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a b s t r a c t 

Local feature descriptors play a key role in texture classification tasks. However, such traditional descrip- 

tors are deficient to capture the edges and orientations information and local intrinsic structure of im- 

ages. This letter introduces a simple, new, yet powerful rotation invariant texture descriptor named Local 

Directional ZigZag Pattern ( Ldzp ) by ZigZag scanning for effective representation of texture. Here at first 

we compute the directional edge information, so called local directional edge map ( Ldem ) of a texture 

image using the Kirsch compass mask in six different directions. Then Local ZigZag Pattern ( Lzp ) is ex- 

tracted from all Ldem images. Basically, the Lzp characterizes the spatial ZigZag structure based on the 

relation between reference pixel and its adjacent neighboring pixels and is insensitive to the illumination 

changes. Finally, the uniform pattern histograms are computed from all directional Lzp maps which are 

concatenated to form the final Ldzp descriptor. Extensive experiments on texture classification shows the 

proposed Ldzp descriptor achieves state-of-the-art performance in terms of average classification accu- 

racy when applied to the large and well-known benchmark Outex database. We have also shown that 

Ldzp descriptor is equally powerful for human face recognition. 

© 2018 Published by Elsevier B.V. 
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. Introduction 

Texture is ubiquitous in natural images that carries fundamental

haracteristic of appearance of all natural surfaces. Texture classi-

cation is one of the active and challenging problems in texture

nalysis. It has drawn a lot of attention during the past decades

s it plays a crucial role in the area of pattern recognition and

omputer vision. It has a wide range of applications such as med-

cal image analysis, remote sensing, fabric inspection, segmenta-

ion and content-based image retrieval [1] , it also includes iris

ased biometric recognition. Since feature extraction is often per-

ormed locally based on regions of the neighborhood, most re-

earch effort s have been directed to various local neighborhood

atterns of an image. An important issue is how to represent the

exture effectively. Basically, texture representation can be catego-

ized in terms of the employed approaches, i.e. geometrical, struc-

ural, model-based, statistical, and signal processing. Earlier texture
∗ Corresponding author. 
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lassification methods focus on the statistical analysis of texture

mages which include the co-occurrence matrix based approach

2] and filtering based techniques [3] . These methods provide good

lassification performance as long as both training and test sam-

le images have identical orientations. However, arbitrary rotations

hich could occur in a real-world scene, affect the performance of

tatistical methods. Therefore, rotation invariance is a crucial issue

o be addressed and attention has been focused on the design of

eometrically and photometrically invariant local texture represen-

ation [4–9] . This paper concentrated on the problem of rotation

nvariant texture representation. 

The extraction of rotation invariant features is usually a com-

lex process where spacial care is required in intermediate step

hich is computationally demanding [10] . The literature of com-

uter vision shows the work on this aspect has started in the

ineties of last century [11] . Kashyap and Khotanzad first proposed

ircular autoregressive dense approach [12] for the rotation invari-

nce texture classification. Many models have been explored for

otation invariance texture classification, including multi-resolution 

13] , hidden Markov model [14] , and Gaussian Markov model [15] .

https://doi.org/10.1016/j.patrec.2018.02.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.02.027&domain=pdf
mailto:swalpa@students.iiests.ac.in
https://doi.org/10.1016/j.patrec.2018.02.027
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Fig. 1. Proposed texture classification framework. 
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Fig. 2. (a) Local ZigZag structure of a patch. (b) Patch pixel representation based on 

ZigZag structure. (c) Weights of the local ZigZag pattern of the patch. (d) Original 

texture sample. (e) Lzp pattern of the texture sample. 
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Recently Varma and Zisserman proposed VZ-MR8 [5] to learn a

texton dictionary from a set of training images which are rota-

tion and scale invariant and then classified the unknown sample

images using learned texton distributions. Later, Varma and Zis-

serman proposed VZ-Patch [7] , another texton based algorithm to

represent the feature distribution, which extracts texton from local

image intensity directly. The downside of these methods are fea-

ture extraction and matching times which is not very favourable. 

In 1996 a simple and computationally efficient texture repre-

sentation, called local binary pattern ( Lbp ) was proposed by Ojala

et al. [16] , which is invariant to the uniform intensity changes. The

Lbp has been widely used in other domains such as texture seg-

mentation, face recognition, shape localization and object recog-

nition [17] . Variants of Lbp have been proposed due to immense

success of Lbp in pattern recognition and computer vision prob-

lems. Liaor et al. [18] proposed Dlbp , a dominant pattern by en-

coding only the most frequently occurred patterns (around 80%)

to improve the performance. Guo et al. introduced Lbp variance

( Lbpv ) [19] and completed Lbp ( Clbp ) [20] to enhance the de-

scriptive power and improve the texture classification, for effec-

tive recognition of face images, Zhang et al. [21] used local deriva-

tive pattern ( Ldp ) with higher order and showed that Ldp per-

forms much better than conventional Lbp . Dubey et al. introduced

Lwp [22] to find the histogram feature vector for biomedical image

retrieval. Guo et al. introduced a local directional derivative pat-

tern ( Lddp ) [23] which includes the directional information with

Ldp for rotation invariant texture classification. Tan and Triggs in-

troduced local ternary pattern ( Ltp ) [24] and Liu et al. proposed

[25] noise tolerant descriptor to improve the texture classifica-

tion performance under varying illumination and noisy conditions.

