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Abstract

In order to perform unconstrained texture classifica-
tion this paper presents a novel and computationally effi-
cient texture descriptor called Complete Dual-Cross Pat-
tern (CDCP), which is robust to gray-scale changes and sur-
face rotation. To extract CDCP, at first a gray scale normal-
ization scheme is used to reduce the illumination effect and,
then CDCP feature is computed from holistic and compo-
nent levels. A local region of the texture image is repre-
sented by it’s center pixel and difference of sign-magnitude
transform (DSMT) at multiple levels. Using a global thresh-
old, the gray value of center pixel is converted into a binary
code named DCP center (DCP C). DSMT decomposes into
two complementary components: the sign and the magni-
tude. They are encoded respectively into DCP-sign (DCP S)
and DCP-magnitude (DCP M), based on their correspond-
ing threshold values. Finally, CDCP is formed by fusing
DCP S, DCP M and DCP C features through joint distribu-
tion. The invariance characteristics of CDCP are attained
due to computation of pattern at multiple levels, which
makes CDCP highly discriminative and achieves state-of-
the-art performance for rotation invariant texture classifi-
cation.

1. Introduction
Texture classification is one of the active research topics

due to scientific challenges and potential use in a wide range
of practical applications such as medical image analysis,
remote sensing, fabric inspection, segmentation, content-
based image retrieval [18], and iris based biometric recog-
nition [19]. In the past satisfactory performance has been
obtained by various techniques only in controlled environ-
ment. However, classification of unconstrained texture im-
age is a crucial problem due to wide variation of view-
points, illumination changes and degraded quality of tex-
ture image. Therefore, the design of efficient descriptor is
a fundamental problem in texture image classification. Ba-
sically, texture representation can be categorized in terms

of the employed approaches, e.g. geometrical, structural,
model-based, statistical, and signal processing. Earlier tex-
ture classification methods focus on the statistical analy-
sis of texture images which include the co-occurrence ma-
trix based approach [7] and filtering based techniques [16].
These methods provide good classification performance as
long as both training and test sample images have identi-
cal orientations. However, arbitrary rotations which could
occur in a real-world scene, affect the performance of the
methods. Thus, rotation invariance is a crucial issue to
be addressed and attention has been focused on the design
of geometrically and photometrically invariant local texture
representation [24, 15, 21]. At first Kashyap and Khotan-
zad proposed circular autoregressive dense approach [8] for
the rotation invariance texture classification. Earlier, many
other models have been explored for rotation invariance
classification, including multi-resolution, hidden Markov
model, and Gaussian Markov model. Recently Varma and
Zisserman proposed VZ-MR8 [20] and VZ-Patch [21] to
learn a texton dictionary from a set of training images,
which are rotation and scale invariant and then classified
the unknown sample images using learned texton distribu-
tions. The downside of these methods are feature extraction
and matching complexity which is not favourably good.

In order to gain more robustness, feature extraction is
often performed over local region of the image. In 1996 a
simple and computationally efficient texture representation,
called local binary pattern (LBP) was proposed by Ojala et
al. [14] for gray scale and rotation texture classification.
Other variants of LBP such as DLBP [9], LBP variance
(LBPV) [6], completed LBP (CLBP) [5], local derivative
pattern (LDP) [23], local wavelet pattern LWP [2], local di-
rectional derivative pattern (LDDP) [4], local ternary pattern
(LTP) [17] etc. were proposed due to numerous application
of LBP in the field of computer vision and pattern recogni-
tion such as texture segmentation, face recognition, shape
localization and object recognition [11]. However, most de-
scriptors are based on the same basic idea of LBP and ex-
tracts only circular isotropic micro structure of the texture
image at one level, which is not enough to describe the tex-

2017 4th IAPR Asian Conference on Pattern Recognition

2327-0985/17 $31.00 © 2017 IEEE
DOI 10.1109/ACPR.2017.160

741



ture information. To address the problem of LBPs Ding et.
al. [1] introduced dual-cross pattern (DCP) for face recogni-
tion, where DCP feature are computed locally at two levels:
component and holistic levels. Though DCP achieves suf-
ficient robustness under different geometric variations but
it loses the information about magnitude of differences and
also not carry any information of the referenced pixels.

