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Abstract— The region descriptors using local intensity 

ordering patterns have become more popular recent years for 

image matching due to its enhanced discriminative ability. 

However, the dimension of these descriptors increases rapidly 

with the slight increase in the number of local neighbors under 

consideration and becomes unreasonable for image matching due 

to time constraint. In this paper, we reduce the dimension of the 

descriptor and matching time significantly while keeping up the 

comparable performance by considering the number of 

neighboring sample points in an interleaved manner. The 

proposed interleaved order based local descriptor (IOLD) 

considers the local neighbors of a pixel as a set of interleaved 

neighbors and constructs the descriptor over each set separately 

and finally combines them to produce a single pattern. We 

extract the local ordering pattern to cope up with the 

illumination effect in an inherent rotation invariant manner. The 

novelty lies with using multiple neighboring sets in an interleaved 

fashion. We also explored the local intensity order pattern in a 

multi-support-region scenario. Results are compared over three 

challenging and widely adopted image matching datasets with 

other prominent descriptors under various image 

transformations. Results based on experiments suggest that the 

proposed IOLD descriptor outperforms in terms of both 

improved matching performance and reduced matching time. We 

also found that the amount of improvement is significant under 

complex illumination difference while showing more robustness 

towards noise. 
 

Index Terms— Complex illumination change, Image matching, 

Intensity order, Local feature description, Interleaved descriptor, 

Rotation invariance. 

I. INTRODUCTION 

omputer vision researchers widely studied local feature 

descriptors constructed over the detected interest regions. 

Recent years, local features have been frequently used in 

large number of vision application problems such as 3D 

reconstruction, panoramic stitching, object recognition, image 

classification, facial expression recognition, and structure 

from motion [1-6]. The main focus while describing the local 

image features is to enhance the distinctiveness and maintain 

the robustness to the various image transformations. The basic 

goal is to first find the affine invariant interest regions and 

then extract feature pattern description for each of them. 

Hessian–Affine and Harris–Affine [7-8] detectors have been 

widely used for the extraction of interest regions. After 

detecting region of interest, feature descriptors are constructed 
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over it in order to facilitate the region matching. In the 

literature, many feature descriptors have been proposed with 

the increasing interest in region detectors [37], and it is 

observed that the performance of image descriptors based on 

some distributions are significantly better than the descriptors 

based on the spin image, shape context, and steerable filters 

[9-11]. The distributions of the gradient are widely used by 

distribution-based methods. For example, a histogram of 

gradient orientation on 4×4 location cells are computed by the 

SIFT descriptor [4]. Many other local image feature 

descriptors such as GLOH, SURF, and DAISY similar to SIFT 

have been introduced in the literature encouraged by the 

success of the SIFT description [12-15]. Some recent works 

involved Gaussian shapes as a feature descriptor [16], 

descriptor with face recognition applications under image blur 

condition [17], using alternate Hough and inverted Hough 

transforms for robust feature matching [18]. Although 

theoretically rotation invariant feature descriptions (i.e. 

Rotation Invariant Feature Transform (RIFT) and spin image 

[10]) are also exists in the literature, but these descriptors 

discard spatial information and becomes less distinctive. Exact 

orders are also utilized for image feature description by Kim et 

al. [19]. They combined the exact global and local orders to 

generate the EOD descriptor. Orthogonal LBPs are combined 

with color information to describe the image regions in [20]. 

Distribution-based descriptors are partially or fully robust to 

many of the geometric image transformations such as rotation, 

scale, occlusions etc., but can’t handle more complex 

illumination changes. To ease this problem, some researchers 

have proposed to consider the orders of local intensities rather 

than the raw intensity values, because invariance to monotonic 

difference is being obtained by using the order of the intensity 

values. Some common order based descriptors are OSID, 

LBP, uniform LBP, CS-LBP, HRI, CS-LTP and LIOP [21-

27]. A local binary pattern (LBP) creates the pattern for every 

pixel based on the ordering information [24]. The major 

benefit of LBP is its simplicity in the computation and also it’s 

invariance to the illumination changes, but LBP has some 

drawbacks also such as computation of feature having more 

dimension and sensitivity to Gaussian noise in the uniform 

areas. Observing that small subset of the LBP contains the 

most of the textual information, a uniform LBP is proposed in 

[27]. The CS-LBP reduces the dimension of LBP by 

comparing only center-symmetric pixel intensity differences 

[25]. The CS-LTP descriptor is introduced by considering only 

diagonal comparisons among the neighboring points [23]. HRI 

and CS-LTP contains complementary information and it is 

combined to construct a single HRI-CSLTP descriptor [23]. 