Mehta and Egazarian proposed a variant of Lbp so-called Drlbp de-

scriptor for rotation invariant texture classification. Recently, Roy

et al. [26] introduced a complete dual-cross pattern ( Cdcp ) to ad-

dress the scale and rotational effects in unconstrained texture clas-

sification. 

However, most of the descriptors are based on the same ba-

sic idea of Lbp and extracts only circular isotropic micro structure

of the texture image which is not enough to describe the texture

information and do not sufficiently address the rotation invariant

issues. Hence, inspired by the ZigZag scanning of discrete cosine

transform ( Dct ) [27] coding technique, a new image descriptor

called Local Directional ZigZag Pattern ( Ldzp ) is proposed for effec-

tive texture representation and classification. The readers should

not confuse the ZigZag scanning of Dct encoding which perform

in frequency domain for data compression, with our ZigZag scan-

ning of Ldzp , performed in spatial domain to select the ordering

for generating the descriptor. The schematic diagram of proposed

Ldzp based texture classification framework is shown in Fig. 1 . 

The main contributions of this letter are as follows: We propose

a Local ZigZag Pattern ( Lzp ) where sampling points fall exactly at

the integer pixel position and avoids inaccuracy of interpolation

of gray values, characterizes the spatial local ZigZag structure of a

texture image; The Lzp presents a strong angular relation between

two consecutive pixels with respect to the center as well as two al-

ternate pixels with respect to their intermediate pixel which makes

it more efficient to capture non-uniform local texture pattern; To
ompute the Ldzp descriptor we calculate local directional edge

ap ( Ldem ) of a texture image using the Kirsch compass mask in

ix different directions and encode all directional edge responses

sing Lzp which reduces the noise effects; The uniform pattern

istograms are computed from all directional Lzp maps to reduce

he dimension. Finally all the histograms are concatenated to cre-

te the Ldzp descriptor, which encodes the directional Lzp pattern

nformation and makes the descriptor invariance to rotation. 

The rest of the letter is organized as follows. Section 2 describes

he details of proposed local ZigZag pattern ( Lzp ). The proposed

ocal directional ZigZag pattern ( Ldzp ) descriptor is presented in

ection 3 . The effectiveness of the Lzp over Lbp are discussed in

ection 4 . Section 5 describes the evaluation criteria. The experi-

ental results are summarized in Section 6 and the conclusion is

rawn in Section 7 . 

. Local ZigZag pattern 

This work introduces a novel and efficient texture descriptor

rom the relation between a center pixel and its local neighboring

ixels by ZigZag scanning, called local ZigZag pattern ( Lzp ). Hence

zp is a local gray scale texture descriptor which represents the lo-

al spatial ZigZag structure of a texture image as shown in Fig. 2 (a).

et in a gray-scale image I , P 
(i, j) 
c be the center pixel of a 3 × 3 local

eighboring window having gray value I 
i, j 
c and the n th neighbors

f P 
(i, j) 
c are denoted by P 

(i, j) 
n around the center pixel P 

(i, j) 
c having

ray value I 
(i, j) 
n in a ZigZag fashion as depicted in Fig. 2 (b), where

 is a positive integer and n ∈ [1, N ]. The value of N (number of

eighbors) in Fig. 2 (b) is 8. The local texture of the monochrome

mage I is represented by the joint distribution of gray value differ-

nce between the center pixel and its N neighbors (N > 0) defined

s follows, 

 

(i, j) = τ (I (i, j) 
1 

− I (i, j) 
c , I (i, j) 

2 
− I (i, j) 

c , . . . , I (i, j) 
N 

− I (i, j) 
c ) 

here ( τ ) represents the joint distribution function. In order to

ncode the texture information using local ZigZag pattern, we

onsider only the signs of the differences sign (I 
(i, j) 
n − I 

(i, j) 
c ) which

ake Lzp invariant under monotonic photometric changes, hence

he operator Lzp is robust to lighting effects and is defined as, 

Lzp (i, j) = 

N ∑ 

n =1 

sign (I (i, j) 
n − I (i, j) 

c ) × 2 

n −1 , (1)

ign (z) = 

{
1 , i f z ≥ 0 

0 , else. 