To address the aforementioned problems this paper pro-
poses a new, simple yet highly discriminative feature de-
scriptor called complete dual-cross pattern (CDCP) to gen-
eralize the DCP for rotation invariant texture classification,
inspired from CLBP [5]. In CDCP, a local region of the
texture image is represented by it’s center pixel and differ-
ence of sign-magnitude transform (DSMT) at multiple lev-
els. The gray value of center pixel is converted into a binary
code named DCP center (DCP C) using a global threshold.
The DSMT decomposes into sign and magnitude compo-
nents, and they are separately encoded as DCP-sign (DCP S)
and DCP-magnitude (DCP M) based on their corresponding
threshold values. Finally, CDCP is formed by fusing DCP S,
DCP M and DCP C components, based on their joint dis-
tribution. The CDCP which is computed at multiple levels
and inherently includes the informations of center pixel, and
complementary sign and magnitude information of DSMT,
achieves state-of-the-art performance for rotation invariant
texture classification.

The reminder of the paper is organized as follows. Sec. 2
describes details of the DCP. The proposed framework is
demonstrated in Sec. 3. Experimental results are presented
in Sec. 4. Finally, the conclusion is drawn in Sec. 5.

2. Dual Cross Pattern
The dual-cross pattern (DCP) [1] is a gray-scale repre-

sentation which characterizes the spatial structure of the lo-
cal image texture at multiple levels. The DCP value for a
given center pixel P i,j

c at (i, j) of the image I of dimension
Mx×My is computed by comparing its gray value Ii,jc with
those of its N equal-sampled neighbors within radius Rin

at component level and comparing gray values of N equal-
sampled neighbors within radius Rin with the gray values
of same directional N equal-sampled neighbors within ra-
dius Rex at holistic level (Fig. 1). The nth neighbor of P i,j

c

within radius Rin (i.e. nth element of P i,j
Rin,N

) is denoted
by P i,j

Rin,N,n having gray value Ii,jRin,N,n and within radius
Rex (i.e. nth element of P i,j

Rex,N
) is denoted by P i,j

Rex,N,n

having gray value Ii,jRex,N,n as shown in Fig. 1, where n is
positive integer and n ∈ [0, N − 1]. The spatial coordi-
nate (x, y) of P i,j

R,N,n within radius R with respect to the
origin of the image is given as,

x(P i,j
R,N,n) = i+ r(P i,j

R,N,n)× cos(θ(P i,j
R,N,n))

y(P i,j
R,N,n) = j − r(P i,j

R,N,n)× sin(θ(P i,j
R,N,n))

(1)
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Figure 1: The local neighbors P i,j
Rin,N,n within radius Rin

and P i,j
Rex,N,n within radius Rex for (∀n ∈ [0, N − 1]) of a

center pixel P i,j
c in polar coordinate system.

where i ∈ [R + 1,Mx − R] and j ∈ [R + 1,My − R].
r(P i,j

R,N,n) and θ(P i,j
R,N,n) denote the polar coordinates of

P i,j
R,N,n within radius R and for n = 0, 1, . . . , N − 1 values

computed as

r(P i,j
R,N,n) = R

θ(P i,j
R,N,n) = n× 2π

N

(2)

The DCP encoding of the sample points is realized using
two steps. The texture information in each of the N direc-
tions is independently encoded and then the pattern in all
N directions are combined to form DCP code. To quantize
the texture information in each directions DCP is assigned a
unique number as follows,

DCPn = s(Ii,jRin,N,n − Ii,jc )× 2 + s(Ii,jRex,N,n − Ii,jRin,N,n)

Where s is the unit step function to find whether a given
input is positive or not. The final value of DCP code is com-
puted as

DCP
(i,j)
(Rin,Rex,N) =

N−1�

n=0

DCPn × 4n. (3)

In Fig. 1, we consider equally spaced N = 8 sample
points of the local neighbors in eight directions of range 0

