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Abstract— A new image feature description based on the local 

wavelet pattern (LWP) is proposed in this paper to characterize 

the medical CT images for content-based CT image retrieval. In 

the proposed work, the LWP is derived for each pixel of the CT 

image by utilizing the relationship of centre pixel with the local 

neighboring information. In contrast to the Local Binary Pattern 

which only considers the relationship between a centre pixel and 

its neighboring pixels, presented approach first utilizes the 

relationship among the neighboring pixels using local wavelet 

decomposition and finally considers its relationship with the 

centre pixel. A centre pixel transformation scheme is introduced 

to match the range of centre value with the range of local wavelet 

decomposed values. Moreover, the introduced local wavelet 

decomposition scheme is centrally symmetric and suitable for CT 

images. The novelty of this manuscript lies in following two ways, 

(1) encoding local neighboring information with local wavelet 

decomposition and (2) computing LWP using local wavelet 

decomposed values and transformed centre pixel values. We 

tested the performance of our method over three CT image 

databases in terms of the precision and recall. We also compared 

proposed LWP descriptor with other state-of-the-art local image 

descriptors and the experimental results suggest that the 

proposed method outperforms other methods for CT image 

retrieval. 
 

Index Terms—Medical diagnosis, CT images, Image retrieval, 

Local image descriptors, Local wavelet pattern, LBP, LTP. 

 

I. INTRODUCTION 

A. Motivation 

N the field of medical analysis, images play a crucial role 

for management, diagnosis and teaching purposes. Now 

various types of images are being generated by the medical 

imaging devices such as computer tomography (CT), magnetic 

resonance imaging (MRI), visible, nuclear imaging, etc. to 

capture the patient pathology [1]. These images may be treated 
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as a source for the diagnosis aid. However due to the rapid 

increase in the number of medical images day by day, the 

patient diagnosis in medical institutions and hospitals is 

becoming more challenging and required more accurate and 

efficient image searching, indexing and retrieving methods. 

Content-based image indexing and retrieval is turning up 

continuously to combat this problem on the basis of the image 

digital content [2] such as color, texture, shape, structure, etc. 

The extensive and comprehensive literature survey on content 

based image retrieval (CBIR) is presented in [3]-[4]. Medical 

image retrieval systems are being used mostly by the 

physicians to point out the disorder present in the patient 

image by retrieving the most similar images from the related 

reference images with its associated information. The existing 

medical image retrieval systems are presented by various 

researchers through the published literature [5]-[11]. Muller et 

al. have reviewed the medical CBIR approaches on the basis 

of the clinical benefits [12]. 

The feature vectors are extracted from each image in order 

to facilitate the image retrieval and the feature vector of query 

image is compared with the feature vectors of the database 

images. The performance and efficiency of any CBIR system 

is heavily dependent upon the feature vectors [28]. The feature 

vectors being used in recent retrieval and classification 

systems utilize the visual information of the image such as 

shape [13]-[14], texture [15]-[16], [43], edges [17]-[18], color 

histograms [19]-[20], etc.  Texture based image descriptors 

have been widely used in the field of pattern recognition to 

capture the fine details of the image. In this paper, we 

presented a local wavelet texture feature for medical CT image 

retrieval. 

 

B. Related Work 

Ojala et al. [21] introduced the local binary pattern (LBP) 

for texture classification. LBP operator became more popular 

due to its reduced computational complexity and enhanced 

performance in several applications such as face recognition 

[22], analysis of facial paralysis [23], analysis of pulmonary 

emphysema [24], etc. Several other LBP variants [25]-[27], 

[45]-[49] also proposed for texture representation in view of 

high success of LBP. Centre symmetric local binary pattern is 

investigated to reduce the dimension of the LBP for local 

region matching [26]. Local ternary pattern (LTP) is 

introduced as the generalization of LBP for face recognition 

under varying lighting situations [27]. These methods are 

generally illumination invariant. Peng et al. extracted the 
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texture cues in chest CT images on the basis of the uniformity 

of structure and brightness in the image [29]. They depicted 

the structure and brightness in the image using extended 

rotation invariant local binary pattern and difference in 

gradient orientations. Two descriptors namely local diagonal 

extrema pattern [44] and local bit-plane decoded pattern [50] 

are investigated very recently for biomedical images. Region 

of interest retrieval is proposed by Unay et al. [30] in brain 

MR images on the basis of the local structure exist in the 

image. SVM-based feature selection is applied over the 

textural features for tumor recognition [31] in wireless capsule 

endoscopy images. Felipe et al. have used the co-occurrence 

based gradient texture feature for tissue identification by 

CBIR system [32]. To reduce the memory required for image 

storage, physiological kinetic feature is presented by Cai et al. 

[33] for positron-emission-tomography (PET) image retrieval. 

Some methods designed for medical image retrieval using 

distance metric/similarity learning are depicted in [34]-[36]. 

Wavelet based features are also presented by some researchers 

in medical CBIR systems [37]-[38]. These methods mainly 

used the wavelet transformation over the images globally [39] 

(i.e. 2-D wavelet transformation of image) whereas we applied 

the wavelet decomposition technique locally using 1-D Haar 

wavelet transformation which is more advantageous to encode 

the local texture information. 