Recently, Wang et al. [26] proposed LIOP descriptor to 

encode the intensity order pattern among the neighbors located 

at a fixed radius from a given pixel. They assigned a unique 

order to each neighbor and partitioned the whole patch into 
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different regions according to the global ordering of each pixel 

in the patch and calculated the LIOP in each region separately 

and concatenated them in order to obtain a single pattern. 

An intensity order based interleaved local descriptor 

(IOLD) is proposed in this paper which assumes the properties 

of the intensity orders in an interleaved manner.  The 

neighborhood of each pixel is divided into a set of 

neighborhoods and patterns are computed by merging the 

patterns extracted for each neighboring set. In this way, low 

dimensional descriptor is obtained while considering a large 

number of neighbors which reduces the matching time. We 

also use multiple support regions and order based region 

partitioning of an interesting region to make proposed 

descriptor more robust and discriminative [28-29]. We also 

tested LIOP using multiple support regions and compared with 

IOLD. Results obtained from experiments suggest that under 

various image transformations, IOLD has the better 

discriminative ability with low time complexity.  

The remainder of the paper is set up in the following 

manner: section II presents the detailed construction process 

of proposed IOLD descriptor; section III illustrates the 

detailed results of image matching experiments; section IV 

discusses the effect complex illumination and noisy condition; 

and section V draws the deductions with conclusions. 

II. PROPOSED DESCRIPTOR CONSTRUCTION 

We present the construction process of proposed IOLD 

descriptor in this section. First we address the steps involved 

in preprocessing, region detection and normalization, and then 

we discuss the concept of generating rotation invariant local 

features, and then we proposed the partitioning of local 

neighboring pixels into interleaved sets. The final pattern is 

generated by concatenating the LIOP [26] calculated over 

each set. At the last of this section, we present the descriptor 

construction. 

A. Pre-processing, Feature detection and Normalization 

The steps involved for pre-processing, feature detection and 

normalization are similar to [8, 12, 26, 28, 29, 30]. To remove 

the noises, a Gaussian smoothing with σp is used initially. To 

find a position and neighboring structure of point of interest, 

Harris-Affine/Hessian-Affine region detectors are considered. 

A circular region of size 41×41 pixels with radius 20.5 similar 

to other approaches [12, 26, 28, 29, 31] is generated by 

normalizing the detected region (Fig. 1). Finally, a Gaussian 

filter with sigma σn is applied again to cope up with the noise 

introduced by interpolation. 
 
 

 
Fig. 1. Generating a circular patch by normalizing the detected patch of 

elliptical shape and arbitrary size. 

B. Rotation Invariant Local Features 

In order to facilitate local feature extraction in rotation 

invariant manner, we considered a local coordinate approach, 

similar to [10, 26, 28, 29]. Fig. 2 illustrates such a coordinate 

system, where O represents the center of the patch, Xi is any 

pixel within the patch. Then a local rotation invariant 

coordinate system is generated from O and Xi for the sample 

pixel Xi centered at Xi by considering positive y-axis as, 

positive -axis OXiy


            (1) 

{Xi
1
, Xi

2
, … , Xi

N
} are the N neighbors of the Xi equally spaced 

in a circle of radius R centered at Xi. Angle ϕ is defined as, 

1
( )tan

Py

Px



            (2) 

where Px and Py are the co-ordinates of the pixel Xi with 

respect to the center of the patch O. The coordinates of N 

neighbors of Xi with respect to Xi are given by, 

  
                  ;    

                   (3) 

where         and angle θ is defined as, 

  
  

 
             (4) 

We represent the coordinate of   
  w.r.t.    as    

  using 

  
      and   

      as, 

   

     
         

             (5) 

From (3) and (5),    

  is written as, 

   

                                  (6) 

We represent (6) using Euler's formula and    

  in Euler form 

is given as, 

   

                      (7) 

where                   . 

The intensity value of any neighboring pixel   
  is 

determined by the gray value at the coordinate    

  w.r.t.    

and it is denoted by    

  and we refer all the neighboring 

intensity values of pixel    as      . Using this coordinate 

system, the rotation invariance is obtained inherently. It is 

easily observable that the position of each Xi
k
 w.r.t. Xi remains 

unchanged if the whole patch rotates in any direction (i.e. 

clockwise or anti-clockwise). 