◦

to 360
◦
, the DCPn (i ∈ [0, 7]) represent discreet variable

with four possible decibel values: 0, 1, 2 and 3. Therefore,
the total number of distinct levels in DCP code (Eqn. 3) will
be 48 = 65536. This value is too large, so for practical
implementation, the eight direction are grouped into two
cross subsets represented as {DCP0, DCP2, DCP4, DCP6}
and {DCP1, DCP3, DCP5, DCP7}. Each subset is further
formulated as an encoder, DCP-1 for first subset and DCP-2
for the next one. In this way, total numbers of levels in dual-
cross DCP encoding reduces to 2 × 44 = 512. The codes
produced by DCP-1 and DCP-2 for each reference pixel are
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Figure 2: Proposed texture classification framework: (a) Original image. (b) Normalized texture image. (c)-(d) Local
sampling structure of DCP-1 and DCP-2. (e)-(f) represent sign, magnitude and center components of DCP-1 and DCP-2. (g)-
(h) represent joint histogram map of sign, magnitude and center components for DCP-1 and DCP-2. (i) represents complete
dual-cross pattern (CDCP) histogram. (j) Classifier.

represented as,

DCP − 1 =
3�

n=0

DCP2n × 4n

DCP − 2 =
3�

n=0

DCP2n+1 × 4n.

(4)

The final dual-cross DCP descriptor for each referenced
pixel of an image is formed by concatenating of two codes
generated by DCP-1 and DCP-2 encoders:

DCP = {
3�

n=0

DCP2n × 4n,
3�

n=0

DCP2n+1 × 4n} (5)

Eqn. (5) shows that DCP is computed very efficiently by
only the double time cost of basic LBP.

3. Proposed Framework
This paper proposes a texture classification framework

(Fig. 2) which consist of three major step: Image normaliza-
tion, Complete Dual-Cross Pattern feature extraction, and
Classification. In normalization step (Fig. 2(b)), each im-
age sample is preprocessed: normalized to have an average
intensity of 128 and a standard deviation of 20 which re-
moves the global intensity and enhanced the contrast.

3.1. Complete Dual-Cross Pattern

Though DCP is a well-known and highly discrimina-
tive face descriptor which computes pattern within a local
neighborhood at multiple levels and achieves sufficient ro-
bustness under different geometric variations, it loses the
information about magnitude difference and do not carry
the referenced pixel information. To address the aforemen-
tioned problems, this paper proposes a new feature descrip-
tor called complete Dual-Cross Pattern (CDCP) to further

generalize the DCP descriptor. In CDCP a local region
is represented by its referenced pixel and a difference of
sign-magnitude transform (DSMT) at component and holis-
tic level. The details of CDCP descriptor is as follows:

3.1.1 Difference of Sign-Magnitude Transform

Referring the Fig. 1, for a given referenced pixel P i,j
c total

difference due to the differences at component and holis-
tic levels in each of equally spaced N neighboring sample
points directions can be represent as

dn = (Ii,jRin,N,n − Ii,jc ) + (Ii,jRex,N,n − Ii,jRin,N,n)

= dcn + dhn
(6)

where dcn = (Ii,jRin,N,n − Ii,jc ) and dhn = (Ii,jRex,N,n −
Ii,jRin,N,n) represent component and holistic level differ-
ences, and n ∈ [0, N−1]. The dn can be further decompose
into sign and magnitude components:

dn = scn ∗mc
n + shn ∗mh

n (7)

where scn = sign(dcn) and shn = sign(dhn) are signs of
component and holistic levels differences, and mc

n =| dcn |
and mh

n =| dhn | are magnitudes of component and holistic
levels differences. The difference vector and transformed
sign and magnitude vectors of component and holistic lev-
els for equally spaced N neighboring sample points can be
represented as [d0, d1, . . . , dN−1], [sc0, s

c
1, . . . , s

c
N−1],

[mc
0,m

c
1, . . . ,m

c
N−1], [sh0 , s

h
1 , . . . , s

h
N−1], and

[mh
0 ,m

h
1 , . . . ,m

h
N−1], respectively. Obviously, vectors

[sc0, s
c
1, . . . , s

c
N−1] and [mc

0,m
c
1, . . . ,m

c
N−1] are comple-

mentary at components level, vectors [sh0 , s
h
1 , . . . , s

h
N−1]

and [mh
0 ,m

h
1 , . . . ,m

h
N−1] are complementary at holistic

level, and as per Eqn. (7) the vector [d0, d1, . . . , dN−1]
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can be perfectly reconstructed using sign and magnitude
vectors at components and holistic levels.