 

C. Major Contribution 

The local feature descriptions presented through the 

published literature have utilized the relationship of a 

referenced pixel with its neighboring pixel [15], [21], [27]. 

Some approaches also tried to utilize the relationship among 

the neighboring pixels with success in some extent but at the 

expense of high dimensionality which are generally more time 

consuming for image retrieval [17]. This is the motivation for 

us to propose a new local wavelet pattern (LWP) based feature 

vector of low dimension. LWP uses both relationship i.e. 

among local neighbors and also between the centre pixel and 

its local neighbors to construct the descriptor. It encodes the 

relationship among the local neighbors using local wavelet 

decomposition method and finally produces a binary pattern 

by comparing these decomposed values with the transformed 

centre pixel value. The outperformance and efficiency of the 

LWP has been made confirmed through medical image 

retrieval experiments over three CT databases. 

The remaining of the manuscript is integrated in following 

manner. Section II presents the proposed framework of CT 

image retrieval and also proposed the construction of LWP 

feature vector. Section III describes the evaluation criteria. In 

Section IV, experiments are performed while result analysis 

and discussions are presented in section V and finally 

concluding remarks are highlighted in Section VI. 

 

II. MEDICAL CT IMAGE RETRIEVAL FRAMEWORK 

In this section, we present the framework for medical CT 

image retrieval using local wavelet pattern (   ). Fig. 1 

shows the proposed framework using block diagrams. 

 

Fig. 1. Proposed system framework for medical CT image retrieval. 

 

Local neighborhood extraction, local wavelet 

decomposition, centre pixel transformation, local wavelet 

pattern generation, feature vector generation, similarity 

measurement, and image retrieval are the main processing 

units of the proposed CT image retrieval. In this section, first 

the extraction process of local neighborhood of any given 

centre pixel      at co-ordinate       of any grayscale CT 

image   of dimension       is described, then we will 

present the concept of local wavelet decomposition of 

extracted local neighborhood and centre pixel transformation, 

then the construction of local wavelet pattern is introduced and 

after construction of local wavelet pattern for each of the pixel 

of the image, the feature vector for that image is generated. 

Now the query image will be matched with the database 

images by comparing its feature vector with the feature 

vectors of the database images and most similar images will 

be retrieved. 
 

A. Local Neighborhood Extraction 

To facilitate the computation of local wavelet pattern 

(LWP), first we required to extract the local neighborhood of 

any given pixel. We extract the local neighbors in a manner 

such that all the extracted neighbors will be equally spaced at 

a particular radius from the centre pixel similar to [16], [22], 

[25]. Let   is a grayscale CT image of dimension      . 

The      is a particular pixel of image   at coordinate       in 

Cartesian coordinate system having origin at left and upper 

corner of the image as shown in Fig. 2 and the intensity value 

at pixel      is     . 
 

 

Fig. 2. (a) The axis of the image in Cartesian coordinate system, and (b) the 

origin of the axis is at the upper and left corner of the image and       

is the pixel of image at coordinate      . 
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Fig. 3. The local neighbors (i.e.       

   
 for          ) of a centre pixel 

(    ) in polar coordinate system. 

 

We represented     
   

 to denote the set of   local neighbors 

of      equally distributed at a circle of radius   having centre 

at     . As depicted in Fig. 3, the     neighbor of      (i.e.     

element of     
   

) is denoted as       
   

 having intensity value 

      
   

 where   is positive integer and        . It should be 

noted that we can consider only those pixels as a central pixel 
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dimension of the image  . The coordinate of       
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respect to the origin of the image in Cartesian coordinate (   ) 

system is given as, 
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B. Local Wavelet Decomposition 

The   neighbors at radius   of any pixel      are       
   

 

having intensity value       
   

 where        . Now, we use 

these intensity values to encode the relationship existing 

among the neighbors of the centre pixel using the concept of 

local wavelet decomposition. We applied 1-D Haar wavelet 

decomposition to transform the       
   

 into       
     

 for     

     , where   is a positive integer number (i.e.     ) used 

to represent the level of transformation. Note that the value of 

  should be chosen in such a way that it satisfies the 

following criteria, 

                                                              

where            is a function to find the remainder when 

   is divided by   , and the maximum possible value of   (i.e. 

    ) depends upon the total number of neighbors ( ) under 

consideration and satisfies the following criteria, 

 
Fig. 4. The transformation of an  -dimensional vector     

   
 to another  -

dimensional vector     
     

 at     level. 
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at     level to another  -dimensional vector     
     

 based on 

the basis function of the 1-D Haar wavelet at that level as 

shown in Fig. 4. Mathematically, this transformation is 

defined as,  
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From (7) and (8),     
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where      is the basis function at     level for   values and 

given as, 
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where    is the unit matrix of size    ,        is the basis 

function at         level and     
  is the 1-D Haar wavelet 

square basis matrix of size     for     level transformation. 

Note that in (9) the basis matrix      is computed recursively 

from the        and directly applied with input values     
   

 to 

obtain the     
     

. Further in this section, we show that     
     

 

can also be obtained recursively from     
       

 without 

recursive computation of      instead by using the basis 

matrix of     level (i.e.     
 ) only. 
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                                                 (a)                     (b)                                                                                                                  (c) 

       
 (d)                          (e) 

Fig. 5. An example image considered from the Nema-CT database to show the effect of each step. (a) Considered Image, (b) the final local wavelet pattern map 

of image, (c) local wavelet decomposed images for          and   respectively while    ,     and    , (d) centre pixel transformed images for 

         and   respectively, and (e) local wavelet patterns for          and   respectively. 