The sign of differences between center and its neighborhoods

s described as a N-bit binary string, where 2 n −1 represents the

eight value of n th bit ( Fig. 2 (c)), resulting in 2 N distinct deci-

al values for the Lzp code. Since we are dealing with 3 × 3 lo-

al neighboring window, the value of Lzp code for each pixel is in

he range between 0 and 255. Fig. 2 (a)–(e) shows the local ZigZag

tructure of a patch, patch pixel representation based on ZigZag

tructure, weights of the local ZigZag pattern of the patch, a orig-

nal texture sample and Lzp pattern of the texture sample, respec-

ively. After extracting the Lzp pattern for each pixel ( x, y ) of the
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Fig. 3. (a) Texture sample. (b) Local directional edge maps. (c) Lzp 
u 2 
N,θ of the direc- 

tional edge map jθ . (d) local directional ZigZag pattern ( Ldzp ) histogram. 

Fig. 4. The Ldzp feature distribution for sample texture images of 9 different ori- 

entations taken from Outex_TC10 database: (a) without noise, (b) with noise cor- 

rupted by noise level of 10 dB SNR, (c) with noise corrupted by noise level of 30 dB 

SNR. Where abscissa and ordinate represent number of bins and feature probability 

distribution. 
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exture image of sizes M x × M y , the distribution of local gray scale

.e. texture pattern is represented by building a 2 N bins discrete

istribution of Lzp codes, given by 

H(λ) = 

M x −1 ∑ 

i =2 

M y −1 ∑ 

j=2 

f ( Lzp N (i, j) , λ) , λ ∈ [0 , L ] (2) 

f (u, v ) = 

{
1 , u == v 
0 , else 

here L is the maximal value of Lzp pattern. The Lzp descriptor is

urther extended to uniform pattern, where a uniformity measure,

 encodes the number of bitwise 1/0 transition (spatial changes)

n a N -bit pattern, defined as, 

U( Lzp N ) = | s (I i, j 
N 

− I i, j 
c ) − s (I i, j 

1 
− I i, j 

c ) | 

+ 

N ∑ 

n =2 

| s (I i, j 
n − I i, j 

c ) − s (I i, j 
n −1 

− I i, j 
c ) | (3) 

For example, the U values of Lzp strings 11111111 and 0 0 0 0 0 010

re 0 and 2, respectively. The uniform Lzp pattern refers to the uni-

orm appearance of string which has restricted transitions ( U ≤ 2)

n the N-bit circular binary strings [4] . All the non-uniform N-bit

inary string ( U > 2) are grouped into a “miscellaneous” category.

he mapping from Lzp N to Lzp 
u 2 
N , where superscript “u2” signifies

he uniform patterns having at most U value of 2 and has total N 

∗

N −1) + 3 distinct labels. It is implemented using a look-up table

f 2 N distinct elements. It is observed that uniform representation

f the Lzp are more stable (less sensitive to noise) and the number

f bins becomes significantly less, which makes matching compu-

ationally efficient. 

. Local directional ZigZag pattern 

The Lbp represents a non-directional first order circular deriva-

ive of local texture pattern which labels each pixel by thresholding

 set of sampled point of its even space circular neighbourhood.

t encodes the local micro-information as a binary string without

onsidering the suitable neighboring relationship. Whereas Ldp ex-

racts the more detailed local textural information with the higher

rder directional derivative variation of each pixel neighborhood.

owever, this method marks only derivative directional neighbors

o analyze local characteristic and loose the potential information

etween derivative directions. To make the descriptor more robust

gainst noise and invariance to rotation, we propose local direc-

ional ZigZag pattern ( Ldzp ) which incorporates directional edge

nformation of a texture image. The Ldzp descriptor is computed as

ollows: first the edge responses of the texture image is extracted

sing the Kirsch compass masks G shown in Eq. 4 in six different

irection. 

G 

0 = 

[ +5 +5 +5 

−3 0 −3 

−3 −3 −3 

] 

(4) 

The spatial coordinate of P 
i, j 
n with respect to the origin of the

irsch compass kernel, ( x, y ) and rotation with angle θ is given as,

x i = x c + cos (θ ) × (i − x c ) − sin (θ ) × ( j − y c ) 

y j = y c + sin (θ ) × (i − x c ) + cos (θ ) × ( j − y c ) 
(5) 

here ( x c , y c ) represents the spatial center coordinates of the ker-

el rotation and θ is the clockwise rotation angle having posi-

ive values of 0 °, 30 °, 60 °, 90 °, 120 °, and 150 ° ( θ ∈ [0 °, 180 °]) with

, j ∈ [1, 3]. The directional edge response of a texture image I

 Fig. 3 (b)) in the direction of angle θ is computed by Eq. (6) . 