 
Fig. 2. Rotation invariant coordinate system to compute the location of the 

local features, O is the center of the patch and Xi is the sample point. 

C. Local Neighbor Partitioning Into Interleaved Sets 

The main problem with the earlier intensity order based 

descriptor [26] is with the rapid increase in the dimension of 

the descriptor with a slight increase in the number of 

neighboring points. In this section, we proposed to partition 

the N neighbors into k interleaved sets to overcome the 

problem of rapid increase in the descriptor’s dimension with 

N. Fig. 3 illustrates the proposed approach to divide the 

original neighbors into multiple interleaved sets of local 

neighbors. Fig. 3(a) shows the original N neighbors    

  for 

        of a sample point    which are equally spaced at a 

distance R from center   . 
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Fig. 3. Considering local neighborhood as a set of different interleaved local neighborhood. The original N neighbors are divided into k neighboring sets having 

d=N/k neighbors each. 
 

Fig. 3(b-d) represent k interleaved neighboring sets having d 

neighbors in each set generated from original N neighbors, 

where d = N/k. The coordinate of u
th

 neighbor of Xi in v
th

 

neighboring set is given as, 

   

              
  

 
       

  

   
 
        (8) 

where         and        . 
By solving (8),    

   
 is represented as, 

   

        
                  

   
 
         (9) 

If                      , then    

   
 is written 

as, 

   

              
  

   
 
             (10) 

The ranges of         and       is computed from 

the ranges of u and v as, 

                               (11) 
                                (12) 

The range of       is computed from (11) and (12) as, 

                               (13) 

If     and    , then the range of       becomes, 

                             (14) 

Now, the range of       is the same as the range of       

used in (7). By replacing       with      , k with 1 and d 

with N,    

   
 in (10) becomes 

   

              
  

 
 
         (15) 

From (4) and (14),    

   
 is written as, 

   

                         (16) 

From (7) and (16), we conclude that, 

   

       

                                (17) 

It means, we consider original neighbors without division 

only if     and     which is used by LIOP [26] (i.e., 

LIOP is a special case of our proposed approach). We also 

observed across the Fig. 3 that neighboring points in each 

neighboring set is also equally spaced in a circle of radius R 

having center at Xi. This is an advantage of our local 

neighborhood division and in this way it retains the symmetric 

information in the pattern. 

We also illustrated the proposed idea of local neighbor 

partitioning into multiple interleaved sets using an example in 

the Fig. 4(a-c). An example patch for any pixel Xi is shown in 

the Fig. 4(a). We have considered 8 local neighbors of Xi here 

in this example as depicted in the Fig. 4(b) and partitioned it 

into 2 interleaved sets consisting of the 4 local neighbors each. 

The intensity values of the local neighbors in each set are 

demonstrated in the Fig. 4(c). 

 
Fig. 4. Illustration of proposed concept of local neighborhood division into 

multiple interleaved sets and construction of IOLD pattern using an example, 

(a) example patch for pixel Xi, (b) intensity values of 8 local neighbors of 
considered patch, (c) partitioning of 8 local neighbors into 2 interleaved sets 

having 4 local neighbors each and its orders, (d) ordering patterns over each 

set, (e) weighted ordering patterns, and (f) final pattern for pixel Xi. 

D. Computing Multiple Local Intensity Order Patterns 

In this subsection, for each interleaved set, we construct the 

corresponding LIOP [26] pattern and then concatenate all the 

LIOPs to find the final pattern for a particular pixel. Let the 

intensity values of elements of the neighboring set v (i.e. 

points that fall in v
th

 interleaved set) are defined as, 

           

       

       

         

          (18) 

where  v = [1, k] and    

   
 is the intensity value of point    

   
. 

Note that the value of k is chosen in such a way that d should 

be a positive integer. We calculate a weighted ordering pattern 

       over each neighboring set        using the method 

introduced in [26] as, 

                                 (19) 

where   is a weight that encodes the dissimilarity 

information among the neighboring sample points and    is 

the ordering pattern of length d!. 