The values of the elements of matrix     
  depends upon the 

level of transformation (i.e.  ) and defined as follows, 
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From (9) and (10), we can write     
     

 in the following 

form, 
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After replacing             
   

   with (    
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from (9) in 

(13) and simplifying (13), we find that     
     

 can be defined 

recursively in following manner, 
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where     
       

 is an  -dimensional vector obtained after 1-D 

Haar wavelet decomposition of     
   

 at         level. 

We also depicted 4 local decomposed images (          
 ) in 

Fig. 5(c) for an example image of Fig. 5(a). These 4 images 

correspond to the          and   when we considered    , 

    and    . It can be seen that these images are having 

varying degree of information associated after local wavelet 

decomposition which will be used with the centre pixel 

information to encode the feature vector. 

C. Centre Pixel Transformation 

We encoded the relationship among the neighboring pixels 

    
   

 of the centre pixel      using local wavelet decomposition 

in the previous section. But, finally we have to encode the 

relationship exist between      and     
   

. Most of the existing 

methods have used directly the intensity values of the 

neighboring pixels (    
   

), whereas we will use the local 

wavelet decomposed values at level   of the neighboring 

pixels (i.e.     
     

) for this purpose to compare with the     . It is 

obvious that, we can’t compare     
     

 with      directly because 

the range of the values of     
     

 is now changed. To cope with this 

problem, we propose a centre pixel transformation scheme which 

transforms      into an array   
     

 of length   at level   such that 

the range of the     
     

 is the same as the range of the       
     

 for 

         . We defined     
     

 mathematically using recursion 

as follows, 
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where   is the number of gray levels in the image  . 

After performing centre pixel transformation the range of 

    
     

 is now matched with the range of       
     

 for all integer 

values of   between 1 and  . The centre pixel transformed 

images (        
 ) for the image of Fig. 5(a) are shown in the 

Fig. 5(d). The 4 images in this figure are computed for 

         and   respectively at level 2 (i.e.    ), while the 

number of local neighbors are 4 (i.e.    ). Visually it is 

hard to notice the differences between these images but 

actually the intensity ranges for them are having lot of 

differences. 
 



IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5892-5903, 2015 5 

                         
                (a) Image1                      (b) Image2                   (c) Image3 

  
(d)                                                             (e) 

Fig. 6. Examples illustrating the behavior of LBP [21], LTP [27], LTCoP 

[15], LMeP [17] and LWP for intra and inter class images; (a, b, c) 

Image1, Image2 and Image3 respectively are three images where 
Image1 and Image2 are from the same class whereas Image1 and 

Image3 are from the different classes, (d-e) The probability 

distributions of the difference of the feature vectors of each method 

w.r.t. the zero mean for intra (Image1 and Image2) and inter (Image1 

and Image3) class images respectively. 

D. Local Wavelet Pattern 

Previously we calculated     
     

 by incorporating the 

relationship among neighboring pixels and   
     

 by range 

matching of centre pixel with the range of     
     

. Here, in this 

section, we will use     
     

 and   
     

 values to encode the 

relationship between      and     
   

 (i.e. between the centre 

pixel and its neighbors) into binary form. We termed this 

relation as local wavelet pattern (LWP) which is basically a 

binary array of   values corresponding to the each neighbor of 

     and defined as follows, 

      
     

 [        
     

         
     

           
     

]                

where         
     

 is a binary LWP value for     neighbor of      

and computed as follows, 

        
     

            
     

                                     

where      is a function to find that if a number is positive 
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and       
     

 is the     element of the local wavelet difference at 

    level for pixel      and defined as follows, 

      
     

       
     

     
     

                                            

We define the local wavelet pattern map (i.e.     ) for 

     using its local wavelet patterns defined in (16) as follows, 

       
     

 ∑              
     

 

   

                             

Note that the values of      is dependent upon the 

number of neighbors ( ) considered to form the pattern and it 

is in between the   and     . In other words the range of 

     is [ ,     ]. We computed the local wavelet 

patterns (i.e.         
           ) in Fig. 5(e) for an example 

image considered in the Fig. 5(a) using its local wavelet 

decomposed images and local pixel transformed images 

depicted in the Fig. 5(c-d) respectively. The 4 images in the 

Fig. 5(e) are computed for          and   when we 

considered    ,     and    . We also generated the 

local wavelet pattern map (i.e.        
 ) for the same 

example in Fig. 5(b). It is observed that the        
  map is 

having more details as compared to the input images which 

will provide more accurate matching between two images. 

E. LWP Feature Vector 

We computed the local wavelet pattern map (    ) in 

previous subsection using proposed local wavelet patterns. 