jθ
(x,y ) = 

∫ 
G 

θ (x, y ) I(x, y ) d xd y. (6) 
After identifying the local directional edge map ( Ldem ) jθ ∈ R 

6 ,

zp 
u 2 
N,θ is computed for each θ from jθ where θ ∈ {0 °, 30 °, 60 °, 90 °,

20 °, 150 °} ( Fig. 3 (c)). Finally Ldzp is constructed by concatenat-

ng all the distribution of directional Lzp 
u 2 
N,θ i.e. { Lzp 

u 2 
N,θ (j θ ) | θ =

 

◦, 30 ◦, 60 ◦, 90 ◦, 120 ◦, 150 ◦} ( Fig. 3 (d)). The Ldzp descriptor over-

omes the limitations of Lbp features since Ldzp is derived from

he directional edge responses which are less sensitive to noise,

nd invariant to surface rotation. Fig. 4 (a)–(c) show the examples

f proposed Ldzp feature distribution for the texture sample im-

ges taken from Outex_TC10 database (details in Section 6 ) hav-

ng 9 different orientations (0 °, 5 °, 10 °, 15 °, 30 °, 45 °, 60 °, 75 °,
nd 90 °) without noise, with noise corrupted by noise level of

0 dB SNR and 30 dB SNR, respectively. It is clearly observed that

he Ldzp feature distribution of different orientations are approx-

mately overlapped for all cases which signifies Ldzp descriptor is

otation invariant. 

. Local ZigZag pattern vs. local binary pattern 

In conventional Lbp , the neighboring sampling points that do

ot fall exactly within the integer pixel positions have been esti-

ated by bi-linear interpolation or rounding operation which leads

o the unreliable texture information due to inaccuracy of inter-

olation or rounding operation. In case of Lbp the feature dimen-

ion exponentially increases with the number of sample points and

t leads to difficulties in both computation and classification per-

ormance. However, the proposed Lzp replaces the circular sam-

ling structure of Lbp by an effective ZigZag sampling structure

 Fig. 2 (a)) with respect to the center pixel. In this way all neighbor-

ng sampling points of the center pixel within a ZigZag sampling

tructure can fall exactly at the integer pixel positions and no bi-

inear interpolation or rounding operation is needed. In addition, to

void computational difficulties, we restrict the number of neigh-

oring sample points to be a constant of 8 which encodes local

exture information in atleast eight directions with respect to the

enter pixel that is sufficient to discriminate and provides reason-

bly good performance, whereas Lbp with only 8 sample points is

ailed to achieve good performance ( Table 2 ). Furthermore, in Lbp ,
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Table 1 

Summary of texture database used in experiment. 

Texture Database Image Rotation Illumination Variation Scale Variation Texture Classes Sample Size (pixels) Samples per Class Total Samples 

Outex_TC10 � 24 128 × 128 180 4320 

Outex_TC12 � � 24 128 × 128 200 4800 

Fig. 5. (a)–(d) represent Local ZigZag structure (3 × 3) of four different orders for 8 

neighboring with respect to center pixel and angular relationship among the neigh- 

bors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Average classification accuracy (%) of Ldzp descriptor and state-of-the-art schemes 

on Outex_TC10 and Outex_TC12. 

Method Classifier Outex_TC10 Outex_TC12 Average 

horizon t184 

Ltp [24] Nnc 76.06 63.42 62.56 67.34 

Var [16] Nnc 90.00 64.35 62.93 72.42 

Lbp [4] Svm 97.60 85.30 91.30 91.40 

Lbp 
riu 2 
R,N Nnc 84.89 63.75 65.30 71.31 

LBP/VAR Nnc 96.56 78.08 79.31 84.65 

Lbpv 
riu 2 
R,N [19] Nnc 91.56 77.01 76.62 81.73 

CLBP_S Nnc 84.81 63.68 65.46 71.31 

CLBP_M Nnc 81.74 62.77 59.30 67.93 

CLBP_M/C Nnc 90.36 76.66 72.38 79.80 

CLBP_S_M/C [20] Nnc 94.53 82.52 81.87 86.30 

CLBP_S/M Nnc 94.66 83.14 82.75 86.85 

CLBP_S/M/C Nnc 98.93 92.29 90.30 93.05 

Lbp 
NT 
R,N [30] Nnc 99.24 96.18 94.28 96.56 

Dlbp R =3 ,N=24 [18] Svm 98.10 87.40 91.60 92.36 

Brint [25] Nnc 99.35 97.69 98.56 98.53 

VZ-MR8 [5] Nsc 93.59 92.82 92.55 92.99 

VZ-Patch [7] Nsc 92.00 92.06 91.41 91.82 

Ptp [29] Nnc 99.56 98.08 97.94 98.52 

Lddp [23] Nnc 97.89 93.40 95.30 95.53 

Drlbp [31] Nnc 99.19 95.80 96.72 97.23 

CDCP [26] Nnc 99.76 99.82 99.62 99.72 

Proposed LDZP Nnc 99.95 99.93 99.82 99.90 

Fig. 6. Random samples of 24 texture images in Outex_TC10 and Outex_TC12 tex- 

ture suits. 
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the angular relation between any two consecutive sample point