The final interleaved order based local descriptor pattern is 

computed by concatenating the patterns for all neighboring 

set. Mathematically, we define the final pattern for pixel Xi as, 

                                    (20) 
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According to the [26], the dimension   of        is given 

by,  

                                       (21) 

It means, 

 (      )                   (22) 

For two interleaved sets of intensity values of Fig. 4(c), its 

orders and ordering patterns computed using [26] are 

illustrated in the Fig. 4(c-e) respectively. Note that, in the 

example, we have partitioned 8 neighbors into 2 sets of 4 

neighbors so the length of each ordering pattern is 24. Only 

the element corresponding to the index value of order is set to 

1 in the ordering pattern and rest are zeros as illustrated in Fig. 

4(d). We also calculated the weight for each set using its 

intensity values and multiplied it with the ordering patterns to 

get the weighted ordering patterns as depicted in the Fig. 4(e). 

Finally both weighted ordering patters are concatenated to 

form the final pattern (see Fig. 4(f)) for the pixel Xi of Fig. 

4(a) using its 8 local neighbors. 

E. Descriptor Construction 

The proposed IOLD descriptor construction workflow is 

demonstrated by Fig. 5. We consider B number of support 

regions centered at the feature point of minimal support region 

having the uniform increasing size similar to [28, 29]. Circular 

rings of size 41×41 are obtained by normalizing each support 

ring. Each support region is divided into C number of sub-

regions based on the global intensity orders of each pixel in 

that support region similar to [26, 29]. The pattern over a sub-

region is extracted by summing patterns of all pixels 

belonging to that sub-region. We refer j
th

 sub-region of i
th

 

support region by   
 
. Then descriptor   

 
 over sub-region   

 
 

is calculated as follows, 
 

 
 

Fig. 5. IOLD descriptor construction process, B support regions is used with C 

sub-regions in each support region. The IOLD descriptor is constructed by 

accumulating local descriptor in each sub-region from all support regions. 

 

 
Fig. 6. Comparison between the pattern dimension using LIOP and proposed 

approach. 

  
 
 ∑        

   
 
          (23) 

where        ,         and    is given by (20). The 

descriptor over a support region is computed by concatenating 

the descriptor computed over each sub-region of that support 

region. So descriptor over i
th

 support region    becomes, 

      
    

      
           (24) 

The descriptor extracted over each support region is 

concatenated to compute the final IOLD descriptor.  

Mathematically IOLD descriptor is given by, 

                          (25) 

From (24) and (25), it is derived that IOLD descriptor can 

also be represented as, 

        
    

      
    

    
      

      
    

      
   

        (26) 

The dimension of IOLD for     and     using (22) is 

given as, 

                         (27) 

The dimension of LIOP [26] for     is given as, 

                    (28) 

It is shown in Fig. 6 that        is much lesser than the 

N!. It means, 

                       (29) 

By adapting local neighborhood division into several local 

neighborhoods (i.e. k neighboring sets), we reduce the pattern 

size significantly with comparable performance. The proposed 

ordering pattern is distinctive because it holds the invariance 

property for the rotation and illumination difference; moreover 

the symmetric information around the center pixel makes it 

more discriminative. It has also been shown that neighborhood 

division approach greatly reduces the descriptor size while 

maintaining the comparable results under noisy condition (Fig. 

6 and 16). 

III. EXPERIMENTS AND RESULTS 

We compare SIFT [4], HRI-CSLTP [23] and LIOP [26] 

descriptors with IOLD descriptor to measure the effectiveness 

and discriminative ability of proposed descriptor. For 

evaluation purpose three widely used standard datasets namely 

Oxford image matching dataset [34], Complex illumination 

change dataset [35] and a large image matching dataset [36] 

have been used. The Oxford dataset comprises different 

geometric and photometric transformed image sets with 

textured and structured scenes. We used the Harris-Affine and 

Hessian-Affine detectors to detect the interest regions [34]. All 

the matching experiments is conducted using a personal 

computer having Intel(R) Core(TM) i5 CPU 650@3.20 GHz 

processor, 4 GB RAM, and 32-bit Windows 7 Ultimate 

operating system. 

A. Evaluation Criteria 

The criterion introduced in [12] is used for the evaluation of 

the descriptors in this paper. Each region of one image is 

matched with the every region of the second image and 

according to the number of false and correct matches the 

precision and recall values are generated. We calculate all 

matches using nearest neighbor distance ratio (NNDR) 

matching strategy. According to this scheme, a distance ratio 

is computed between 1
st
 and 2

nd
 nearest region. 
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                                (a)                                                           (b)                                                           (c)                                                           (d) 

 
                                (e)                                                           (f)                                                                                                 (g) 

Fig. 7. Descriptors performance for kd=14, 24, 15, 25 and 16 when B=1 and C=1 using Harris-Affine region detector over Oxford dataset. 
 

