TexFusionNet: An Ensemble of Deep )
CNN Feature for Texture Classification ok

Swalpa Kumar Roy, Shiv Ram Dubey, Bhabatosh Chanda,
Bidyut B. Chaudhuri and Dipak Kumar Ghosh

Abstract The texture classification from images is one of the important problems
in pattern recognition. Several hand-designed methods have been proposed in last
few decades for this problem. Nowadays, it is observed that the convolutional neural
networks (CNN) perform extremely well for the classification task mainly over object
and scene images. This improved performance of CNN is caused by the availability
of huge amount of images in object and scene databases such as ImageNet. Still,
the focus of CNN in texture classification is limited due to non-availability of large
texture image data sets. Thus, the trained CNN over Imagenet database is used for
texture classification by fine-tuning the last few layers of the network. In this paper,
a fused CNN (TexFusionNet) is proposed for texture classification by fusing the last
representation layer of widely adapted AlexNet and VGG16. On the top of the fused
layer, a fully connected layer is used to generate the class score. The categorical cross-
entropy loss is used to gencrate the error during training, which is used to train the
added layer after the fusion layer. The results are computed over several well-known
Brodatz, CUReT, and KTH-TIPS texture data sets and compared with the state-of-
the-art texture classification methods. The experimental results confirm outstanding
performance of the proposed TexFusionNet architecture for texture classification.
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1 Introduction

One of the underlying problems in pattern recognition is the automatic texture image
classification. The texture classification has huge applications in different areas such
as content-based image retrieval, ground analysis through satellite imagery, biomed-
ical and industrial inspection, etc. Though the human is good recognizer to iden-
tify the texture in a real scenario, the definition of texture is still ambiguous [1].
Despite attempts in the past few decades, the texture classification problem is still
challenging. The common practice in texture classification is to first compute the
suitable features and then use those features with some classifier for training and
classification. Numerous texture feature descriptors have been discovered by various
researchers [2]. The main three desired properties of any texture feature descriptor
are robustness to deal with the intraclass variability, discriminativeness to distinguish
between different categories, and low dimensionality to reduce the processing time.

In earlier days, the popular texture classification methods are based on the statis-
tical features such as co-occurrence matrix [3] and Markov random fields [4]. After
that, there was an era of filtering-based approaches where the images were converted
into feature vectors by applying the bank of filters such as wavelet filters [5], Gabor
filters [6], etc. Later on, the macro-pattern-based approaches as local binary pattern
(LBP) [7] are proved to be discriminative and robust for texture analysis such. The
LBP became one of the state-of-the-art approach for feature extraction due to its
simplicity and local relationship representation ability. Several variants of LBP are
investigated for different applications such as biomedical image analysis [8—10], face
recognition [11, 12], image retrieval [13, 14], pedestrian detection [15], local patch
matching [16], etc. Other LBP-based feature descriptors are also proposed for tex-
ture classification such as completed local binary pattern (CLBP) [17], LBP variance
(LBPV) [18], binary rotation invariant and noise-tolerant descriptor (BRINT) [19],
fractal weighted local binary pattern local (FWLBP) [20], complete dual cross pattern
(CDCP) [21], jet pattern (LJP) [22], local directional zig-zag pattern (LDZP) [23],
local morphological pattern (LMP) [24], etc. These hand-crafted feature descriptors
generally perform well in controlled conditions in practice. This is due to the lack
of robustness against different types of geometric and photometric variations in a
single descriptor.