3.1.2 DCP S, DCP M, DCP C, and CDCP

Sec. 3.1.1 describes details of the differences of sign-
magnitude components for a referenced pixel at multiple
levels. Fig. 2(e) & (f) show three operators namely DCP C,
DCP S, and DCP M which are proposed to encode the cen-
ter gray value (C), sign of difference (S) and magnitude of
difference (M) features for DCP-1 and DCP-2, respectively.
The DCP S, DCP M and DCP C operators for DCP-1 are
defined as

DCP S1 =
3�

n=0

(f(dc2n, 0)× 2 + f(dh2n, 0)× 4n

DCP M1 =
3�

n=0

(f(mc
2n, cm)× 2 + f(mh

2n, cm)× 4n

DCP C1 = f(Ic
2n, cc), ∴ n = 0, 1, 2, 3

(8)

f(x, y) =

�
1, if x ≥ y

0, otherwise.

where dc2n and dh2n represent differences at component and
holistic levels, respectively while mc

2n and mh
2n represent

magnitude of dc2n and dh2n respectively. cm is the adaptive
threshold value obtained from the mean value of m2n and
cc is threshold value obtained from average gray value of
entire image I . Similarly, the DCP S, DCP M and DCP C
operators for DCP-2 are defined as

DCP S2 =
3�

n=0

(f(dc2n+1, 0)× 2 + f(dh2n+1, 0)× 4n

DCP M2 =
3�

n=0

(f(mc
2n+1, cm)× 2 + f(mh

2n+1, cm)× 4n

DCP C2 = f(Ic
2n+1, cc), ∴ n = 0, 1, 2, 3

(9)
here, the adaptive threshold value cm is calculated from the
mean value of m2n+1.

Finally, three defined operators DCP S1, DCP M1, and
DCP C1 are combined through joint distribution. Initially,
we build a 3-D joint histogram of DCP S1, DCP M1, and
DCP C1, which we referred as CDCP1 map for DCP-1
shown in Fig. 2(g) and then converted the 3-D histogram
to a 1-D histogram shown in Fig. 2(i). In a similar way,
for DCP-2, DCP S2, DCP M2, and DCP C2 are combined
to build CDCP2 map shown in Fig. 2(h) and 1-D histogram
shown in Fig. 2(i). Finally, the Complete Dual-Cross Pat-
tern (CDCP) histogram is formed by concatenating both 1-D
histograms of CDCP1 and CDCP2 maps.

3.2. Similarity Measurement of CDCP histogram

There are several metric for similarity measurement be-
tween two histograms such as histogram intersection, log-
likelihood ratio and χ2 metrics. In this work, the texture
classification is performed via non-parametric NNC classi-
fier. The NNC with χ2-distance [15, 21] is used to show the
effectiveness of the proposed CDCP descriptor. Two his-
tograms H1 = u1, . . . , uM and H2 = w1, . . . , wM , are
compared using χ2 distance, defined as D(H1, H2) given
below.

D(H1, H2) =
M�

i=1

(ui − wi)
2

ui + wi
(10)

where M represents the total number of bins, H1 and H2

represent the extracted features of a trained model and test
sample. The class of test sample H1 is assigned to the
class of trained model H2 for which the χ2-distance is min-
imized.
Table 1: Summary of Texture Database used in Experiment

Texture
Database

Image
Rotation

Illumination
Variation

Scale
Variation

Texture
Classes

Sample
Size (pixels)