If the value of distance ratio is above a threshold then only a 

match is declared with 1
st
 nearest region. By changing this 

distance threshold, different precision and recall values are 

obtained. We use overlap error [8] to determine the ground 

truth correspondences and the number of correct matches. The 

target region is transformed over the source region using a 

homography. The ratio of area of intersection and union 

between both regions (i.e. original source region and 

transformed target region) is used to find the overlap error. A 

match between two regions is acceptable if the overlap error < 

0.5. If A1 and A2 are the two regions, then overlap error 

between A1 and A2 is defined as, 

1 2

1 2
 ( 1, 2) 1

A A

A A
overlap error A A




        (30) 

We used recall vs 1-precision plots to present the matching 

results. If the number of correctly, falsely, all and ground truth 

matches are represented by #correct matches, #false matches, 

#all matches, and #correspondences respectively, then, 

#  

#

#  
1

#  

correct matches
recall

correspondences

false matches
precision

all matches



 

      (31) 

 

We have used 1.0, 1.2 and 6 as the values of σp, σn and R in 

this paper similar to [26] for all experiments such that a fair 

comparison can be made between LIOP and IOLD. 

B. Performance Evaluation on the Oxford Dataset 

We used standard Oxford image matching dataset [34] for 

the evaluation of IOLD descriptor. IOLD is evaluated and 

compared for both Harris and Hessian Affine (i.e. haraff and 

hesaff) detectors. We considered 6 sequences of oxford dataset 

namely leuven (illumination change), bikes (image blur), ubc 

(jpeg compression), boat (rotation and scale), graf (viewpoint 

change) and wall (viewpoint change). Each sequence consists 

of the 6 images with increasing degree of the corresponding 

transformation. For a particular sequence, first image is 

matched with remaining five images (i.e., 5 pairs). Results are 

depicted in the terms of average performance over each pair 

for each sequence in Fig. 7-8 using recall and 1-precision. We 

compared the average performance and matching time by 

changing the number of neighboring sets k and the number of 

elements in each neighboring set d. To illustrate the effect of k 

and d the value of B (number of support regions) and C 

(number of partitions in a support region) is considered as 1. 

 
                                (a)                                                           (b)                                                           (c)                                                           (d) 

 
                                (e)                                                           (f)                                                                                                 (g) 

Fig. 8. Descriptors performance for kd=14, 24, 15, 25 and 16 when B=1 and C=1 using Hessian-Affine region detector over Oxford dataset. 
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Table 1. Image matching time reduced by IOLD1125 over LIOP1116 

in % over each category of the Oxford dataset 

Detector Used Image Category of Oxford Dataset 

leuven bikes ubc boat Graf wall 

Harris-Affine 70.53 59.66 41.32 35.27 41.23 37.83 

Hessian-

Affine 

69.60 75.34 50.86 43.66 47.71 102.81 

 

The value of k is considered as 1 and 2 and the value of d is 

considered as 4, 5 and 6. When k=1, we denoted it by LIOP 

because in this case IOLD is equivalent to the LIOP. In the 

source paper of LIOP, only 3 and 4 neighboring sample points 

are considered whereas in this paper we also experimented 

with the LIOP using more number of neighboring sample 

points (N) to test the effect of N over performance and 

matching time. Five combinations of BCkd( ) (i.e. 1114(24), 

1124(48), 1115(120), 1125(240) and 1116(720) respectively) 

are compared (see Fig. 7-8) where   is the dimension of the 

descriptor. Fig. 7(a-f) and Fig. 8(a-f) shows the results when 

harraf and hesaff detector is used respectively while Fig. 7(g) 

and Fig. 8(g) shows the matching time by each combination of 

BCkd for each sequence of Oxford dataset using haraff and 

hesaff detectors respectively. The significant improvement in 

the performance is reported when the value of k is increased to 

2 for a particular d (i.e. between IOLD1124 and LIOP1114 

and between IOLD1125 and LIOP1115). Consider the case of 

LIOP1116 and IOLD1125 combinations, the image matching 

time consumed by earlier one is much higher than later one for 

each sequence because                    , while the 

performance of the IOLD1125 is either better or nearly equal 

to LIOP1116. 