with respect to center is always to be a constant (45 ° for 8 sam-

ple points) and there is no visually perceptible angular relation-

ship between two alternate pixel with respect to their intermedi-

ate. However, in Fig. 5 , from second to the seventh pixel of the

ZigZag scan, the two neighbors of each pixel extends angle either

45 °, 180 ° or 135 °. In Fig. 5 (a), the formed angles � P 1 P 2 P 3 , � P 2 P 3 P 4 ,

� P 3 P 4 P 5 , � P 4 P 5 P 6 , � P 5 P 6 P 7 , � P 6 P 7 P 8 , and � P 7 P 8 P 9 are 45 °, 135 °,
45 °, 180 °, 45 °, 135 °, 45 ° respectively and preserved a spatial co-

hesion between neighbouring pixels. Also in case of Lzp the an-

gle extended at the reference pixel by two consecutive pixels in

ZigZag scan varies while in case of Lbp this angle is constant and

equal to 45 °. These angular variations of Lzp among the sample

points capture more frequent changes in local texture pattern. Such

structure makes Lzp better texture descriptor than traditional Lbp

based descriptors. Also, computation of the Lzp is more efficient

than Lbp for the same feature size. In addition, the classification

performances of Lzp s are nearly equal ( Fig. 9 ) over different order

of Local ZigZag structures of Fig. 5 (a)-(d). 

5. Similarity matching using LDZP 

In this work, the texture classification is performed via non-

parametric Nnc classifier. The Nnc with χ2 -distance [4,7,20] is

used to show the effectiveness of the proposed Ldzp descrip-

tor. Two histograms H 1 = u 1 , . . . , u M 

and H 2 = w 1 , . . . , w M 

, are

compared using χ2 distance, defined as follows, D (H 1 , H 2 ) =∑ M 

i =1 
(u i −w i ) 

2 

u i + w i 
, where M represents the total number of bins, H 1 

and H 2 represent the extracted features of a trained model and

test sample. The class of test sample H 1 is assigned to the class

of trained model H 2 for which the χ2 -distance is minimized. 

6. Results and discussion 

To figure out the texture classification performance of the

proposed Ldzp descriptor, experiments are carried out on two

large and commonly used well-known Outex_TC_0 0 010 (TC10) and

Outex_TC_0 0 012 (TC12) [28] texture databases. These databases

contain 24 classes of homogeneous texture images of size

128 × 128 pixels. Outex_TC_0 0 010 (Outex_TC10) contains texture

images under illuminant “inca” whereas Outex_TC_0 0 012 (Ou-

tex_TC12) contain texture images with 3 different illumi-

nants (“inca”, “horizon”, and “t184”). Both of Outex test suits im-

ages are collected under 9 different rotation angels (0 °, 5 °, 10 °,
15 °, 30 °, 45 °, 60 °, 75 °, and 90 °) in each texture class. The exper-

imental test suites Outex_TC10 , and Outex_TC12 are summarized
n Table 1 . Some example images of the Outex database are shown

n Fig. 6 . 

The performance of Ldzp descriptor are evaluated in term of

lassification accuracy using K -fold cross-validation test along with

on-parametric nearest neighbor classifier ( Nnc ) with Chi-Squre

 χ2 ) distance. In K -fold cross-validation test, the feature set of each

ategory is randomly sorted and divided into K -folds ( K = 10),

here K − 1 folds is used to train the classifier and remaining one

old has been used to test the performance. Average of the classi-

cation accuracies over K rounds get a final cross-validation accu-

acy. The K -fold cross-validation process provides a more reliable

icture of the classification performance. The performance of the

roposed descriptor is compared with Lbp 
riu 2 
R,N [4] , Dlbp [18] , multi-

cale Clbp _ S riu 2 
R,N 

/M 

riu 2 
R,N 

/C(1 , 8 + 3 , 16 + 5 , 24) [20] , Lddp 
riu 2 
R,N [23] , Ltp

24] , Ptp [29] , Brint [25] , Lbp 
NT 
R,N [30] , VZ-MR8 [5] , VZ-Patch [7] and

ther state-of-the-art methods. 

The comparative results of the classification accuracy (%) are

abulated in Table 2 . We have made the following observa-

ions from the results of the experiment. The classification rate
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Fig. 7. Confusion matrix (in sorted) for classification performance of proposed Ldzp 

on (a) Outex_TC10 and (b) Outex_TC12 databases. 