The local wavelet pattern feature vector ( ) of    dimension 

is calculated using the      of every pixels of image  . We 

find the LWP feature vector     
  at     level of local wavelet 

decomposition when   neighbors at radius   are considered to 

construct the      using the following equation, 
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for             , where,       are the dimension of 

the image   (i.e. total number of pixel),   ̂       , 

  ̂       , and         is a function given as follows, 

        {
                    
                          

                                  

We computed and compared the LBP [21], LTP [27], 

LTCoP [15], LMeP [16] and LWP feature vectors using 

images of intra and inter categories in Fig. 6. Three images 

namely Image1, Image2 and Image3 are shown in Fig. 6(a-c) 

respectively where Image1 and Image2 are taken from the 

same category and Image1 and Image3 are taken from the 

different categories of the TCIA-CT database. Fig. 6(d-e) 

illustrate the probability distributions of the difference of the 

feature vectors w.r.t. the zero mean for intra (Image1 and 

Image2) and inter (Image2 and Image3) class images 

respectively. The y-axis shows the probability that the feature 

vector of one image differs from another by a particular 

amount of deviation and x-axis shows the deviation from the 

zero mean. The large amplitude of probability at zero mean 

signifies the high similarity between the feature vectors 

whereas more deviation from zero mean represent the less 

similar features. In this example, LWP is more discriminative 

as it better differentiates between Image1 and Image3 while at 

the same time better matches the Image1 and Image2. 

III. SIMILARITY MEASUREMENT AND EVALUATION CRITERIA 

In this section, we present the adopted approach for the 

similarity measurement and evaluation purpose. The basic aim 

of similarity measurement is to calculate the distance between 

the feature vectors of query image and database images. Let 

the feature vector for two images    and    is denoted as 

                             and    
                          respectively, where     

is the length of feature vector and equal to the   . We have 
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used    similarity measurement technique to find the distance 

between feature vectors of two images [15] [17]. The    

distance measure is defined as, 

    
      ∑ |

           

             
|

   

   

                       

Each database image of    is considered as a query image 

and matched with all images. We retrieved the top   matching 

images using    similarity measure. The approach matches 

those retrieved images correctly which are retrieved from the 

same category as of the query image. In order to analyze the 

performance of the proposed method, we have calculated the 

average retrieval precision (ARP) and average retrieval rate 

(ARR) by finding the mean of average precision (AP) and 

average recall (AR) per category respectively. AP and AR for 

a particular category is computed by finding the average of 

precisions and recalls respectively by turning each image of 

that category as the query image. Let       and       is the 

precision and recall respectively for the     query image (i.e. 

  ) from category   and defined as, 

 (  )  
                                   

                          
          

 (  )  
                                   

                                   
         

 

IV. EXPERIMENTS AND COMPARISONS 

We devoted this section for medical CT image retrieval 

experiments and comparisons. We used the ARP and ARR 

matrices to show the results. Three medical CT image retrieval 

experiments are performed over publically available TCIA-CT 

[40], EXACT09-CT [41] and NEMA-CT [42] databases. Until 

or otherwise specified, we have considered 8 local neighbors 

( ) equally spaced at a radius ( ) of 1 and applied local 

wavelet decomposition at 2
nd

 level to construct the LWP 

feature vector. We compare the results of LWP feature vector 

with the results of LBP [21], LTP [27], LDP [45], LMeP [16], 

LTCoP [15], LTrP [47] and SS-3D-LTP [48] feature vectors. 

We compared the results over each database in the rest of this 

section in terms of the efficiency and time complexity. We 

also compared each method by applying 1) u2 transformation 

[49] (i.e. LBPu2, LTPu2, LDPu2, LMePu2, LTCoPu2, 

LTrPu2, SS-3D-LTPu2 and LWPu2 descriptors), 2) Gabor 

filter used by Murala et al. [46] (i.e. GLBP, GLTP, GLDP, 

GLMeP, GLTCoP, GLTrP, GSS-3D-LTP and GLWP 

descriptors) and 3) both Gabor filter and u2 transformation 

(i.e. GLBPu2, GLTPu2, GLDPu2, GLMePu2, GLTCoPu2, 

GLTrPu2, GSS-3D-LTPu2 and GLWPu2 descriptors). 

A. Experiment #1 

The cancer image archive (TCIA) provides the storage for 

the huge amount of research, clinical and medical cancer 

images [40]. These images are made public to download for 

the purpose of research. Digital Imaging and Communications 

in Medicine (DICOM) image format is used to store these 

images. We prepared TCIA-CT database by collecting 604 

Colo_prone 1.0B30f CT images of the DICOM series number 

1.3.6.1.4.1.9328.50.4.2 of study instance UID 

1.3.6.1.4.1.9328.50.4.1 for subject 1.3.6.1.4.1.9328.50.4.0001. 

According to the size and structure of Colo_prone, we 

manually grouped this collected 604 images into 8 categories 

having 75, 50, 58, 140, 70, 92, 78, and 41 images respectively. 

All images are having the dimension of 512×512 pixels in this 

database.  Fig. 7 displayed some example images of the TCIA-

CT database with one image from each category.  
 

 
 

 
Fig. 7. Some images of TCIA-CT database, one image from each category.

