH-TIPS CUReT

LBP

SVM

97.75 98.10 256
LTP 97.87 98.02 512
LDP 97.92 98.08 1024
LTrP 97.90 98.00 767

LDZP 98.00 98.17 354
LZMHPP 98.75 98.38 512
LZMHPP MLP 98.30 98.20 512

Table 2: SVM accuracy of LZMHPP with different ZigZag combinations.
Descriptors KTH-TIPS CUReT

LZMHPP(S1,S2)(S3,S4) 97.50 ± 0.824 97.41 ± 0.612
LZMHPP(S1,S4)(S2,S3) 97.30 ± 0.560 97.50 ± 0.470
LZMHPP(S1,S3)(S2,S4) 98.75 ± 0.621 98.38 ± 0.524

LZPH and represented as (see Fig. 2(f)-(g)),

LZMHP1 = LZPH(i, j)S1 ⊕ LZPH(i, j)S3

LZMHP2 = LZPH(i, j)S2 ⊕ LZPH(i, j)S4
(5)

The final LZMHPP descriptor as shown in Fig. 2(h) is formed by
concatenating the two codes generated by LZMHP1 and LZMHP2 as,

LZMHPP = {LZMHP1, LZMHP2} (6)

The LZMHPP is efficient as it only doubles the dimension of basic LZP.

Experimental Results and Discussions: To inspect the texture
classification performance of the proposed LZMHP descriptor, the
experiments are carried out on two commonly used well-known publicly
available texture databases, namely KTH-TIPS [8] and CUReT [9],
respectively. The CUReT database [9] [10] is designed to contain large
intra-class variation and is widely used to estimate the classification
performance. It contains 61 texture classes with 92 images per class,
which are cropped into 200× 200 regions and converted to gray scale.
The images are captured under different illumination and viewing
directions with constant scale. The KTH-TIPS database [8] is extended
by introducing new samples of 10 CUReT textures. It contains texture
images with 3 different poses, 4 illuminations, and 9 different scales of
size 200× 200 and where each class contains 81 samples.

The performance of proposed LZMHPP descriptor is evaluated using
the parametric multiclass support vector machine (LIBSVM [11])
classifier. The classification performance is computed as the average of
K-fold (K = 10) cross validation. The estimated classification accuracy
of proposed LZMHPP descriptor is compared with the several state-of-
the-art texture descriptors, like, LBP [1], LTP [2], LDP [3], LTrP [4], and
LDZP [7] in Table 1. The LZMHPP has better classification rates for both
the texture databases compared to the existing texture descriptors. This is
because LZMHPP encodes the local ZigZag relationship and extracts the
encoded features using max pooling strategy. The discriminative ability
is increased by encoding the local relation through multiple ZigZag
fashion. The robustness of descriptor is increased by applying the max
pooling operation. It is evident that the proposed LZMHPP descriptor
outperforms other existing methods and achieves classification rates of
98.25% and 98.50% for KTH-TIPS and CUReT dataset, respectively.
In addition to SVM classifier the performance of the proposed LZMHPP
descriptor is also evaluated using multilayer perceptron (MLP) and
achieves comparable classification rates 98.30% and 98.20% for KTH-
TIPS and CUReT dataset, respectively. It shows that SVM outperforms
MLP in the proposed framework. Table 1 also shows the length of the
different feature vectors including proposed one. It can be observed that
the length of the proposed LZMHPP descriptor is lower or comparable to
LTP, LDP, and LTrP descriptors.

In the proposed framework (shown in Fig. 2), the complementary
LZP maps are stacked together. We performed an experiment to
find out the best suitable pairs together to maximize the utilization
of complementary information. There are three different ways,
we can choose the ZigZag structure to form two independent
groups taken from a total 4 available structures (i.e., S1, S2,
S3, and S4) (Fig. 1). We have used following three possible
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Fig. 3 Cumulative Matching Characteristic (CMC) Curve for classification
performance of descriptors on (a) KTH-TIPS and (b) CUReT databases.

combinations, LZMHPP(S1,S2)(S3,S4), LZMHPP(S1,S4)(S2,S3),

and LZMHPP(S1,S3)(S2,S4). The classification performance for
3 different LZMHPP descriptors are shown in Table 2. It can be
observed from this result that among three possible combinations, the
LZMHPP(S1,S3)(S2,S4) descriptor outperforms others. It shows that
the groups (S1, S3) and (S2, S4) have the highest complementary
information in its LZP maps. The performance of the proposed LZMHPP
descriptor is also compared with existing descriptors using Cumulative
Matching Characteristic (CMC) curve shown in Fig. 3. The CMC
curves also show that the proposed LZMHPP descriptor outperforms the
state-of-the-art descriptors.

Conclusion: This letter proposed a new texture descriptor named as
Local ZigZag Max Histograms of Pooling Pattern (LZMHPP) by
exploiting the max pooling over the histograms of features of several local
ZigZag relationships. The utilization of multiple ZigZag features boosts
the discriminative power and max pooling of histograms increases the
robustness of the proposed descriptor against geometrical changes. The
proposed descriptor is tested over two benchmark texture datasets and
the results are compared with state-of-the-art descriptors. Very promising
performance is observed for proposed LZMHPP descriptor.
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