Samples
per Class

Total
Samples

Outex TC10 � 24 128 x 128 180 4320
Outex TC12 � � 24 128 x 128 200 4800

4. Result & Discussion
To figure out the texture classification performance of the

proposed Complete Dual-Cross Pattern CDCP descriptor,
the experiments are carried out on two large and commonly
used well-known Outex TC 00010 (Outex TC10) and Ou-
tex TC 00012 (Outex TC12) [13] texture databases. These
databases contain 24 classes of homogeneous texture im-
ages each of size 128 × 128 pixels. Outex TC10 con-
tains texture images under illuminant “inca” whereas Ou-
tex TC12 contains texture images with 3 different lighting
conditions (“inca”, “horizon”, and “t184”). Both of Ou-
tex test suit images are collected under 9 different rotation
angles (0

◦
, 5

◦
, 10

◦
, 15

◦
, 60

◦
, 75

◦
and 90

◦
) in each texture

classes. The test suites Outex TC10, and Outex TC12 are
summarized in Table 1. Some example images of the Outex
database are shown in Fig. 3.

Figure 3: Random samples of 24 texture images having 128
× 128 pixels each from Outex texture suits

The performance of CDCP descriptor has been evalu-
ated in term of classification accuracy using K-fold cross-
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validation test along with non-parametric nearest neigh-
bor classifier (NNC) with Chi-Squre (χ2) distance. In
K-fold cross-validation test, the feature set of each cat-
egory is randomly sorted and divided into K-folds (K
= 10). Average of the classification accuracies over K
rounds is computed to get a final cross-validation accu-
racy. The K-fold cross-validation process provides a more
reliable picture of the classification performance. The
performance of the proposed descriptor is compared with
LBPriu2R,N [15], DLBP [9], multiscale CLBP S/M/C(1, 8 +

3, 16 + 5, 24) [5], LDDPriu2R,N [4], LTP [17], PTP [22],
BRINT [10], LBPNT

R,N [3], VZ-MR8 [20], VZ-Patch [21],
DCP [1] and state-of-the-art methods.
Table 2: Average classification accuracy (%) of CDCP de-
scriptor and state-of-the-art schemes on Outex TC10 and
Outex TC12

Method Classifier Outex TC10 Outex TC12 Averagehorizon t184
LTP [17] NNC 76.06 63.42 62.56 67.34
VAR [14] NNC 90.00 64.35 62.93 72.42
LBP [15] SVM 97.60 85.30 91.30 88.30
LBPriu2R,N NNC 84.89 63.75 65.30 64.52

LBP/VAR NNC 96.56 78.08 79.31 84.65
LBPVriu2

R,N [6] NNC 91.56 77.01 76.62 76.81
CLBP S/M/C [5] NNC 98.93 92.29 90.30 93.05

LBPNT
R,N [3] NNC 99.24 96.18 94.28 95.23

DLBPR=3,N=24 [9] SVM 98.10 87.40 91.60 89.50
BRINT [10] NNC 99.35 97.69 98.56 98.12

VZ-MR8 [20] NSC 93.59 92.82 92.55 92.99
VZ-Patch [21] NSC 92.00 92.06 91.41 91.82

PTP [22] NNC 99.56 98.08 97.94 98.01
LDDP [4] NNC 97.89 93.40 95.30 94.35

DRLBP [12] NNC 99.19 95.80 96.72 96.26
DCP [1] NNC 96.73 97.32 95.83 96.63

Proposed CDCP NNC 99.76 99.82 99.62 99.72

The comparative results of the classification accu-
racy (%) are tabulated in Table 2. We have made the
following observations from the results of the experi-
ment. The classification rate of locally rotation invariant
LBPriu2R,N/VARR,N provides better compared to LBPriu2R,N as
LBPriu2R,N/VARR,N computed the joint distribution of LBP
and local variance of a texture image which are complemen-
tary. CLBP S/M/C(1,8 + 2,16 + 3, 24) which is made by
fusing the CLBP S and CLBP M/C, provides quite good
performance. This is because it contains complementary
features of sign and magnitude, in addition to center pixel
which represents the gray level of the local patch but multi-
scale representation of CLBP increases feature extraction
and matching complexity which is proportional to its scale.
The DLBP + NGF [9], which makes use of the most fre-
quently occurred patterns of LBP to improve the recogni-
tion rate is compared with original LBPu2R,N . However, it
neglects the local spatial structure which is important for
texture discrimination and needs pre training stage for di-
mensionality selections. The MR8 is a state-of-the-art tex-
ton based statistical algorithm, where the VZ-MR8 and VZ-