Fig. 8. The classification accuracy against six different angles (0 °, 30 °, 60 °, 90 °, 120 °
and 150 °) of Kirsch compass masks for Outex database. 
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Fig. 9. The average classification accuracy of proposed Ldzp on Outex databases for 

four different ZigZag orders ( Fig. 5 (a)–(d)). 

d  

i  

a  

Z

 

h  

a  

t  

m  

t  

o  

d  

n  
f locally rotation invariant Lbp 
riu 2 
R,N / Var R,N is better than Lbp 

riu 2 
R,N 

s Lbp 
riu 2 
R,N / Var R,N computed the joint distribution of Lbp and

ocal variance of a texture image, which are complementary.

lbp _ S riu 2 
R,N 

/M 

riu 2 
R,N 

/C(1,8 + 2,16 + 3, 24) which is made by fusing the

lbp _ S and Clbp _ M/C, provides better performance compared to

he other variant of Clbp . This is because it contains complemen-

ary features of sign and magnitude, in addition to the center pixel

hich represents the gray level of the local patch. The Dlbp + Ngf

18] , makes use of the most frequently occurred patterns (around

0%) of Lbp to improve the recognition rate compared to original

bp 
u 2 
R,N . However, it neglects the local spatial structure, which is

mportant for texture discrimination and needs pre training stage

or dimensionality selections. The MR8 is a state-of-the-art texton

ased statistical algorithm, where the VZ-MR8 and VZ-Patch takes

ense response from multiple filters. However, the performance is

ignificantly low compared to the proposed Ldzp . In addition, fea-

ure extraction and matching complexity are quite high [7] because

he MR8 needs to find 8 maximum responses after 38 filters are

onvolving with the image and compares every 8-dimension vec-

or in an image with all the textons to build histograms using clus-

ering technique. Lbp 
NT 
R,N [30] based methods and Brint [25] give

etter performance compared to other state-of-the-art Lbp meth-

ds. However, the accuracies are lower than those obtained by our

roposed Ldzp . This is mainly because Lbp 
NT 
R,N extracts features by

sing locally rotation invariant Lbp 
riu 2 
R,N approach which produces

nly 10 bins and such small size of features can not represent each

lass well, while Brint method extracted large number of features

rom multiple resolution ( R = 1 , 2 , 3 , 4 ) by utilizing rotation invari-

nt Lbp 
ri 
R,N approach, whereas it loses the global image information.

Finally, result table shows the proposed Ldzp descriptor

chieves state-of-the-art performance in term of mean accuracy

nd standard deviations 99.95 ± 0.119%, 99.93 ± 0.156%, and

9.82 ± 0.196% on three different test suits Outex_TC10, and Ou-

ex_TC12 (“horizon”, and “t184”), respectively. It can also be ob-

erved that the superiority of the proposed Ldzp descriptor over

tate-of-the-art classification methods on both Outex_TC10 which

ontains texture under different illumination and Outex_TC12 con-

ains texture under rotation variations along with different illumi-

ation situations. The proposed descriptor provides superior per-

ormance because it has following attributes: The proposed Lzp re-

laces the circular sampling structure of Lbp by an effective ZigZag

ampling structure with respect to the center pixel. In this way

ll neighbors of the center pixel within a ZigZag sampling struc-

ure can fall exactly at the integer pixel positions which avoids

he unreliable texture information due to inaccurate bi-linear in-

erpolations of gray intensities; Lzp provides a strong varying an-

ular relation between two consecutive pixels with respect to the

enter as well as two alternate pixel with respect to their inter-

ediate which effectively encodes more frequent changes in local

exture pattern; To compute the Ldzp descriptor we calculate local

irectional edge map ( Ldem ) of a texture image using the Kirsch

ompass mask in six different directions and encodes all direc-

ional edge responses using Lzp and which makes the descriptor

otation invariant. Fig. 7 shows the confusion matrix for classifica-

ion performance of proposed Ldzp on Outex_TC10 and Outex_TC12

atabases. 

In addition, the individual classification accuracy of proposed

dzp against six different angles (0 °, 30 °, 60 °, 90 °, 120 ° and 150 °)
f Kirsch compass masks are evaluated on Outex_TC10 and Ou-

ex_TC12 databases. Fig. 8 shows the mean classification accu-

acy of the proposed Ldzp descriptors, extracted from the edge

esponses of a texture image with six different angles of Kirsch

ompass masks (0 °, 30 °, 60 °, 90 °, 120 ° and 150 °) ( Fig. 3 (b)) for

utex_TC10 and Outex_TC12 (“horizon” and “t184”) databases. The

verage classification performances of the proposed Ldzp on Outex

V  
atabases for four different ZigZag orders ( Fig. 5 (a)–(d)) are shown

n Fig. 9 . It is observed that the performances of proposed Ldzp

re approximately equal over selection of different order of Local

igZag structures. 