Recently, the deep learning methodology has changed the research direction in
machine learning, computer vision, natural language processing, and pattern recog-
nition area. It learns from massive amount of data and improves the performance
with great margin [25]. The first and revolutionary work using deep learning in com-
puter vision was witnessed in 2012 by Krizhevsky et al. [26] for image classification
task over a largest and challenging ImageNet database [27] by winning the Ima-
geNet Large-Scale Visual Recognition Challenge (ILSVRC). Later on, this system
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is named as AlexNet which is basically a convolutional neural network (CNN) with
seven learning layers. After AlexNet, several CNN architectures were proposed for
image classification such as VGG16 (16 learning layers) in 2014 by Simonyan and
Zisserman of Oxford University [28], GoogleNet (22 learning layers) in 2014 by
Szegedy et al. of Google [29], ResNet (152 learning layers) in 2015 by He et al. of
Microsoft Research [30], etc. A trend to use more number of learning layers in CNN
is observed over the years after 2012. The CNN-based approaches have also shown
very exciting performance in other problems such as object detection (Faster R-CNN
[31]), image segmentation (Mask R-CNN [32]), biomedical image analysis (Colon
cancer detection [33]), etc.

The hierarchical representation of in deep convolution neural networks (CNN)
is a key and universal characteristic which is directly formed from the data set and
utilized to classify the images. As a universal representation, deep CNNs have shown
their recognition power. However, the lack of geometric invariance of globally used
CNN activations has limited robustness for recognition. Due to lack of large-scale
texture databases, the deep learning based work is not witnessed much for texture
classification. Recently, some researchers used the CNN-based methods for texture
classification using transfer learning [34, 35]. The transfer learning is a way to use
the already trained CNN model for small-scale databases by considering the same
weights and fine-tuning the last few layers. Filter banks are also used in the architec-
ture of convolutional neural networks named as texture CNN and applied for classi-
fication in texture databases [36]. Cimpoi et al. proposed the Fisher Vector pooling
of a CNN filter bank (FV-CNN) for texture recognition and segmentation [37]. Liu et
al. [38] have done a performance analysis over LBP and deep texture descriptors in
terms of the robustness against different geometric and photometric changes such as
rotation, illumination, scale, etc. There is little penetration into the behavior and inter-
nal operation of the network although deep CNN models significantly progressed.
In 2013, ScatNet was introduced by Mallat et al. [39, 40] where no learning pro-
cess is needed and convolution filters are predefined as wavelet. Inspired by ScatNet
Chan et al. [41] have proposed PCANET, a simple network of deep learning, where
network is formed by cascading of multistage principle component analysis (PCA),
histogram pooling, and binary hashing. Chan et al. also proposed RandNet [41], a
simple variation of PCANET where the cascaded filters are randomly selected and no
learning is required. Nowadays, use of more and more complex networks becomes a
major trend in deep CNN research community. However, a powerful computer with
large memory and GPUs are needed to train the networks.

Most of the existing CNN-based models for texture classification are based on
the single model architecture. In this paper, we leverage the power of multiple CNN
architectures and design a fused convolutional neural network model for texture clas-
sification named as the TexFusionNet. The proposed TexFusionNet architecture first
fuses the last representation layer of AlexNet and VGG16 and then uses the fully
connected layer and softmax layer on top of that for fine-tuning and classification.
To evaluate the classification performance, the experiments are conducted on bench-
mark Brodatz, CUReT, and KTH-TIPS texture databases in support of proposed
TexFusionNet architecture.
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The rest of the paper is structured as follows: Sect.2 presents the proposed Tex-
FusionNet architecture; Sect.3 depicts the experimental results and analysis; and
Sect. 4 provides the conclusion.