Patch takes dense response from multiple filter. However,
the performance is significantly low compared to the pro-
posed CDCP. In addition, feature extraction and match-
ing complexity are quite high [21] because MR8 needs
to find 8 maximum responses after 38 filters convolving
with the image and compares every 8-dimension vector in
an image with all the textons to build histograms using
clustering technique. Conventional DCP [1] provides bet-
ter classification performance compared to LBP, LBPriu2R,N ,
and LBPR,N/VAR because DCP extracts local pattern from
component and holistic levels. But DCP does not incor-
porate the magnitude information of differences and any
information of referenced pixel. In addition, it’s perfor-
mance is significantly less compared to the proposed CDCP.
LBPNT

R,N [3] based methods and BRINT [10] give better per-
formance compared to other state-of-the-art LBP methods.
However, the accuracies are lower than those obtained by
proposed CDCP.

Although the Outex test suits (Outex TC10 (“inca”),
Outex TC12(“horizon” and “t184”)) contain both illumi-
nant and different rotation angles, the proposed descrip-
tor achieves performance in term of mean accuracy and
standard deviation 99.76 ± 0.3086%, 99.82 ± 0.1464, and
99.62 ± 0.1619 on three different test suits respectively. Ta-
ble 2 shows proposed CDCP provides better performance
compared to state-of-the-art descriptor based texture clas-
sification methods because it has the following attributes.
It computes local texture pattern from multiple component
and holistic levels which carries more discriminative infor-
mation of micro as well as macro texture pattern. CDCP is
formed by fusing the joint distribution of DCP S, DCP M,
and DCP C, therefore it contains complementary compo-
nents: the sign and magnitude of multi-level differences, as
well as gray value of reference pixel. These properties make
CDCP descriptor more robust under illumination variation.
In addition, the “riu2” mapping scheme is used to individual
sign (DCP Sriu2) and magnitude (DCP Mriu2) components
for both DCP-1 and DCP-2 (Fig. 2(e)-(f)) to makes CDCP
descriptor rotation invariant.
Table 3: The classification accuracy (%) of CDCP descrip-
tor for nine different rotation angles under rotation invariant
experimental set-up on Outex test suits.

Databases Test Angles Average
0
◦

5
◦

10
◦

15
◦

30
◦

45
◦

60
◦

75
◦

90
◦

Outex TC10 99.79 100 100 99.79 99.58 99.37 99.79 99.58 99.37 99.69
Outex TC12

(horizon) 100 100 100 99.79 99.79 99.79 99.79 98.33 99.37 99.65

Outex TC12
(t184) 100 100 100 100 99.37 99.58 99.37 98.95 97.70 99.44

To analyse rotation invariant performance of the pro-
posed descriptor, for both of Outex TC10 and Outex TC12,
we train the classifier with 8 different rotation angles
whereas the classifier was tested using remaining one rota-
tion angle. The classification results of rotation invariant ex-
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perimental set-up are tabulated in Table 3. The results show
that the proposed descriptor achieves sufficiently high per-
formance in term of mean accuracy and standard deviation
99.69 ± 0.2354%, 99.65 ± 0.5311, and 99.44 ± 0.7511 on
Outex TC10 (“inca”), Outex TC12 (“horizon” and “t184”)
test suits respectively.

5. Conclusions

In this paper, we proposed a novel and computation-
ally efficient descriptor named complete dual-cross pat-
tern (CDCP) for illumination and rotation invariant texture
image classification by exploring the sign and magnitude
components of (DSMT) at component and holistic levels. In
CDCP, three operators DCP S, DCP M, and DCP C were
define as the sign and magnitude of multi-level differences
and local gray scale features, respectively. Finally, DCP S,
DCP M, and DCP C codes, which are in binary string for-
mat are combined to build up CDCP by fusing through joint
distribution. CDCP is capable to encode micro as well as
macro pattern due to extraction of local feature at compo-
nent and holistic levels and provides state-of-the-art rotation
invariant texture classification performance.
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