Though the trend is clear from the performance Table 2 , we

ave further analysed the performance using one way statistical

nalysis of variance ( Anova ) test [32] . The null hypothesis H 0 for

he test indicates that, there is no significant difference among group

eans . We can reject H 0 if the p -value for an experiment is less

han the selected significant level, which implies that the at least

ne group mean is significantly different from the others. To un-

erstand the performance of the proposed descriptor Ldzp was sig-

ificantly differs than well-known descriptors such as Ptp , Brint ,

Z-MR8, and Clbp _S/M/C, we conduct an one way Anova test with
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Table 3 

One way statistical ANOVA test result for Outex_TC10 & Ou- 

tex_TC12 (horizon and t184) texture databases, where level of sig- 

nificance selected as α = 0.05. 

Source SS df MS F Prob ( p ) > F 

Groups 116.669 04 29.1674 6.57 0.0074 

Error 044.425 10 04.4425 

Total 161.094 14 

Fig. 10. The box plot (descriptor vs. accuracy) corresponding to one way statistical 

Anova test for proposed Ldzp and other state-of-the-art methods on Outex_TC10 & 

Outex_TC12 (horizon and t184) texture databases. 
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Fig. 11. The area under the ROC curve (AUC) corresponds to the probability that a 
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Fig. 12. Confusion matrix (in sorted) for classification performance of proposed 

Ldzp on (a) Yale B and (b) ORL face databases. 
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significance level is kept as α = 0.05 and the test results are shown

in Table 3 . It is observed from Table 3 , the p -value (0.0074) is

less than the selected significant level α = 0.05, which indicates

the performance of proposed descriptor significantly differs from

other descriptors and hence reject the hypothesis H 0 . In addition,

the box plot corresponding to aforementioned Anova test is shown

in Fig. 10 , which clearly indicates the mean performance of pro-

posed descriptor significantly better than the well-known descrip-

tors such as Ptp [30] , Brint [25] , VZ-MR8 [5] , VZ-Patch [7] and

Clbp _S/M/C [20] . 

To visualize the texture classification performance of the

proposed descriptor in term of Receiver Operating Characteris-

tics (ROC) and Area Under Curve (AUC) [33] , the experiments

were carried out with K -folds cross validations ( K = 10) test in

slightly different way than before. Here one fold is used to train

the Nnc classifier while remaining K − 1 folds have been used to

test the performance of proposed descriptor. Though the number

of training samples is very less compared to test samples, the pro-

posed descriptor achieves average classification accuracy and stan-

dard deviation of 95.10 ± 0.6303%, 94.68 ± 1.1299% and 92.35

± 1.2251% for Outex_TC10 and Outex_TC12 (horizon & t184) test

suits, respectively. The ROC plot with AUC of the proposed descrip-

tor corresponding to above mentioned experiment is depicted in

Fig. 11 . It is observed from Fig. 11 that the proposed descriptor

achieves AUC values of 95.06%, 93.63% and 93.04%, respectively for

Outex test suits. 

In addition, Table 4 demonstrates the noise robustness of differ-

ent methods on Outex_TC10 database by comparing the classifica-

tion rates for different noise levels (measured using Snr i.e Signal

to Noise Ratio). The proposed descriptor achieves state-of-the-art

results in term of mean accuracy and standard deviations 99.91

± 0.1195%, 99.91 ± 0.1195%, 99.90 ± 0.1619%, 99.88 ± 0.1637%,

and 99.88 ± 0.2250% on SNR = 100 dB, 30 dB, 15 dB, 10 dB, and

5 dB, respectively. It is observed that the change of standard devia-

tions with the Snr levels shows the Ldzp descriptor is more robust

to noise compared to other state-of-the-art methods. When Snr
ecreases, the classification accuracy is nearly constant whereas it

rops for other state-of-the-art methods. 

To study the effectiveness of the proposed Ldzp descriptor for

ther images like human face, the experiments are carried on Yale

 [36] and Orl [37] face databases using K -folds ( K = 10) cross

alidation test. Yale B database consists of 5760 face images of ten

ndividuals. The images are taken under 9 different pose and 64

ifferent illumination conditions. Orl database consists of images

aken from 40 different individuals with 10 images of each per-

on. The images were taken at different times, varying the light-

ng, facial expressions (open/closed eyes, smiling/not smiling) and

acial details (glasses/no glasses). All the images were taken against

 dark homogeneous background with the subjects in an upright,

rontal position (with a tolerance for some side movement) [38] .

he comparative performances of face recognition using proposed

escriptor and other state-of-the-art descriptors like LTrP [39] , LVP

40] , LTP [24] , LBP [4] are tabulated in Table 5 . Experimental results

ndicate that the proposed descriptor achieves average recognition

erformances of 77.33% and 98.25% for Yale B and ORL databases,

espectively. Experimental results in Table 5 also indicate that pro-

osed Ldzp descriptor effectively work on face images and provide

etter or comparative recognition performances compared to other

tate-of-the-art descriptors. Fig. 12 shows the Confusion matrix for

lassification performance of the proposed Ldzp on Yale B and ORL

ace databases. 