2 Proposed TexFusionNet

The proposed TexFusionNet architecture for texture classification is illustrated in
Fig. 1 by fusing two CNN models. The TexFusionNet is composed of the AlexNet
[26] and VGG16 [28] architectures of image classification. The AlexNet and VGG16
architectures are the state-of-the-art methods and widely adapted for classification
task. The fusion between these models is performed at the last representation layer.
The last representation layer is referred to as the last layer of these models after
removing the class score layer. In the original AlexNet and VGG16, the last layer
is class score layer for 1000 classes of ImageNet database which is removed in our
architecture. We could merge well at last representation layer because both AlexNet
and VGG16 models produce the same dimensional features (i.e., 4096 dimensional)
at the last layer. Moreover, the weights of filters from first layer to last representation
layer in both AlexNet and VGG16 are transferred from the pretrained AlexNet and
VGG16 models, respectively. Let us consider / as the input color texture image of
resolution m x n, alex is a function representing the combination of convolutional
layers, max-pooling layers, and fully connected layers from first layer to last rep-
resentation layer of AlexNet model, and similarly vgg16 is a function for VGG16
model. Note that the input resolutions for AlexNet and VGG16 are 227 x 227 and
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Fig. 1 Proposed TexFusionNet architecture for texture classification
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224 x 224, respectively. So, the input image [ is converted into /4., and /5, having
the resolution of 227 x 227 and 224 x 224 for AlexNet and VGG16, respectively,
as follows:

Lorex = 7(1, [227, 227]) (1)

Ly, = 7(1, [224, 224]) 2)

where 7(I, [3, §]) is a transformation function to resize any image / into the reso-
lution of (8 x ).

Let us consider @, and @4, represent the features or values of last represen-
tation layer of AlexNet and VGG16 models, respectively. The @, and @,,, are
defined as

Dyex = alex(Lypex) 3)

Dyge = V88 (Lygg) 4)

where the dimensions of @, and @, representation features are Dy, and Dy,
respectively, with Doy = Dyg,.

In the proposed work, the @, and @, texture features of input image I using
AlexNet and VGG16 models are fused by addition to produce a combined texture
feature representation denoted as @ 4.4 and defined as follows:

P fused (i) = Patex (1) + Pugg (i) Vi ell, D] ®)

where D is the dimension of the fused feature @ ,seq With D = Dyjer = Diygg,
D fusea(i) is the ith clement of fused feature @ 500 While @yey (i) and Pge (i)
are the ith elements of input features @, and @4, respectively.

The computed fused features @ ;4.4 are considered as the input to a fully con-
nected layer which produces n number of outputs as the class scores for n classes
of any texture database (see Fig. 1). Suppose S;| (1. represents the class score for
jth class of the texture database, where n is the number of classes. Mathematically,
the class score S; for jth class is defined as

D
Sj = Z We,j X P fusea (k) ©
k=1

where j € [1, n] and wy_; is a weight connecting kth element of feature map @ 504
to jth class score.

During training the pretrained weights of first to last representational layer of both
AlexNet and VGG16 are freezed (i.e., not trained over texture database) to utilize
the already trained layers. The last fully connected layer (mapping from D to n) is
trained by computing the categorical cross-entropy loss over the class scores () and
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backpropagating to last added layer only. Suppose c is the ground truth class and S is
the computed class scores for image . Then the categorical cross-entropy loss (L)
for input image [ is defined as follows:

ES‘ n
b=t () =5 v e g

=t j=1

The training loss is computed batchwise and the weights of last added fully connected
layer are updated in the opposite direction of its gradients.

Once the added layer in TexFusionNet is trained over training texture image
database, it is used as a trained classifier over test cases. At test time, the input to
TexFusionNet is an image itself and the output is class scores. First, the features are
computed automatically in intermediate layers by AlexNet and VGG16 separately
then these features are fused to produce a combined feature map which is finally
used as the input to the final fully connected layer to produce the class scores.

3 Experimental Results and Discussion

In this section, we examine and evaluate the power of features representation using
proposed TexFusionNet which combines two pretrained CNN models for texture
classification. We evaluate the effectiveness of proposed TexFusionNet CNN fea-
tures on the following three publicly available texture databases: first the details of
used Brodatz, CUReT, and KTH-TIPS texture databases are discussed in detail. Then
the experimental setup and evaluation criteria are illustrated and finally the classifi-
cation results are analyzed over texture databases using proposed TexFusionNet and
compared with the state-of-the-art results.