 

 
                                 (a)                                                            (b)                                                            (c)                                         (d) 

 
                                 (e)                                                            (f)                                                            (g)                                         (h) 

Fig. 8. Illustration of the results in terms of the (a-d) ARP and (e-h) ARR as a function of number of top matches ( ) over TCIA-CT database using (a, e) LBP, 
LTP, LDP, LMeP, LTCoP, LTrP, SS-3D-LTP and LWP descriptors, (b, f) LBPu2, LTPu2, LDPu2, LMePu2, LTCoPu2, LTrPu2, SS-3D-LTPu2 and 
LWPu2 descriptors, (c, g) GLBP, GLTP, GLDP, GLMeP, GLTCoP, GLTrP, GSS-3D-LTP and GLWP descriptors, and (d, h) GLBPu2, GLTPu2, 

GLDPu2, GLMePu2, GLTCoPu2, GLTrPu2, GSS-3D-LTPu2 and GLWPu2 descriptors.  
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Fig. 8 illustrates the retrieval results in terms of the (a-d) 

ARP (%) and (e-f) ARR (%) over TCIA-CT database using (a, 

e) LBP, LTP, LDP, LMeP, LTCoP, LTrP, SS-3D-LTP and 

LWP descriptors, (b, f) LBPu2, LTPu2, LDPu2, LMePu2, 

LTCoPu2, LTrPu2, SS-3D-LTPu2 and LWPu2 descriptors, (c, 

g) GLBP, GLTP, GLDP, GLMeP, GLTCoP, GLTrP, GSS-3D-

LTP and GLWP descriptors, and (d, h) GLBPu2, GLTPu2, 

GLDPu2, GLMePu2, GLTCoPu2, GLTrPu2, GSS-3D-LTPu2 

and GLWPu2 descriptors by varying the number of top 

matches ( ). It is observed from the ARP and ARR results 

that the performance of the proposed LWP descriptor is better 

as compared to the performance of the other descriptors.  

We also listed the ARP and ARR values in % over this 

database using each descriptor when      in Table 1. The 

performance of the LWP is improved by {32.15%, 34.39%}, 

{23.10%, 26.72%}, {28.03%, 30.25%}, {18.38%, 19.54%}, 

{18.84%, 19.87%}, {19.96%, 21.54%} and {09.78%, 

11.78%} as compared to the LBP, LTP, LDP, LMeP, LTCoP, 

LTrP and SS-3D-LTP in terms of the {ARP, ARR}. Most of 

the time, it is desirable for a physician to know the disease 

category for which any particular method is performing superb 

or worst. From this point of view, we also reported the results 

over each category of the database when      using each 

descriptor in terms of the average precision (AP) in Fig. 9(a) 

and average recall (AR) in Fig. 9(b). For category 3 the 

proposed descriptor has gained highest improvement as 

compared to the other descriptors. The retrieved CT images 

for a query CT image (see Fig. 10(a)) of TCIA-CT database 

are shown in the Fig. 10(b) using proposed descriptor. We 

retrieved top 10 matching images and found that all images 

are from the same category of the query (i.e. 100% precision is 

achieved for this example using LWP feature). We have 

drawn following outcomes on the basis of the results over 

TCIA-CT database in this experiment: 

1. Proposed LWP outperforms LBP, LTP, LMeP, LTCoP, 

LTrP and SS-3D-LTP in terms of the both ARP (%) and 

ARR (%). 

2. Proposed descriptor also outperforms other descriptors 

when tested with the Gabor filters, u2 transformation and 

both using ARP (%) and ARR (%). 

3. The performance of the LWP is also superior in most 

categories using average precision and average recall. 
 

Table 1. Performance comparison of the descriptors using ARP and ARR 

values over TCIA-CT database for      

Performance Method 

LBP LTP LDP LMeP LTCoP LTrP SS-3D-LTP LWP 

ARP (%) 66.91 71.83 69.06 74.69 74.40 73.71 80.54 88.42 

ARR (%) 09.74 10.33 10.05 10.95 10.92 10.77 11.71 13.09 

 

 
(a)                                                          (b) 

Fig. 9. Categorical performance comparison of each descriptor in terms of the 

(a) average precision and (b) average recall over TCIA-CT database 

when     . 

         
Fig. 10. The retrieved images using LWP for a query from TCIA-CT database. 

 

 

 

Fig. 11. EXACT09-CT example images, one image from each group. 

B. Experiment #2 

Extraction of Airways from CT 2009 (EXACT09) is a 

database of chest CT scans [41]. This database contains the 

images in two sets training and testing with 20 cases in each 

set. The DICOM format is used to store the CT scan images. 

We considered the 675 CT images of CASE23 of testing set of 

EXACT09 in this paper for image retrieval experiment and 

grouped these images on the basis of the structure and size of 

CT scans into 19 categories having 36, 23, 30, 30, 50, 42, 20, 

45, 50, 24, 28, 24, 35, 40, 50, 35, 30, 28 and 55 CT images to 

form the EXACT09-CT database. The dimension of the 

images is 512×512. Fig. 11 depicts the example images of 

EXACT09-CT database with one image of each group.  

The performance comparison among LBP, LTP, LDP 

LMeP, LTCoP, LTrP, SS-3D-LTP and LWP feature 

descriptors (including the descriptors with Gabor filter, u2 

transformation and both) are made in Fig. 12(a-h) over 

EXACT09-CT database in terms of the ARP and ARR as a 

function of  . The performance gain of LWP over LTCoP 

decreases under u2 transformation while it is increases when 

Gabor filters are used. Table 2 summarized the ARP and ARR 

values using LBP, LTP, LDP LMeP, LTCoP, LTrP, SS-3D-

LTP and LWP feature descriptors when     . It is evident 

from Fig. 12 and Table 2 that the performance of LWP is 

better as compared to the other descriptors. Fig. 13 depicts the 

top 10 retrieved images with 100% precision for a query 

image from the EXACT09-CT database. The following 

inferences are gathered over the EXACT09-CT database: 

1. The ARP using proposed LWP is improved by 27.63%, 

33.68%, 52.57%, 31.27%, 12.96%, 43.55% and 23.88% 

of the ARPs using LBP, LTP, LDP, LMeP, LTCoP, LTrP 

and SS-3D-LTP respectively when     . 