Table 1 depicts the % of matching time reduced by 

IOLD1125 over LIOP1116 for each set of images of Oxford 

dataset using both detectors. The highest improvement in the 

matching complexity is 102.81% reported for the wall 

sequences while hesaff detector is used. The plots of the Fig. 

7-8 convey that by increasing only N the dimension   

increases more rapidly as compared to the performance but 

this problem can be overcome by dividing N into k interleaved 

sets. We also tested the proposed approach in conjunction with 

the multiple support region and region division concept. Fig. 9 

reports the results and time consumption using haraff detector 

for B=2, C=2, k=1, 2 and d=3 combinations (i.e. comparison 

among LIOP2213 and IOLD2223). 

We implemented LIOP2213 as the LIOP over multi-

support-regions to show the effect of multiple support regions 

over LIOP and to compare it with IOLD implemented over 

multiple support regions. Here we reported the average 

performance and matching time over full oxford dataset for all 

combinations using each detector. It is observed that if k is 

increased the performance of the descriptor is still improved 

significantly using haraff detector but the degree of 

improvement is less whereas the matching time is nearly same 

(see Fig. 9(b)). The results for hesaff detector also follow the 

same trend as haraff detector. 

Fig. 10 demonstrates the average image matching 

performance and matching time over Oxford dataset for SIFT, 

HRI-CSLTP, LIOP1116 and IOLD1125 descriptors using 

haraff detector. We considered BC=11 for both LIOP and 

IOLD such that a fair comparison can be made in view of 

introduced concept. It is evident from this figure that the 

performance of IOLD1125 is better than the remaining 

descriptors for haraff detector and it is 49.40% and 15.53% 

faster than LIOP1116 and HRI-CSLTP respectively (i.e. the 

matching time is also better than other descriptors except 

SIFT). 

 

 
(a)                                                           (b) 

Fig. 9. (a) Matching results and (b) matching time over Oxford dataset in 

conjunction with B and C while kd=13 and 23 and BC=22 for haraff detector. 

 
 

 
(a)                                                           (b) 

Fig. 10. Comparison of IOLD with LIOP, SIFT and HRI-CSLTP over Oxford 

dataset in terms of (a) ROC and (b) matching time using haraff detector. 
 

C. Performance Evaluation on the Complex Illumination 

Change Dataset 

We used a Complex illumination change dataset [35] in 

order to evaluate proposed descriptor for large illumination 

changes. Two image sets corridor and desktop of 6 images 

each having drastic illumination differences are used in this 

paper as shown in Fig. 11. We synthesized the 6
th

 image of the 

corridor (i.e. corridor 6) from the 1
st
 image of corridor having 

largest illumination difference from the 1
st
 image of the 

corridor. The 5
th

 and 6
th

 image of the desktop is square and 

square root of the 4
th

 image of the desktop respectively. Fig. 

12 demonstrates the descriptors performance and matching 

time for kd=14, 24, 15, 25 and 16 when BC=11 using both 

region detector over Complex illumination change dataset. It 

is observed here also that the performance of IOLD descriptor 

with k=2 is improved significantly as compared to the LIOP 

descriptor with k=1 for a particular d.  

 

 
(a) 

 
(b) 

Fig. 11. Images of (a) Corridor and (b) Desktop category (6 images in each) of 

the complex illumination change dataset. 
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The results of IOLD1125 (dim: 240) is better than the 

results of LIOP1116 (dim: 720) whereas the matching time 

with LIOP1116 is much higher than the matching time with 

LIOP1125. In Fig. 13, we compared the IOLD descriptor with 

SIFT, HRI-CSLTP and LIOP descriptors using haraff detector 

over full Complex illumination change dataset in terms of 

average precision, average recall and matching time. Both 

LIOP and IOLD descriptors outperform SIFT and HRI-

CSLTP descriptors because LIOP and IOLD descriptors are 

inherently invariant to the monotonic intensity change. The 

performance of IOLD is still comparable with the LIOP while 

maintaining the low dimensional feature description and the 

matching time with IOLD is significantly lower than the 

matching time with LIOP. It is observed across the plots (Fig. 

12-13) that IOLD is able to maintain better results with low 

dimensional feature description under drastic illumination 

difference scenario. 
 

 
(a)                                                           (b) 

 
(c)                                                           (d) 

 

(e) 

Fig. 12. (a-d) Descriptors performance and (e) matching time for kd=14, 24, 
15, 25 and 16 when BC=11 using both region detector over Complex 

illumination change dataset. 

