

Local Diagonal Extrema Pattern: A New and Efficient Feature Descriptor for CT Image Retrieval

IEEE Signal Processing Letters, 2015

Shiv Ram Dubey, Satish Kumar Singh and Rajat Kumar Singh

Indian Institute of Information Technology, Allahabad

Introduction

- \odot The major problems with the existing descriptors are, 1) discriminative descriptors are high dimensional and 2) low dimensional descriptors are less discriminative.
- Local Diagonal Extrema Pattern (LDEP) uses the relationship among local neighbors as well as relationship of center with local neighbors.
- The consideration of only diagonal neighbors greatly reduces the dimension of the feature vector.
- The superiority in terms of performance and efficiency in terms of speedup of the proposed method are confirmed by the experiments over two CT image databases.

Local Diagonal Extrema Pattern

- The relationship of local diagonal extremes (i.e. maxima and minima) with the center pixel is used to encode the LDEP descriptor.
- The computation process of LDEP is illustrated using an example in Fig. 1.
- Fig. 1(a) shows the position of four diagonal neighbors with intensity values $I_1^{i,j}$, $I_2^{i,j}$, $I_3^{i,j}$ and $I_4^{i,j}$ of center with intensity value $I^{i,j}$.
- The example considered is depicted in Fig. 1(b).
- \odot Let τ_{max} and τ_{min} are the position of maximum and minimum diagonal neighbors.
- The values of maximum and minimum diagonal neighbors (i.e. $I_{\tau_{max}}^{i,j}$ and $I_{\tau_{min}}^{i,j}$ respectively) as well as center pixel are extracted in Fig. 1(c).
- The values of τ_{max} and τ_{min} are shown in Fig. 1(d).

Fig.1. The computation of $LDEP^{ij}$ pattern for center I^{ij} using the flow diagram with an example.

- The values and indexes of the local diagonal extremes are computed which is used with the central pixel to form the local diagonal extrema pattern.
- The local diagonal extrema pattern (LDEP) for $P^{i,j}$ is represented as a binary pattern $LDEP^{i,j}$ as follows,

$$LDEP^{i,j} = (LDEP_1^{i,j}, LDEP_2^{i,j}, \dots, LDEP_{dim}^{i,j})$$
(1)

where dim is the length of the LDEP pattern and $LDEP_{k}^{i,j}$ is the k^{th} element of the *LDEP*^{*i,j*} and given using following formulae,

$$LDEP_{k}^{i,j}|_{k \in [1,dim]} = \begin{cases} 1, & if \ k = (\tau_{max} + 8\delta) \\ & or \ k = (\tau_{min} + 4 + 8\delta) \\ 0, & Else \end{cases}$$
(2)

where δ is defined as,

$$\delta = \begin{cases} 0, & If \left(I_{\tau_{max}}^{i,j} < I^{i,j} \text{ and } I_{\tau_{min}}^{i,j} < I^{i,j} \right) \\ 1, & If \left(I_{\tau_{max}}^{i,j} \ge I^{i,j} \text{ and } I_{\tau_{min}}^{i,j} \ge I^{i,j} \right) \\ 2 & Else \end{cases}$$
(3)

- Note that the dimension of the pattern $LDEP^{i,j}$ is the maximum possible value of k which is 24 when $\tau_{min} = 4$ and $\delta = 2$. It means that the dimension dim of the $LDEP^{i,j}$ is 24.
- The value of δ for considered example is demonstrated in the Fig. 1(e).
- Fig. 1(f) shows the values of $(\tau_{max} + 8\delta)$ and $(\tau_{min} + 4 + 8\delta)$.
- Finally, the LDEP pattern is depicted in Fig. 1(g). Only two elements of the pattern are set to 1 and the rest are zeros.

Experiments and Results

Databases Used -

Emphysema-CT [1]: Three categories Normal Tissue (NT), Centrilobular Emphysema (CLE), and Paraseptal Emphysema (PSE) containing 59, 50 and 59 images respectively.

NEMA-CT [2]: The 499 CT images from different parts of the body are collected from National Electrical Manufacturers Association (NEMA) and categorized into 8 categories having 104, 46, 29, 71, 108, 39, 33 and 69 images.

Descriptors Compared -

Local Binary Pattern (LBP) [3], Local Ternary Pattern (LTP) [4], Center Symmetric LBP (CSLBP) [5], Center Symmetric LTP (CSLTP) [6], Local Mesh Pattern (LMeP) [7], and Local Ternary Co-occurrence Pattern (LTCoP) [8].

Results –

The retrieval results are reported in terms of average retrieval precision (ARP), average retrieval rate (ARR), F-score, and total retrieval time in seconds. Fig. 2 illustrates the comparison results over Emphysema-CT database. Fig. 3 depicts the retrieval results over NEMA-CT database. The proposed descriptor is having the comparable performance with best one while maintaining very less retrieval time.

Fig.2. Comparison of (a) ARP (%), (b) ARR (%), (c) F_score (%), and (d) total retrieval time in seconds using LBP, LTP, CSLBP, CSLTP, LMeP, LTCoP and LDEP descriptors over Emphysema-CT database.

Fig.3. Comparison of (a) ARP (%), (b) ARR (%), (c) F_score (%), and (d) total retrieval time in seconds using LBP, LTP, CSLBP, CSLTP, LMeP, LTCoP and LDEP descriptor over NEMA-CT database.

References

- [4]
- [6] 2010, pp. 334-341.
- [7]

^[1] Sørensen et al., "Quantitative Analysis of Pulmonary Emphysema using Local Binary Patterns," IEEE Transactions on Medical Imaging, 29(2): 559-569, 2010.

NEMA-CT image database, (ftp://medical.nema.org/medical/Dicom/Multiframe/). Ojala et al., "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE TPAMI, 24(7): 971-987, 2002.

Tan and Triggs, "Enhanced local texture feature sets for face recognition under difficult lighting conditions," IEEE TIP, 19(6): 1635-1650, 2010.

Heikkil et al., "Description of interest regions with local binary patterns," Pattern Recognition, 42: 425-436, 2009.

Gupta et al., "Robust order-based methods for feature description," IEEE CVPR,

Murala and Wu, "Local Mesh Patterns Versus Local Binary Patterns: Biomedical Image Indexing and Retrieval," IEEE JBHI, 18(3): 929-938, 2014.

Murala and Wu, "Local ternary co-occurrence patterns: A new feature descriptor for MRI and CT image retrieval," Neurocomputing, 119: 399-412, 2013.