2. The ARR using proposed LWP is improved by 27.47%, 

34.14%, 53.61%, 31.52%, 12.23%, 43.84% and 23.79% 

of the ARRs using LBP, LTP, LDP, LMeP, LTCoP, LTrP 

and SS-3D-LTP respectively when     . 

3. LWP outperforms the state-of-the-art descriptors under a) 

Gabor filter, b) u2 transformation and 3) both Gabor filter 

and u2 transformation. 
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                                 (a)                                                            (b)                                                            (c)                                     (d) 

 
                                (e)                                              (f)                                                            (g)                                        (h) 

Fig. 12. Performance comparison of our descriptor with other descriptors by considering the (a-d) ARP and (e-h) ARR evaluation criteria and number of top 

matches over EXACT09-CT database using (a, e) LBP, LTP, LDP, LMeP, LTCoP, LTrP, SS-3D-LTP and LWP descriptors, (b, f) LBPu2, LTPu2, 

LDPu2, LMePu2, LTCoPu2, LTrPu2, SS-3D-LTPu2 and LWPu2 descriptors, (c, g) GLBP, GLTP, GLDP, GLMeP, GLTCoP, GLTrP, GSS-3D-LTP and 

GLWP descriptors, and (d, h) GLBPu2, GLTPu2, GLDPu2, GLMePu2, GLTCoPu2, GLTrPu2, GSS-3D-LTPu2 and GLWPu2 descriptors. 

Table 2. Results comparison among different descriptors using ARP and ARR 

values over EXACT09-CT database for      

Performance    Method 

LBP LTP LDP LMeP LTCoP LTrP SS-3D-LTP LWP 

ARP (%) 65.03 62.09 54.40 63.23 73.48 57.82 67.00 83.00 

ARR (%) 19.51 18.54 16.19 18.91 22.16 17.29 20.09 24.87 
 

         
Fig. 13. Retrieved images using proposed descriptor for a query image of 

EXACT09-CT database. 

 

    

Fig. 14. Example images of NEMA-CT database, one image from each 

category is shown. 

 

C. Experiment #3 

The digital imaging and communications in medicine 

(DICOM) standard are created by the National Electrical 

Manufacturers Association (NEMA) [42] in order to assist the 

storage and uses of medical images for research and diagnosis 

purpose. We considered the CT0001, CT0003, CT0057, 

CT0060, CT0080, CT0082, and CT0083 cases of this database 

in this paper. We collected 315 CT images (dimension: 

512×512) of different parts of the body from NEMA database 

in this experiment and categorized it into 9 categories having 

36, 18, 36, 37, 41, 30, 23, 70 and 24 images to form the 

NEMA-CT database.  Fig. 14 shows one sample image from 

each category of this database.  

 
(a)                                     (b) 

 
(c)                                              (d) 

Fig. 15. Results comparison of LWP with LBP, LTP, LMeP, LTCoP, LTrP 
and SS-3D-LTP over NEMA-CT database in terms of the (a) ARP vs 

ω, (b) ARP vs ω under u2 transformation, (c) average precision vs 

category, and (d) average precision vs category under u2 
transformation. 

Table 3. Results comparison of different methods in terms of ARP and ARR 

over NEMA-CT database when      

Performance Method 

LBP LTP LDP LMeP LTCoP LTrP SS-3D-LTP LWP 

ARP (%) 90.55 92.00 94.22 93.09 92.15 93.69 92.24 95.32 

ARR (%) 29.33 30.23 31.08 30.62 30.31 30.96 30.26 31.33 

 

  
Fig. 16. Retrieved images using LWP feature vector for a query image of 

NEMA-CT database. 100% precision is gained in this example.  

We have illustrated the results comparison among each 

descriptor over NEMA-CT database in terms of the ARP by 

varying the number of top matches in the Fig. 15(a). The 
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performance comparison among these descriptors are also 

presented for each category of the NEMA-CT database in Fig. 

15(c) in terms of the average precision when the number of 

top matches are 10 (i.e.     ). The ARP and average 

precision are also compared under u2 transformation of each 

descriptor in Fig. 15(b) and Fig. 15(d) respectively. It is 

discovered from the Fig. 15 that LWP feature vector is well 

suited for the medical CT image retrieval when images are 

taken from the different part of the body also. We listed the 

values of ARP as well ARR in the Table 3 for each feature 

descriptor over NEMA-CT database when     . It can be 

observed that the performance of the LWP is improved as 

compared to the performance of the LBP, LTP, LDP, LMeP, 

LTCoP, LTrP and SS-3D-LTP. Fig. 16(b) shows 10 retrieved 

images for a query image of Fig. 16(a) with 100% precision. 