 

 
(a)                                                           (b) 

Fig. 13. Comparison of IOLD with LIOP, SIFT and HRI-CSLTP over 

Complex illumination change dataset in terms of (a) recall-precision and (b) 
matching time using haraff detector. 
 

D. Performance Evaluation on Large Image Matching 

Dataset 

To demonstrate the performance of proposed descriptor 

over large image matching dataset, we considered 190 pair of 

images which consists of 84, 63 and 43 pairs from rotation, 

illumination and zoom category respectively [36]. The image 

pairs already used in Oxford dataset are excluded in this 

experiment. The average results and matching time over large 

image matching dataset using SIFT, HRI-CSLTP, LIOP1116 

and IOLD1125 are shown in Fig. 14. IOLD outperforms other 

descriptors using Harris-Affine region detector (see Fig. 

14(a)). We observed that, in the case of Hessian-Affine region 

detector also, the performance of IOLD descriptor is 

comparable. The matching using IOLD is faster than LIOP 

and HRI-CSLTP by 1.43 and 1.13 times respectively and 

slower than SIFT by 0.89 times using hesaff detector and 

similar speedup also gained using haraff detector as shown in 

Fig. 14(b). The results and matching time suggest that the 

IOLD descriptor match the images more precisely and 

accurately with reasonable speed. 
 

 
(a)                                                           (b) 

Fig. 14. Comparison of IOLD with LIOP, SIFT and HRI-CSLTP over large 
image matching dataset in terms of (a) recall-precision and (b) matching time 

using Harris-Affine detector. 

IV. OBSERVATIONS AND DISCUSSIONS 

In this section, we present some observations and 

discussions about the matching performance of IOLD 

descriptor under drastic illumination change and noisy 

conditions. In the last of this section, we analyze the matching 

time in terms of the number of matched key-points. 

A. Effect of drastic illumination change over descriptor 

To visualize the effect of the proposed approach on drastic 

illumination change, we considered a patch from the 1
st
 image 

of the corridor and also same patch from the 4
th

 image of the 

corridor. SIFT, LIOP1164 and IOLD1125 are computed from 

both the patches. LIOP and IOLD are quantized to the size of 

the SIFT such that the dimension of patterns becomes same 

for each descriptor. The difference between the patterns of 

both patches is computed for each descriptor. Fig. 15 presents 

the patches and similarity plot, two corresponding patches are 

shown in (a) and (b), and the similarity plot for the pattern 

difference is shown in (c). We observe that the global peak 

values (both +ive and -ive) is lowest for IOLD and highest for 

the SIFT descriptor. Another important factor is the overall 

deviation from zero in both directions (i.e. +ive and -ive) for 

each bin which is lowest for IOLD. We compared the normal 

distribution in (d) at zero mean (µ=0). It is observed that the 

plot for IOLD is more tend to mean value and also have the 

highest peak value. From Fig. 15(d), it is concluded that the 

pattern of both patches are more similar using IOLD.  
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                      (a)                                           (b)                                                                (c)                                                                         (d) 

Fig. 15. Visualization of the performance of SIFT, LIOP and IOLD under illumination change, (a) a patch from the 1st image of the corridor, (b) same patch as of 

(a) but from the 4th image of the corridor, (c) the difference between the pattern of both patches for each descriptor, and (d) normal distribution of dissimilarities 

(c) at zero mean (µ=0). 

 

 
Fig. 16. Similarity between histograms of original and noised frames (effect of Gaussian noise), first desktop frame is the original frame and remaining frames 

are obtained after adding Gaussian noise in original frame with zero mean and σ variance. 

 

Thus, we believe that incorporating order based approach 

proposed descriptor becomes more robust towards monotonic 

intensity change and provides more similar pattern for the 

similar patches under large illumination differences. 

B. Effect of noise over descriptor 

While good performance is achieved by LBP, CS-LBP, CS-

LTP and LIOP operators (i.e. local order based methods), 

these methods are sensitive to the noises. We synthesized ten 

noisy frames from a desktop frame by adding Gaussian noise 

with zero mean and σ variance (σ = [0.01, 0.1] at an interval of 

0.01) to illustrate the effect of noise over descriptors. We 

compared LBP, CS-LBP, CS-LTP, LIOP1164 [23-26] and 

IOLD3224 (i.e. all methods based on the local ordering) using 

these noisy frames.  