We have implemented the algorithm in Matlab 2011 environ-

ent and executed the program on Intel ® Core TM 2 Duo Cpu T6400

 2.00 GHz × 2 processor and 3GB Ram with Ubuntu 14.04 Lts

perating system. The average feature extraction and matching
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Table 4 

Classification accuracy (%) of proposed method and different state-of-the-art methods on Ou- 

tex_TC10 with different noise levels in term of dB. 

Methods Classifier Classification Accuracy (%) 

Snr = 100 Snr = 30 Snr = 15 Snr = 10 Snr = 5 

Lbp 
NT 
R,N,k [30] Nnc – 99.79 99.76 99.76 99.74 

Ltp 
riu 2 
R =3 ,N=24 [34] Nnc 99.45 98.31 93.44 84.32 57.37 

Nrlbp 
riu 2 
R,N [35] Nnc 84.49 81.16 77.52 70.16 50.88 

Brint [25] Nnc 97.76 96.48 95.47 92.97 88.31 

Proposed Ldzp Nnc 99.91 99.91 99.90 99.88 99.88 

Table 5 

The comparative results for face recognition performances of proposed descriptor and other state-of-the-art descriptors using 10-folds cross validation test. 

Face Data Method Round-1 Round-2 Round-3 Round-4 Round-5 Round-6 Round-7 Round-8 Round-9 Round-10 Average 

Yale B [36] LTrP [39] 70.83 68.57 70.00 70.00 71.42 66.67 63.33 80.00 80.00 68.33 70.83 

LVP [40] 81.42 62.85 74.28 81.42 81.42 75.00 76.67 75.00 81.67 83.33 77.30 

LTP [24] 38.57 47.14 37.14 44.28 45.71 50.00 36.67 36.67 40.00 41.67 41.78 

LBP [4] 31.42 52.85 48.57 45.71 40.00 35.00 43.33 35.00 48.33 41.66 42.19 

LDZP 77.14 74.28 84.28 81.42 72.85 76.67 73.33 76.67 75.00 81.67 77.33 

ORL [37] LTrP [39] 97.50 10 0.0 0 10 0.0 0 97.00 95.00 95.00 92.00 95.00 95.00 10 0.0 0 96.75 

LVP [40] 10 0.0 0 10 0.0 0 95.00 97.50 97.50 97.00 97.00 97.50 97.00 10 0.0 0 98.00 

LTP [24] 95.00 92.50 92.50 10 0.0 0 97.50 97.50 95.00 97.50 97.50 92.80 95.75 

LBP [4] 90.00 10 0.0 0 87.00 92.50 97.50 92.50 92.50 97.50 95.00 95.00 94.25 

LDZP 10 0.0 0 95.00 97.50 10 0.0 0 10 0.0 0 97.00 95.00 10 0.0 0 97.80 10 0.0 0 98.25 
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3071–3084 . 
ime (in seconds) cost per-image by the proposed Ldzp descrip-

or on two benchmark texture databases take 0.20 s and 0.27 s

or both Outex_TC10 and Outex_TC12 (“horizon” and “t184”). It has

een observed that the matching complexity of the Ldzp descrip-

or varies linearly with number of training samples. It shows that

he proposed Ldzp descriptor is fast enough for real time scenario.

. Conclusion 

In this letter, we proposed a novel and efficient descriptor for

otation invariant texture image classification by exploring the lo-

al directional ZigZag pattern ( Ldzp ). To compute Ldzp descriptor,

t first directional edge response of a texture image is obtained

sing Kirsch compass mask in six different directions. Then the

roposed local ZigZag pattern ( Lzp ) which characterize local spa-

ial ZigZag structure of texture is used to encode directional edge

esponses. Finally, Ldzp feature descriptor is obtained by concate-

ating uniform pattern histograms of directional Lzp map. The pro-

osed descriptor is highly discriminative, robust on illumination

hanges and texture rotation, and also less sensitive to noise with

dvantages of computational simplicity. Experimental results on

wo Outex test suits for texture classification shows performance

f the proposed Ldzp descriptor provides superior texture classifi-

ation performance compared to state-of-the-art methods and ef-

ectively work as face image descriptor also. 
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