From the experimental results over NEMA-CT database, we 

have ended with the following assertions: 
 

1. The retrieval performance of the proposed LWP feature 

descriptor is improved significantly as compared to the 

performance of the LBP, LTP, LDP, LMeP, LTCoP, 

LTrP and SS-3D-LTP feature descriptors over NEMA-CT 

database. 

2. The proposed descriptor also outperforms other descriptor 

under u2 transformation in terms of the ARP and average 

precision over NEMA-CT database. 

3. NEMA-CT database is composed of the categories from 

the different part of body and LWP performs better in 

most of categories of this database. 

D. Performance V/S Time Complexity 

We depicted the total feature extraction time and total 

retrieval time in seconds in Fig. 17 using LBP (       ), 

LTP (         ), LDP (         ), LMeP (      
   ), LTCoP (         ), LTrP (          ), SS-3D-

LTP (          ), and LWP (       ) feature 

descriptors over each database. The total feature extraction 

time is computed by calculating the total time required to 

extract a particular feature over all the images of that database. 

The total retrieval time over a particular database is computed 

by finding the total time required to match each image of that 

dataset with remaining images. All the experiments are 

conducted using a system having Intel(R) Core(TM) i5 CPU 

650@3.20 GHz processor, 4 GB RAM, and 32-bit Windows 7 

Ultimate operating system. We observed that the feature 

extraction time of LWP is better than LDP, LTCoP, LTrP and 

SS-3D-LTP descriptors. We also found that the retrieval time 

of LWP is nearly equal as compared to the LBP.   

 
(a)            (b) 

Fig. 17. (a) Total Feature Extraction Time and (b) Total retrieval time in 

seconds over TCIA-CT, EXACT09-CT and NEMA-CT databases 

using LBP (       ), LTP (         ), LDP (         ), 

LMeP (         ), LTCoP (         ), LTrP (       
   ), SS-3D-LTP (          ), and LWP (       ) feature 
vectors. 

 

Fig. 18. The results comparison for different similarity measures in terms of 

the ARP (for     ) using LWP feature vector. 

The total retrieval time using LWP is lowered by nearly 

2.25, 1.67 and 1.88 times over TCIA-CT, EXACT09-CT, and 

NEMA-CT databases respectively as compared to the LTP 

and LTCoP. A significant improvement of nearly 3 times less 

in total retrieval time using LWP is also observed as compared 

to the LMeP. The LWP outperforms the LDP, LTCoP, LTrP 

and SS-3D-LTP in terms of the both feature extraction as well 

as retrieval time. We have already seen that the performance 

of LWP is also better than the LBP, LTP, LDP, LMeP, 

LTCoP, LTrP and SS-3D-LTP. We can say that LWP is more 

efficient in terms of both performance and time complexity as 

compared to the existing approaches. 

V. RESULT ANALYSIS AND DISCUSSIONS 

In this section, we performed the result analysis using 

LWP feature vector from different aspects and discussed in 

details. First, we have shown the behavior of LWP with 

different similarity measures, then we illustrated the impact of 

the level of wavelet decomposition over the performance of 

the LWP feature descriptor, and finally we analyzed the 

results for different radius of local neighborhood used in the 

construction of the LWP feature vector. In the last of this 

section, we also analyzed the effect of local neighborhood 

population over the performance of LWP descriptor. 

A. Effect of Similarity Measures 

As far in this paper, we used the    similarity measure to 

find the similarity between the descriptors of two images. 

Here, we show the effect of similarity measures over the 

performance of the LWP feature descriptor. The comparison 

among the performances using Euclidean, L1, Canberra and D1 

similarity measures are shown in the Fig. 18 over TCIA-CT, 

EXACT09-CT, and NEMA-CT databases with LWP feature 

vector in terms of the ARP vs  . The Euclidean, L1 and 

Canberra similarity measures are defined in [15]. We found 

that Canberra similarity measure is worst with LWP feature 

descriptor. The performance with Euclidean similarity 

measures is best over TCIA-CT and EXACT09-CT databases 

but it drastically fails over NEMA-CT database. The 

performances of LWP feature vector using L1 and D1 

similarity measures are better over each dataset. We used D1 

similarity measure previously because the other methods have 

also used this similarity measure. The D1 similarity measure 

will be used in rest of the analysis of this paper. It is also 

observed that the performance of LWP with different 

similarity measures is similar over TCIA-CT and EXACT09-

CT databases (i.e. databases from the same portion of the 

body) while it is different over NEMA-CT database (i.e. 
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database from the different portion of the body). It is 

preferable to use the Euclidean distance for TCIA-CT and 

EXACT09-CT and D1 distance for NEMA-CT database. 

B. Effect of Level of Wavelet Decomposition 

We also analyzed the effect of level ( ) of local wavelet 

decomposition over the performance of the LWP descriptor. 

For 8 local neighbors at 1 radius of neighborhood (i.e.,     

and    ), the maximum possible value of   is 3 (i.e., 

      ) according to (6). We tested the LWP descriptor for 

            in the Fig. 19(a-c) over TCIA-CT, EXACT09-

CT and NEMA-CT databases respectively. It is observed 

across the plots of the Fig. 19 that the performance of LWP is 

nearly increasing over TCIA-CT and EXACT09-CT databases 

with the increase in  . In the case of NEMA-CT database, the 

performance of LWP is better for    . This was the fact that 

we used     for LWP in the results so far and we will also 

use     for LWP in the rest of the analysis of this paper. 