3.1 Databases Used

Three benchmark texture databases including Brodatz album [42], CUReT [43],
and KTH-TIPS [44] are used in this paper to justify the improved performance of
introduced TexFusionNet architecture. The presence of various categories, variable
number of images in each category, and high degree of intraclass variations are
some of the difficulties which make these databases very challenging. Brodatz [42]
texture database is opted to facilitate a fair comparison with the state-of-the-art
results [45]. There are 32 homogeneous texture categories in this database. Each
image is partitioned into 25 nonoverlapping sub-regions of size 128 x 128, and
each sub-image is downsampled to 64 x 64 pixels. The same subset of images of
CUReT database [43] as used in [46] is also chosen in this paper. It contains 61
texture categories having the large intraclass variations with 92 images per category
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Fig. 3 Sample images from KTH-TIPS texture database

cropped into 200 x 200 pixels region. The sample images are shown in Fig.2. The
images are taken with varying illumination and viewing points with constant scale.
The KTH-TIPS database [44] is extended by imaging new samples of ten CUReT
textures as shown in Fig.3. It contains texture images with three different poses,
four illuminations, and nine different scales of size 200 x 200 and hence each class
contains 81 samples.
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3.2 Experimental Setup and Evaluation Criteria

We use Keras to implement the proposed TexFusionNet which is derived from two
widely adapted AlexNet and VGG16 models by fusing at the last representation
layer. As both of adapted AlexNet and VGG16 models require the predefined size
of the input texture image, all images are resized to 227 x 227 x 3 for AlexNet
and 224 x 224 x 3 for VGG16 where number of feature maps, kernel sizes, etc.
are kept same. The mean subtraction preprocessing, a prior stage to computing CNN
activation is used in the implementation where the pixel mean value is subtracted
from RGB channels through the whole training set corresponding to each pixel. In
TexFusionNet, the pretrained convolutional neural network is further trained using
Adadelta optimizer where the base learning rate is 0.001 and the weight decay is
0.0006 during the performance evaluation using the proposed TexFusionNet. The
classification performance of CNN feature is evaluated in terms of the classification
accuracy using K -fold cross-validation test. The ROC is also measured to investigate
the performance in terms of the True Positive Rate (TPR) and False Positive Rate
(FPR).

3.3 Texture Classification Results

The training and testing texture classification results in terms of the loss and accuracy
against the number of epochs using proposed TexFusionNet are depicted in Fig.4
over Brodatz texture database. The first plot shows the loss versus epochs, whereas
the second plot demonstrates the accuracy versus epochs. The similar results over
CUReT and KTH-TIPS texture databases are illustrated in Figs. 5 and 6, respectively.
It can be observed in the plots of loss and accuracy versus epochs that the loss is
decreasing and accuracy is increasing over the epochs. Roughly within 10 epochs of

(a) Loss (b) Accuracy
3.51 —— Training loss (0.00010) 1.00 vV~ VN~
3.0 —— Validation loss (0.51545)
: 0.95
2.54
> 0.90
n 2.04 @©
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- 1,54 S
< 0.80
1.0 4
0.54 0.75
. —— Training accuracy (1.00000)
0.04 0.70 —— Validation accuracy (0.98765)
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs

Fig. 4 The performance of texture classification using the TexFusionNet method over Brodatz
texture database, a Loss versus epochs and b Accuracy versus epochs
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Fig. 5 The performance of texture classification using the TexFusionNet method over CUReT
texture database, a Loss versus epochs, and b Accuracy versus epochs
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Fig. 6 The performance of texture classification using the TexFusionNet method over KTH-TIPS
texture database, a Loss versus epochs, and b Accuracy versus epochs

training, the proposed TexFusionNet attains a very high classification result which
depicts the benefit of using the pretrained weights of AlexNet and VGG16 models.