Fig. 16(a) depicts the original desktop frame used in this 

experiment and Fig. 16(b-f) shows some noisy frames 

obtained after adding the Gaussian noise in the original frame. 

The original frame’s descriptor is compared with the same of 

each noisy. We used histogram intersection method [33] to 

compare two histograms. If the value of the similarity is 

tending towards one, it means that histograms are similar (i.e. 

that method is robust to noise). The performance of each 

method is shown in Fig. 16(g). LIOP and IOLD are having 

less sensitivity to the noise than LBP, CS-LBP and CS-LTP. 

LIOP are more robust than CS-LTP because it is the 

generalization of CS-LTP but IOLD are more robust to noise 

than LIOP because LIOP is a special case of proposed 

descriptor. IOLD descriptor is also consistent with the amount 

of the noise added. 

 
Fig. 17. Matching time vs number of matched key-points using IOLD 

descriptor and LIOP descriptor. 

C. Matching time analysis in terms of the number of matched 

key-points 

We have shown in the previous section that the dimension 

of the proposed IOLD descriptor is significantly lower than 

LIOP descriptor [26] whereas the performance of IOLD 

descriptor is either improved or nearly same than the LIOP 

descriptor. Here, we analyze the matching time in terms of the 

number of matched key-points using IOLD descriptor and the 

LIOP descriptor. Consider LIOP is constructed from the 6 

local neighbors (i.e. LIOP1116 with dimension 720) and 

IOLD is constructed from the 10 local neighbors and two 

neighboring sets (i.e. IOLD1125 with dimension 240). We 

calculated the matching time for each pair of the images of 

Oxford image matching dataset [34]. The total number of 

image pairs is 30 in the Oxford dataset but we matched each 
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pair using both Harris-Affine and Hessian-Affine detectors so 

the total number of image pair comparison is 60. If the two 

images of any pair are having    and    number of key-

points returned by any particular detector then total number of 

matched key-points for that pair will be      . Fig. 17 

presents the matching time vs total number of matched key-

points for both LIOP and IOLD descriptor. It is observed that 

the matching time for IOLD descriptor is always less than the 

LIOP descriptor. In other words the proposed IOLD descriptor 

is more efficient as compared to the LIOP descriptor in terms 

of matching time. Moreover, the degree of improvement 

increases with number of matched key-points. So, it is clearly 

deduced that the proposed approach is more efficient when the 

images are containing more details and of-course more 

number of extracted key-points.  

The experiment shows that introduced interleaved order 

based local descriptor (IOLD) is better than other order based 

descriptors such as LIOP and HRI-CSLTP in terms of both 

performance and time complexity. The performance of 

proposed descriptor is better under each geometric and 

photometric transformation considered in this paper (i.e. scale 

change, JPEG compression, viewpoint change, image rotation, 

image blur and illumination difference). IOLD descriptor also 

performs very well under drastic illumination differences. We 

also compared proposed descriptor under noisy condition and 

found that IOLD is less prone to noise as compared to LBP, 

CSLBP, CSLTP and LIOP. The multiple intensity orders 

computed from different neighboring sets provide the 

discriminative ability to proposed descriptor and make it 

robust for different image transformations. The results 

obtained using IOLD descriptor points that IOLD outperforms 

other prominent descriptors proposed recently. 

V. CONCLUSION 

To overcome the problem of rapid growth in the 

descriptor’s dimension with slight increase in the number of 

neighboring sample points, an interleaved neighbor division 

approach is presented in this paper. An interleaved order based 

local descriptor (IOLD) is introduced by computing the 

ordering patterns over multiple neighboring sets. IOLD 

incorporates the advantage of local features extracted in a 

rotation invariant manner. It computes the local intensity 

orders to achieve the invariance property towards monotonic 

intensity change. The robustness and discriminating ability of 

proposed descriptor is increased by using more than one 

interleaved intensity orders derived from multiple neighboring 

sets of the neighboring sample points. Multiple support 

regions and region partitioning into sub-regions further 

improve our descriptor. By incorporating all these, proposed 

descriptor becomes more robust and invariant towards various 

geometric and photometric image transformations. IOLD 

greatly reduces the matching time on an average with a factor 

of 49.40% while having the comparable performance.  Results 

obtained on the image matching experiments suggest that the 

proposed IOLD descriptor is more time efficient and able to 

discriminate the images more robustly. In the presence of 

noise also IOLD is performing more robustly. IOLD 

outperforms other state-of-the-art descriptors under different 

imaging conditions. 
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