From this analysis, it is desirable to use the higher level of 

wavelet decomposition for the databases having images from 

the same body part such as TCIA-CT and EXACT09-CT 

database and the lower level of wavelet decomposition for the 

databases having images from the different body part such as 

NEMA-CT database. Moreover, the dimension of the LWP 

descriptor doesn’t change with the level of wavelet 

decomposition which is a major finding of our approach. 
 

 
(a)                                                            (b)                                                                         

 
(c) 

Fig. 19. The results comparison for different levels of wavelet decomposition 

of LWP descriptor in terms of the ARP vs   over (a) TCIA-CT, (b) 

EXACT09-CT, and (c) NEMA-CT databases. The values of   and   
are 8 and 1 in this analysis so the possible levels of wavelet 
decomposition are 1, 2 and 3. 

 

          (a)            (b) 

Fig. 20.  (a) The impact of the radius of local neighborhood ( ) over the 

performance of the LWP descriptor in terms of the ARP (for     ) 

The values of number of local neighbors ( ) and level of wavelet 

decomposition ( ) are 8 and 2 in this analysis. (b) The effect of 

population (i.e. number of neighbors,  ) of local neighborhood over 

the ARP (for     ) using LWPu2 descriptor. 

C. Effect of Radius of Local Neighborhood 

In order to know the effect of radius of local neighborhood 

( ) over the performance of the LWP feature descriptor, we 

performed an analysis by considering the values of   from 1 

to 8 over TCIA-CT, EXACT09-CT and NEMA-CT databases 

in the Fig. 20(a) in terms of the ARP for     . It is deduced 

that the performance of LWP feature descriptor is generally 

improving with the increase in   except over NEMA-CT 

database. It is also observed that the performance of LWP 

saturates for the larger values of   (such as 6, 7 and 8) except 

over NEMA-CT database. We have used     in the rest of 

the paper. However, it is discovered that the performance of 

LWP feature descriptor with     is far batter as compared 

to the performance of LWP with     over TCIA-CT and 

EXACT09-CT databases. From this discussion, it is pointed 

out that larger radius of local neighborhood will be more 

useful in the cases where the databases are containing the 

images having less inter class variations such as TCIA-CT and 

EXACT09-CT databases while lower radius of local 

neighborhood is preferable for databases having more inter 

class variations. The dimension of the LWP descriptor is 

invariant to the radius of the local neighborhood used to 

construct the descriptor. 

D. Effect of Local Neighborhood Population 

We have demonstrated the ARP values in Fig. 20(b) over 

each database by varying the number of neighbors (i.e. 

population of local neighborhood,  ) with respect to the 

radius ( ) of neighborhood. The LWPu2_R_N represents the 

u2 transformation of the LWP descriptor extracted over the 

local neighborhood at a radius of   with population size  . 

The number of top matches is considered as 10 in the plot of 

Fig. 20(b). From this result, it is noticed that the performance 

of proposed descriptor is also depends over the population size 

and generally increases with more number of local neighbors 

such as in the case of the TCIA-CT and EXACT09-CT 

databases.  

From the results of the Fig. 18-20, it is evident that the 

performance of the LWP is similar over the databases having 

images from the same body part such as the cases of the 

TCIA-CT and EXACT09-CT databases while it is slight 

different over the database of different body part such as the 

case of NEMA-CT database. From the experimental results in 

terms of ARP, ARR, average precision, average recall and 

total retrieval time and discussions over TCIA-CT, 

EXACT09-CT and NEMA-CT databases, it is pointed out that 

proposed LWP feature descriptor is more discriminative and 

efficient as compared to the LBP, LTP, LMeP, LTCoP, LTrP 

and SS-3D-LTP feature descriptors. We also analyzed that the 

performance of the proposed method is increasing with the 

increase in the radius of the local neighborhood, whereas its 

dimension remains constant. 

VI. CONCLUSION 

We proposed a new local wavelet pattern (LWP) based 

image feature descriptor in this paper for medical CT image 

retrieval. First of all, the local wavelet decomposition is 

performed over local neighborhood of any pixel to encode the 

relation among the neighboring pixel. Then, the local wavelet 
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decomposed values are compared with the transformed values 

of the centre pixel to encode the relation between the centre 

and neighboring pixels and computed the LWP pattern for the 

centre pixel. The introduced LWP is constructed for each pixel 

of the image and finally used to find the histogram as a feature 

vector. In order to test the LWP feature descriptor, we 

performed three medical CT image retrieval experiments and 

in each experiment we compared the LWP with the LBP, LTP, 

LMeP, LTCoP, LTrP and SS-3D-LTP feature descriptors. 

From the experiments, we found that the proposed feature 

descriptor outperforms the existing feature descriptors over 

each database. We also observed that the performance of LWP 

is better for nearly each category of the each database. We 

also analyzed that the time complexity of the proposed feature 

descriptor is also less. The dimension of LWP only depends 

upon the number of local neighbors considered in the 

construction process. It is also examined that the performance 

of the LWP descriptor is improving with the increase in the 

radius of the local neighborhood. It is evident from the 

experiments and analysis that the proposed LWP feature 

descriptor is more efficient as well as more discriminative and 

can be used effectively for the medical CT image diagnosis.  
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