The performance comparison of proposed TexFusionNet with state-of-the-art
hand-crafted as well as deep learning based methods is also carried out. Table 1 sum-
marized the classification results over Brodatz, CUReT, and KTH-TIPS databases
for different methods. The results for hand-crafted descriptors such as LBPV [18],
BRINT [19], CLBP [17], PRICOLBP [47], COALBP[48], CDCP [21], and RI-LBD
[49] are compared in Table 1. The learning-based methods such as ScatNet [39,
40], PCANet [41], AlexNet [26], FV-VGGM [37], FV-VGGVD [37], and RandNet
[41] are also compared in Table 1 with our method. It is observed from Table 1 that
the proposed TexFusionNet outperforms the hand-crafted methods such as LBPV
[18], BRINT [19], CDCP [21], RI-LBD [49], and also provides better classification
performance compared to AlexNet [26], FV-VGGM [37], and other state-of-the-art
deep learning based methods. Though the number of training samples is very less,
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Table 1 Comparison of proposed TexFusionNet CNN feature with other variants of LBPs and
state-of-the-art deep CNN methods in terms of the texture classification accuracy

Hand-craft Classification rates (%) Deep CNN Classification rates (%)
methods Methods
Brodatz | KTH- | CUReT Brodatz | KTH- | CUReT
TIPS TIPS
LBPV [18] 93.80 9550 |94.00 |ScatNet[39,40] |84.46 |99.40 |99.66
BRINT [19] 98.22 |97.75 |97.06 |PCANet[41] 90.89 5943 |92.03
CLBP [17] 9480 |97.19 9740 | AlexNet [26] 98.20 99.60 |98.50
PRICOLBP [47] [9690 |98.40 |98.40 |FV-VGGM [37] |98.60 |99.80 [98.70
COALBP[48] 9420 |97.00 |98.00 |FV- 98.70 199.80 [99.0
VGGVD [37]
CDCP [21] 9720 9790 |- RandNet [41] 91.14 | 60.67 |90.87
RI-LBD [49] 97.80 19930 |98.60 | TexFusionNet 98.76 100 99.76

Fig. 7 The area under the 1F T T T
curve (AUC) indicates the
probability that a model
provides classification score 0.8f
between 0 and 1 ranks a
randomly chosen true sample
0.6
larger than a randomly o
chosen false sample &
0.4 KTH_TIPS (AUC=0.9961)
CUReT (AUC=0.9939)
0.2 Brodatz (AUC=0.9832)
Symmetric line
0 . . . . 4
0 0.2 0.4 0.6 0.8 1

FPR

the proposed TexFusionNet-based CNN features achieve the outstanding average
classification accuracy of 98.76%, 100 %, and 99.76% for Brodatz, KTH-TIPS, and
CUReT test suits, respectively.

To further visualize the performance of the proposed TexFusionNet in terms of the
receiver operating characteristics (ROC), the area under curve (AUC) is measured
and depicted in Fig.7 over Brodatz, CUReT, and KTH-TIPS databases. The true
positive rate (TPR) and false positive rate (FPR) values are plotted along y- and
x-axes, respectively. It is observed from Fig.7 that the the performance of proposed
model is reasonable over each texture database and proposed CNN feature achieves
AUC values of 98.32%, 99.61% and 99.39%, respectively for Brodatz, KTH-TIPS,
and CUReT test suits.
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4 Conclusion

In this paper, a TexFusionNet model is proposed for the texture classification. The
TexFusionNet used the existing pretrained CNN models of AlexNet and VGG16
and fused at last representation layer after removing the original class layer of these
networks. The fusion is performed by adding the last representation layer of both
networks. A fully connected layer is placed over the fusion layer to generate the
class scores which is used to generate the loss during training with categorical cross-
entropy loss function. After training, the fused model is used for the testing over
texture images in classification framework. Three benchmark Brodatz, CUReT, and
KTH-TIPS texture databases are used to judge the performance of proposed model.
The results are compared with the state-of-the-art hand-crafted and learning-based
methods. The experimental results suggest that the introduced TexFusionNet out-
performs the hand-crafted methods and also shows very promising performance as
compared to the deep learning based methods.
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